
Two methods for exploiting speculative control flow hijacks

Andrea Mambretti1,2, Alexandra Sandulescu2, Matthias Neugschwandtner2,
Alessandro Sorniotti2 and Anil Kurmus2

1Northeastern University, Boston, USA
2IBM Research, Zurich, Switzerland

mbr@ccs.neu.edu
{asa, aso, kur}@zurich.ibm.com

mneug@iseclab.org

Abstract
Touted as the buffer overflows of the age, Spectre and
Meltdown have created significant interest around mi-
croarchitectural vulnerabilities and have been instrumen-
tal for the discovery of new classes of attacks. Yet, to-
date, real-world exploits are rare since they often either
require gadgets that are difficult to locate, or they require
the ability of the attacker to inject code. In this work,
we uncover two new classes of gadgets with very few
restrictions on their structure, making them suitable for
real-world exploitation. We demonstrate – through PoCs
– their suitability to leak one bit and one byte respec-
tively per successful attack, achieving high success rates
and low noise on the constructed side-channel. We test
our attack PoC on various kernels with default mitiga-
tions enabled, showing how they are insufficient to pro-
tect against them. We also show that hardening the con-
figuration of mitigations successfully prevents exploita-
tion, making a case for their wider adoption.

1 Introduction

Spectre [8] and Meltdown [11] have demonstrated that
design-level CPU vulnerabilities exist, and have opened
the floodgates to microarchitectural attack research. Yet,
the space of possible attacks and their variants has not
yet been thoroughly explored and understood.

A suitable historical parallel can be drawn with mem-
ory corruption attacks: it took decades of research after
the seminal work around buffer overflows to thoroughly
understand the prevalence of control flow hijacking, and
design mitigations around that pivotal component of this
class of attacks. The same holds for speculative execu-
tions attacks: their full scope is still largely unknown,
and so are appropriate mitigations.

A subset of speculative executions attacks are of
particular interest: speculative control flow hijacks
(SpCFH), which allow an attacker to redirect execution

to an attacker-chosen address that will be speculatively
executed within the context of the victim thread. At that
address resides a speculative gadget ending in a side-
channel-send code, or spadget [6], which leaks informa-
tion through a microarchitectural side channel. The at-
tacker can then provide side-channel-receive code to read
out the leaked information. The resulting attack may al-
low the attacker to read out arbitrary (and possibly secret)
data out of the victim process.

The three known attacks that fall in the category
of SpCFH attacks are Spectre v2 (branch target injec-
tion) [8], Spectre returns [9] and Speculative buffer over-
flows [7]. All three either target the branch target buffer
(used to predict indirect calls and jumps), or the return
stack buffer (used to predict returns).

The exploitability of SpCFH attacks is mainly depen-
dent on the availability of suitable spadgets. To our
knowledge, all SpCFH PoCs known to date require the
ability to inject code or return into attacker-provided
code (as in the Google Project Zero eBPF-based Spec-
tre v2 exploit), showing that suitable spadgets have been
hard to find. This motivates the research for new classes
of spadgets.

In this paper, we show two new classes of spadgets
that can be used in SpCFH attacks, such as Spectre v2.
The first uses the instruction cache as a send an re-
ceive channel to leak a bit, dependent on a forced con-
trol flow in a spadget. The second uses BTI itself as a
send and receive channel. While both side channels are
known [1, 2, 5, 10], we propose novel variants for them,
and analyse their use as part of a transient execution at-
tack. Our results show that both can be used to success-
fully leak data from a proof of concept, SMT-colocated,
victim program with the default spectre mitigation con-
figuration options on the tested Linux distributions. We
also verify that hardening the configuration of applicable
mitigations (STIBP in this case) is an effective mitiga-
tion, making a case for their wider adoption.

This paper makes the following contributions:

1

Time

Attacker Victim

 ...
0x400820 call *rdx
 ...
0x400830

0x400800 mov rdx, 0x403000
 ...
0x400820 call *rdx
 ...
0x400830 loop 0x400800

DATA CACHE GADGET @ 0x403000

TIMING CACHE ACCESS

Side Channel Receive

BTI Gadget Hijack

BTI Training

Side Channel Send
(Attacker Provided)

Figure 1: Overview of Spectre v2, a SpCFH attack: the at-
tacker performs BTI at first; the victim speculatively executes
the injected gadget whose cache side effects are later measured
by the attacker.

• An Icache attack proof-of-concept: uses the instruc-
tion cache as a side channel, as part of a BTI attack
to leak one bit of information at a time from a victim
program.

• A Double BTI attack proof-of-concept: uses the
branch target buffer (BTB) as a side channel, as part
of a BTI attack to leak one byte of information at a
time.

• An Analysis of current branch target injection mit-
igations on Linux, showing that both attacks work
on user space programs with default settings.

Threat model: For both attacks, we assume the same
threat model as Spectre v2, that is a local attacker, who
knows the code of the target program, is able to bypass
ASLR (possibly by using the BTB itself as side chan-
nel [5]), and is able to invoke (or predict accurately) code
leading to a target indirect branch in the victim program.

2 Background and Related Work

Because there already is litterature available on summa-
rizing existing speculative execution attacks [4, 12, 13]
– we here describe background and related work specifi-
cally relevant to the two methods presented in this paper.

2.1 Speculative Control Flow Hijacking
Attacks

SpCFH attacks, at a high level, rely on a central com-
ponent of modern CPUs: branch prediction. The CPU

needs to predict control flow transfers for filling its deep
pipeline of instructions in flight, and the state used for
this prediction is crucially shared, in time or in space,
between attacker and victim execution threads.

These attacks can be decomposed in four essential
steps: 1. SpCFH train, 2. SpCFH trigger, 3. Side chan-
nel send, 4. Side channel receive. . We describe those
steps by using the initial Spectre v2 attack [8] as an ex-
ample, as shown in Figure 1. The first step injects an
entry into the BTB by training an indirect call. The BTB
functions essentially as a hashtable, indexed by a func-
tion of the current program counter as well as the his-
tory of taken/not taken decisions on past branches. This
means that an attacker replicates a similar history, and
then invokes an indirect call from a virtual address equal
to (or aliasing with, in general) the address of the tar-
get indirect branch to hijack, to create an entry in the
BTB. On the second step, the attacker typically invokes
the victim to trigger a code path leading to the targeted
indirect branch. When branch prediction on the victim’s
indirect branch looks up the BTB, it uses the attacker-
injected target. This leads to a speculative control flow
hijack. In the eBPF Spectre v2 exploit for (hypervisor)
kernels, the code targeted by this hijack is loaded by
a host-resident, unprivileged userspace attacker into the
kernel, by using an optional eBPF feature of the Linux
kernel. This code, side-channel-send code, uses a Spec-
tre v1-like, data cache-based gadget to leak kernel data
into a shared array (Step 3). In Step 4, after speculative
execution completes (and discards the wrongly executed
architectural state), the attacker probes this shared array,
with side-channel-receive code, to read out the data from
the cache side channel.

2.2 Related Side channels

Existing transient execution attacks mostly use data
cache side channels with a few exceptions (NetSpectre-
AVX [14], SMoTherSpectre [3]). In this paper, we con-
sider two other side channels that have not been demon-
strated yet in transient execution attacks: instruction
cache and BTB.

For the instruction cache, Acıiçmez [1] first demon-
strates that secret-dependent control flow attacks against
vulnerable cryptographic libraries can also be mounted
by using the icache. In this attack, the attacking process
forces eviction of the cache lines corresponding to the
target victim’s code in a loop, and times each iteration of
this loop. Loops which run slower correspond to times
where the victim process is executing targeted code. In
contrast, the icache side channel demonstrated in this pa-
per is akin to a Prime+Probe attack, but on the instruction
cache. Indeed, in a scenario where (read-only) code is
shared between two threads on the same core, the second

2

execution of the code will run faster due to caching. On
Intel CPUs, their are multiple levels of caching for code:
the well-known cache hierarchy (LLC, L2, L1) with L1
being split between code and data. Closer to the exe-
cution units, because decoding can be a bottleneck on
x86, CPUs have microcode caches that cache previously
decoded instructions. Although all these caches could
be leveraged in an instruction-cache-based side channel,
our timing measurements in our proof-of-concepts are
mainly in the range of an L1i vs. DRAM difference.

For the BTB as a side channel, Evtyushkin et al. [5]
propose a powerful attack to partially derandomize
ASLR. By placing indirect calls in the attacking process
at different offsets and measuring their execution times,
the attacker can infer if the chosen offset is aliased with
the victim because location with BTB entries will result
in faster execution, thereby leaking code location infor-
mation by essentially bruteforcing possible offsets. In
contrast, the BTB side channel in this paper is even more
powerful, in that the attacker process speculatively exe-
cutes the indirect branch, and places marker in multiple
location at once (256 in our proof-of-concept) to infer
which location has been trained and therefore leak mul-
tiple bits at once from the BTB.

3 Icache attack

The first contribution of the paper is the icache attack.
Informally, this attack is based on the following observa-
tion: while the CPU strives to undo the effects of specu-
latively executed but not retired instructions, it does not
hide effects on the instruction cache. As such, the in-
struction cache may be used to build a side channel be-
tween a gadget speculatively executed by a victim pro-
cess and a gadget executed by an attacker process.

This attack makes use of speculative control flow hi-
jack in order to redirect the victim to a gadget, hence-
forth referred to as the icache gadget. The icache gadget
has the following characteristics: i) a compare-like in-
struction followed by a conditional jump; ii) target and
fallthrough block of the jump leaving measurable and
distinct side effects in the instruction cache; iii) the gad-
get is mapped by both the victim and the attacker. By
measurable we mean that another process should be able
to observe changes to the instruction cache left by the
speculative execution of the gadget, for instance by at-
tempting to execute either block (target or fallthrough)
and measuring the speedup (or lack thereof) induced by
the fact that the instructions of the block are present in
the instruction cache. By distinct we mean that the ef-
fect left by speculative execution of one block should be
different from those left by the other block. These two
conditions constitute a side-channel-send operation over
the information constituted by the condition of the jump.

Time

Attacker Victim

0x400800 mov rax, secret
 ...
0x400820 call *rdx
 ...
0x400830

0x400800 mov rdx, 0x403000
 ...
0x400820 call *rdx
 ...
0x400830 loop 0x400800

0x403000 cmp rax, 0
0x403010 je 0x403040
0x403020 call fun1
0x403030 jmp 0x403050
0x403040 call fun2
 ...

0x404810 rdtsc
0x404820 call fun1
0x404830 rdtsc

Side Channel Receive
(icache Timing)

Side Channel Send
(icache Gadget)

BTI Gadget Hijack

BTI Training

Figure 2: Description of the icache attack: the attacker per-
forms BTI at first; the victim speculatively executes one of two
functions depending on the content of a register; the attacker
later times the execution of either function to learn one bit of
the condition register.

Clearly this information must be valuable from a secu-
rity perspective: the condition may for instance depend
on a compare instruction where the content of the register
argument contains a secret for the victim. The last con-
dition is required for the side-channel-receive operation,
since cache line tagging in the instruction cache will not
produce cache hits unless the cache lines have identical
(physical) tags. Virtual indexing and ASLR also plays a
role which will be discussed later in the section.

Figure 2 describes the attack. Attacker and victim are
two co-located processes (either interleaved on the same
hardware thread or running on different hardware threads
in the same core). At first the attacker performs standard
branch target injection by training an indirect jump to
redirect the control flow to a specific address. The at-
tacker chooses this address as that of the icache gadget.
Whenever the attacker is successful, the control flow of
the victim will be (speculatively) redirected to the icache
gadget. In the figure, the gadget compares the content
of rax to an immediate, and based on the result jumps
to a block that performs a direct call – either to fun1 or
fun2. We assume that rax contains a secret, loaded be-
fore the indirect jump of the victim is executed. If BTI
was successful, the attacker may later time the execution
of either of the two functions to receive the leaked bit
through the side channel. Note that the schedule of at-
tacker and victim only needs to be loosely synchronised:
the attacker’s BTI training needs to be scheduled before
the victim’s targeted jump, and the attacker’s icache tim-

3

ing must be scheduled after the speculative control flow
hijack takes place. The attacker is thus able to leak one
bit for each successful round. By varying the icache gad-
get to point to gadgets that leak different bits of the se-
cret, the attacker may be able to partially or entirely re-
construct the secret.

3.1 Discussion
Anatomy of an icache gadget As discussed, the
icache gadget presents relatively few restrictions and it
is thus expected to be widely available to an attacker.
In particular, the requirement of a shared memory map-
ping is satisfied in the (common) case of two processes
(attacker and victim) using a common shared library, or
the attacker mapping the executable of the victim. This
ensures that instruction cache lines will have identical
(physical) tags. Restrictions on virtual addressing will
be discussed later in the section. The gadget shown
in Figure 2 requires target and fallthrough of the condi-
tional jump to contain a call to different functions. How-
ever, at its core, the gadget only requires that the icache-
observable side effect be different depending on the out-
come of the conditional jump. With this criterion we may
eliminate gadgets whose size is a single cache line, or
gadgets that will be prefetched in their entirety irrespec-
tive of the actual (speculated) control flow. No further
restriction is imposed on the gadget. Finally, we stress
that the icache gadget does not require the presence of
the secret-dependent control flow antipattern in the vic-
tim code, e.g., as in previous icache-based attacks [1, 2].
While the icache gadget indeed performs a conditional
jump based on the value of a secret, the secret is set by
the victim in the completely unrelated BTI gadget.

ASLR The presence of ASLR on most modern sys-
tems introduces an obstacle for the attacker; indeed,
while the requirement on a shared mapping of the icache
gadget ensures that cache lines will have identical (phys-
ical) tags, they must also have identical (virtual) in-
dices. The attacker may either target a shared icache
gadget that is not built as position-independent code (e.g.
(rare) a shared library built without the fPIC or equiva-
lent compiler option; or (more common) an executable
built without the fPIE or equivalent compiler option), or
utilise well-known means of discovering the ASLR off-
set [5, 15].

Alternative side-channel-receive In the icache attack,
the side channel is read by timing the execution of ei-
ther the target or the fallthrough block of the jump in the
icache gadget. An alternative to this approach is to per-
form a standard cache timing attack, by simply reading
the code to probe it, instead of executing. Given that in

our target platforms L1 data and instruction caches are
separate, we did not try this experiment because the side
channel would be noisier due to the smaller time differ-
ence between L2 cache and main memory.

4 Double BTI attack

In this section we describe the second attack, called Dou-
ble BTI attack. The Double BTI attack also exploits spec-
ulative control flow hijack, as first shown by the Spectre
v2 PoC. The original Spectre v2 POC, depicted in Fig-
ure 1, requires the ability of the attacker to inject a gad-
get into the victim address space, namely, the data cache
gadget used to perform the side-channel-send operation.

Attacker Victim

0x400800 mov rax, verify
0x400810 mov rdx, correct
 ...
0x400820 call *rdx
 ...
0x400830

0x400800 mov rdx, 0x403000
 ...
0x400820 call *rdx
 ...
0x400830 loop 0x400800

0x403000 nop
0x403010 call *rax
 ...

verify:
0x404810 marker
0x404820 ret
 ...
correct:
0x407840 ret

Side Channel Receive

BTI Gadget Hijack

0x403000 ret
0x403010 call *rax
0x403020 ret

Side Channel Send
(Reverse BTI Gadget)

BTI Training

0x4007f0 mov rax, correct
0x400800 mov rdx, 0x403000
 ...
0x400820 call *rdx
 ...

0x403000 nop
0x403010 call *rax
0x403020 ret
 ...

 ...
0x404000 mov[0x403000],0x90
 ...

BTI Gadget Patch

Time

Phase 1

Phase 2

Figure 3: Description of the Double BTI attack: the attacker
performs BTI at first; the victim speculatively executes the
“reverse” BTI Gadget that further trains the branch predictor
with the value of a register or a memory location; the attacker
later execute the same “reverse” BTI Gadget and based on the
side effects of wrong prediction (e.g. executing an instruction
marker to a given location) can guess the value of the register
or memory location

With the Double BTI attack we are able to lift this re-
striction, making speculative control flow hijack attacks
far more pernicious. The intuition behind the attack is

4

that the gadget implementing the side-channel-send op-
eration may be instantiated as simply as by a second indi-
rect call. Crucially, this indirect call will cause a second,
“reverse” BTI, where this time the attacker is subjected to
branch target injection. If the attacker is able to measure
the effects of this second BTI and learn one or more bits
of information about the injected target, the side channel
is successfully read.

At a high level, the attack has 2 main phases: in
the first phase, the attacker performs standard BTI and,
whenever successful, causes the victim’s control flow to
be (speculatively) hijacked to execute the reverse BTI
gadget. This represents the side-channel-send operation.
In the second phase, the attacker attempts to perform the
side-channel-receive operation by observing the effects
of the victim’s speculative execution. We can see the two
phases in detail in Figure 3.

4.1 Phase 1

Phase 1 starts with the attacker training the BTB by re-
peatedly executing an indirect call whose target address
is identical to the one of the reverse BTI gadget in the
victim. The attacker can execute this either on the same
thread or on a twin thread on the same physical core of
the victim process. The gadget (identified in the fig-
ure as the BTI training gadget) the attacker calls into
initially consists of a return instruction followed by a
register-indirect call instruction that is never executed in
this phase.

When the training is over and BTI is successful, we
assume that the victim speculatively executes the reverse
BTI gadget. The reverse BTI gadget is identical to the
BTI training gadget in the attacker, save for the fact that
it starts with a nop. The nop may be replaced in prac-
tice with any instruction that doesn’t disrupt the control
flow and whose size still ensures that the indirect call in
the victim’s reverse BTI gadget has the same address as
the (so-far unexecuted) indirect call in the attacker’s BTI
training gadget.

The reverse BTI gadget contains an indirect call which
is speculatively executed. Crucially, our findings prove
that the side effects caused on the BTB by its execution
are not rolled back by the CPU. Further, we show that a
single execution of the victim is sufficient to make this
side effect persistent and observable. For these reasons,
we can see the reverse BTI gadget as an implementation
of the side-channel-send operation: if the information
being sent depends on a secret of the victim, the attacker
is later able to read it with a suitable side-channel-receive
gadget in the next phase.

4.2 Phase 2

At this point phase 2 begins. In phase 2 the attacker
“patches” its BTI training gadget by replacing the lead-
ing ret with a nop. This enables the attacker to perform
the second indirect call without losing alignment with the
victim and without requiring more complex gadgets to
distinguish between training and measurement mode.

Subsequently, the attacker calls into the (now patched)
BTI training gadget once more, finally executing the
register-indirect call whose target was trained by the vic-
tim. If the victim’s training was successful, the attacker
will not execute the code at the correct label but rather at
the victim-trained verify label. This is because the CPU
tries to predict the target of the call, and uses the history
left from the victim execution. The attacker structures its
address space to contain suitable speculative execution
markers. Observing the side effects left by the marker
corresponds to the side-channel-receive operation.

4.3 Practical considerations

In our first proof-of-concept implementation, we instan-
tiate the marker with a set of instructions that is measured
by a specific Intel Performance Monitor Counter (PMC).
The chosen event must be one that is triggered even if
the responsible instructions do not retire. In practice
we have chosen the failed store-to-load forward counter,
which requires a sequence of 3 mov instructions. The per-
formance counter related to the marker is incremented
whenever the attack succeeds and the indirect call in
phase 2 is speculatively redirected to the location trained
by the victim. Clearly this technique is not applicable
to a real-world setting since programming PMC counters
requires root privileges.

We identify 2 realistic marker instances that imple-
ment a side-channel-receive operation. The first can-
didate uses instruction cache side effects. Assuming
that the attacker knows the first 6 most significant bytes
of rax and wants to discover the 7th, it would layout
its address space by placing at each of the 256 possi-
ble addressed an icache-differentiable gadget. This gad-
get would in practice contain a suitable amount of nop
padding to account for the content of the least significant
byte and a call instruction to one of 256 different func-
tions, followed by an lfence instruction to stop specu-
lative execution. The attacker would speculatively exe-
cute one such gadget as the first part of the side-channel-
receive operation, and then time the execution of all func-
tions as second part of the side-channel-receive opera-
tion. If only one of the functions executes in less time
than a pre-computed threshold, its ordinal number corre-
sponds to the leaked byte. This approach suffers from a
rapidly deteriorating signal quality, due to the noise in-

5

duced in the instruction cache by the measuring process.

value0:

 mov rax, QWORD[array + 0 * 1024]

 ret

value1:

 mov rax, QWORD[array + 1 * 1024]

 ret

 ...

value255:

 mov rax, QWORD[array + 255 * 1024]

 ret

Figure 4: side-channel-receive approach using data cache ac-
cess pattern

The second candidate uses data cache access as a mea-
surable side effect. The setup is identical to the previous
approach save for the fact that the 256 target functions
each contain a different memory access (load operations
on an array). When speculatively executed, this induces
an effect in on the data cache, which can then be mea-
sured. This approach is described in Figure 4. With this
approach, the side channel signal maintains its quality
throughout the measuring process and allows the attacker
to extract a full byte from the side-channel-receive oper-
ation.

5 Evaluation

5.1 icache attack
Experimental setup We test the icache attack on an
Intel Core i7-6700K CPU running Ubuntu 16.04.6 LTS,
kernel version 4.15.0. The attacker and victim processes
are co-located. The following system setup is in place:
ASLR is off to ensure consistent virtual addresses for
BTI training, scaling governor is set to performance for
constant clock frequency. Clock frequency is set below
turbo. On the speculative execution mitigation side, the
default setup is in place – spectre_v2 set to auto and
spectre_v2_user set to auto.

The attacker process is timing the execution of target
code that is shared between victim and attacker. The
same icache (physical) tags allow the attacker to deter-
mine the exact path taken in the victim icache gadget. To
enforce this behaviour, we test our attack on two different
setups: in the first, the shared code resides in a POSIX
shared memory region; in the second, the shared code is
part of a shared library. For this second part, we test with
both libhttp-parser, part of nodejs and libcrypto, part
of OpenSSL.

Attacker and victim use lightweight synchronisation
for higher BTI success rate. In practice, this synchroni-
sation is not required as long as we can assume that the

Secret Success Rate

0 98.89%

1 97.78%

Table 1: icache attack experiment with a gadget from
libhttp-parser.so: each row displays the success rate in
guessing the value of the victim’s secret. The success rate is
computed as the rate between samples displaying an icache hit
(resp. miss) when the value of the victim’s secret was 0 (resp.
1). An icache hit is defined as an execution of the icache gadget
timed below a pre-determined threshold.

attacker is able to trigger the victim and can thus time
its execution accordingly. To maximise the signal of the
icache side channel we flush the cache lines that corre-
spond to the target code area before each loop. Given
that the shared gadget is dynamically mapped, the icache
timing gadget in the attacker does not time a direct call
but a register-indirect one.

Results and Discussion Our PoC program runs 100
repetitions of the attacker and victim. We notice that the
attacker timing results are influenced by its prior knowl-
edge of the target address of the call instruction caus-
ing what we assume to be prefetching. To eliminate this
source of noise from the timing we change the call tar-
get address once in 11 loops, thus obtaining one valid
sample out of 11 runs of attacker and victim loop. We
run the PoC one thousand times and we therefore collect
a total number of 9k samples out of 100k runs of the
attack.

Table 1 shows results with a gadget chosen from
libhttp-parser.so: in particular the chosen functions
for fun1 and fun2 are 7 pages apart and are 29 and 870
bytes each. We obtain similar results for the other com-
binations (POSIX shared memory or different shared ob-
jects). The BTI success rate varies from 10% to 90%
over all our experiments. The table shows results from an
experiment where the BTI success rate lies between 32%
and 34%. Each run collects one timing sample for the ex-
ecution of the function fun1 (with reference to Figure 2)
corresponding to the function that the victim should ex-
ecute in case of successful BTI and when the (secret)
value of the condition register is 0. Intuitively, if the av-
erage of a distribution of timing samples is smaller than
some threshold, the attacker should be able to conclude
that the value of the secret is 0, and 1 otherwise. We
determine the value of the threshold by timing the exe-
cution of fun1 during a learning phase, building a dis-
tribution of timing samples for icache hits and setting a
hit threshold as ht = avg+ 3 ∗σ , where avg and σ are
average and standard deviation of the distribution.

The overall success rate of the experiment shown

6

Family Name Code Success Rate

Co�ee Lake i7-8559U 66.8%

Skylake i7-6700k 83.9%

Kaby Lake R i7-8550U 68.6%

Kaby Lake R i7-8650U 69.0%

Broadwell i5-5250U 25.5%

Table 2: Double BTI attack success rate on leaking a one byte
of secret

in Table 1 is computed by building a distribution of sam-
ples for each run of the attacker (100 repetitions as de-
scribed above) and considering a hit the cases in which
the average is below the hit threshold (resp. above) and
the value of the secret is 0 (resp. 1). The table shows
that the success of the overall experiment is always above
97% with either value of the secret.

5.2 Double BTI Attack

Experimental setup We tested our Double BTI attack
on multiple Intel CPUs. On each machine, the attacker
and the victim are co-located. In the PoC, the register
(rax) that is the target of the indirect jump in the reverse
BTI gadget is set as follows: the 3rd least significant byte
is a secret value that the attacker wants to discover, pre-
fixed by a (known) offset and suffixed by all zeroes. The
prefix just ensures that the attacker can map its set of
256 markers at a non otherwise mapped location. In the
PoC, the attacker uses Double BTI attack to learn the
value of the secret byte. We use data cache timing mark-
ers as discussed in Section 4.3. During this experiment,
the mitigations enabled against BTI are the default ones
(see Section 6) enabled on a stock Ubuntu. In this at-
tack, we do not employ any specific synchronisation be-
tween victim and attacker: the correct sequencing of the
two processes is achieved simply by delaying the start
of the victim by a suitable amount of time. We clflush

the memory locations containing the indirect call targets
to maximize the speculation window. With this setup,
we measure the attack success rate over 1000 attempts
to leak the unknown byte of rax by timing accesses to
each of the 256 locations in the array that is filled by the
corresponding markers (as described in Figure 4). The
timing of the array is performed in non-linear order to
avoid prefetching effects. The timing always reveals two
different cases: either exactly one array location is be-
low a pre-defined threshold (fixed at 80 clock cycles) or
none is. The first case corresponds to a successful side-
channel-receive operation.

Table 2 shows the results of our experiments on differ-
ent platforms. We can see that we have non-negligible

successes on all platforms, with success rates peaking
above 80% and never below 20%. The quality of the
side channel signal is excellent owing to the fact that the
attacker performs both the initial (speculative) access fol-
lowed in close succession by the timing of the array loca-
tion accesses, yielding an extremely clean measurement
environment.

6 Mitigations

Both the icache and double BTI method presented here
use BTI for speculative control flow hijacking. There-
fore, BTI mitigations from Spectre v2 are applicable.

Mitigations are available at the hardware and software
level to prevent BTI attacks. At the software level, com-
piling with retpoline [16] mitigates BTI by rewriting all
indirect calls to avoid CPU prediction, through the use
of a carefully crafted return sequence. At the hardware-
level, Intel added Indirect Branch Restricted Specula-
tion (IBRS), Indirect Branch Predictor Barrier (IBPB)
and Single Thread Indirect Branch Predictors (STIBP.
IBRS essentially flushes all branch predictor state when
switching between user and kernel mode. IBPB essen-
tially flushes all branch predictor state upon execution,
even within a process. Finally, STIBP stops sibling SMT
threads branch predictor from influencing the branch pre-
dictor decisions on other siblings threads on the same
core.

We tested our attacks against the current implemen-
tation of BTI mitigations on the stock kernel 4.15.0
of our Coffee Lake machine. The kernel offers two
switches to enable Spectre v2 protections. The first,
spectre_v2, controls mitigations for protecting the ker-
nel from userspace attacks, as well as functions as a mas-
ter switch for enabling userspace protections. It can be
set to on, off or auto. The option on and off forces re-
spectively all the protection to be enabled or disabled. In
our experiment, we left spectre_v2 to auto, the default
setting in recent Ubuntu distributions, to be able to en-
force a finer grain control over the BTI mitigations and
test functionality.

The second spectre_v2_user controls mitigations for
userspace programs, and is gated by the previous set-
ting. It can be set to on, off, auto, prctl/ibpb and
seccomp/ibpb. As for the previous switch, on and off

enable and disable all the protections. Meanwhile, auto
defers the decision to enable or disable each protec-
tion and their mode based on additional configuration.
Instead, both prctl/ibpb and seccomp/ibpb set IBPB
always-on but leave conditional STIBP that has to be en-
abled on request by the process. For seccomp processes
the restriction is enabled automatically.

Among those settings, our attacks are prevented if and
only if STIBP is enabled (forced globally or the victim

7

Distribution Kernel Generation Date STIBP Vulnerable?

Ubuntu 18.04.2 LTS 4.15.0-50-generic May 6 18:46:08 UTC 2019 conditional Yes

Ubuntu 18.04.2 LTS 4.18.0-18-generic Apr 5 10:22:13 UTC 2019 conditional Yes

Ubuntu 16.04.6 LTS 4.15.0-50-generic May 8 15:55:19 UTC 2019 conditional Yes

Ubuntu 18.04.2 LTS 4.19.0-041900-generic Oct 22 22:11:45 UTC 2018 unsupported Yes

Ubuntu 18.04.1 LTS 4.15.0-29-generic Jul 17 15:39:52 UTC 2018 unsupported Yes

Table 3: Default STIBP settings in the kernel used by the distributions tested in our evaluation

thread enables STIBP using prctl). Both attacks can
also be prevented in software if the victim is compiled us-
ing retpoline. While non-SMT based BTI attacks can be
mounted (i.e, attacker thread runs before and after victim
threads, with two context switches), because of the en-
abled kernel mitigations flushing branch predictor state,
these attacks do not apply.

Given the current performance penalties of enabling
STIBP, this protection is set conditional by default or un-
supported (as shown in Table 3) and therefore unless re-
quested by the application, our attack is not mitigated.
Furthermore, we verified that sensitive programs such as
passwd, sudo and nginx do not make use of the prctl in-
terface to enable currently such protection. Given these
default settings and the risks posed by BTI-related at-
tacks, and in particular those presented in this paper,
we recommend sensitive applications to enable STIBP
through prctl when assuming local attackers.

Finally, other types of speculative control flow hijacks,
i.e., return prediction based [9, 7] remain unaffected by
these mitigations, and the two methods presented in this
paper could be applied for those attacks as well.

7 Conclusion

In this paper, we present two new attacks, icache, and
Double BTI. With these two attacks, we are able to leak a
bit and a byte respectively from a victim context for each
run. Both attacks lower the requirements for Spectre v2
gadgets, since they do not require the injection of code
inside the victim. We develop and test proofs of concept
for both attacks on several CPUs showing their success
rate and general viability. Also, we analyse the attacks
against current available mitigations (e.g. STIBP) and
confirm their success when mitigations are left with their
default settings. We also verify that sensitive programs
such as sudo, passwd do not make use of the prctl inter-
face to enhance their protection against such attacks. We
leave real world implementation of our attacks against
such programs for future work. In the meantime, we rec-
ommend maintainers of sensitive userspace programs to
consider enabling BTI mitigations.

References

[1] Onur Aciiçmez. Yet another microarchitectural at-
tack: exploiting i-cache. In Proceedings of the 2007
ACM workshop on Computer security architecture,
2007.

[2] Onur Acıiçmez, Billy Bob Brumley, and Philipp
Grabher. New results on instruction cache attacks.
In International Workshop on Cryptographic Hard-
ware and Embedded Systems, 2010.

[3] Atri Bhattacharyya, Alexandra Sandulescu,
Matthias Neugschwandtner, Alessandro Sorniotti,
Babak Falsafi, Mathias Payer, and Anil Kurmus.
Smotherspectre: exploiting speculative execution
through port contention, 2019.

[4] Claudio Canella, Jo Van Bulck, Michael Schwarz,
Moritz Lipp, Benjamin von Berg, Philipp Ortner,
Frank Piessens, Dmitry Evtyushkin, and Daniel
Gruss. A systematic evaluation of transient execu-
tion attacks and defenses. https://arxiv.org/
abs/1811.05441, 2018.

[5] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael
Abu-Ghazaleh. Jump over aslr: Attacking branch
predictors to bypass aslr. In The 49th Annual
IEEE/ACM International Symposium on Microar-
chitecture, page 40. IEEE Press, 2016.

[6] Richard Grisenthwaite. ARM Whitepaper: Cache
Speculation Side-channels, 2018.

[7] Vladimir Kiriansky and Carl Waldspurger. Spec-
ulative Buffer Overflows: Attacks and De-
fenses. https://people.csail.mit.edu/vlk/
spectre11.pdf, 2018.

[8] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Man-
gard, Thomas Prescher, Michael Schwarz, and Yu-
val Yarom. Spectre attacks: Exploiting speculative
execution. In IEEE Symposium on Security and
Privacy, 2018.

8

https://arxiv.org/abs/1811.05441
https://arxiv.org/abs/1811.05441
https://people.csail.mit.edu/vlk/spectre11.pdf
https://people.csail.mit.edu/vlk/spectre11.pdf

[9] Esmaeil Mohammadian Koruyeh, Khaled N. Kha-
sawneh, Chengyu Song, and Nael Abu-Ghazaleh.
Spectre returns! speculation attacks using the re-
turn stack buffer. In USENIX Workshop On Offen-
sive Technologies, 2018.

[10] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo
Kim, Hyesoon Kim, and Marcus Peinado. Inferring
fine-grained control flow inside SGX enclaves with
branch shadowing. In USENIX Security 17), 2017.

[11] Moritz Lipp, Michael Schwarz, Daniel Gruss,
Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading kernel memory from user space. In
USENIX Security Symposium, 2018.

[12] Andrea Mambretti, Matthias Neugschwandtner,
Alessandro Sorniotti, Engin Kirda, William
Robertson, and Anil Kurmus. Let’s Not Speculate:
Discovering and Analyzing Speculative Execution
Attacks. https://domino.research.ibm.com/

library/cyberdig.nsf/
1e4115aea78b6e7c85256b360066f0d4/

d66e56756964d8998525835200494b74, 2018.

[13] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi,
Ben L. Titzer, and Toon Verwaest. Spectre is here to
stay: An analysis of side-channels and speculative
execution, 2019.

[14] Michael Schwarz, Martin Schwarzl, Moritz Lipp,
and Daniel Gruss. Netspectre: Read arbitrary mem-
ory over network. https://arxiv.org/abs/
1807.10535, 2018.

[15] Alexander Sotirov. Bypassing memory protections:
The future of exploitation. In USENIX Security,
2009.

[16] Paul Turner. Retpoline: a software construct for
preventing branch-target-injection. https://

support.google.com/faqs/answer/7625886,
2018.

9

https://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/d66e56756964d8998525835200494b74
https://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/d66e56756964d8998525835200494b74
https://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/d66e56756964d8998525835200494b74
https://domino.research.ibm.com/library/cyberdig.nsf/1e4115aea78b6e7c85256b360066f0d4/d66e56756964d8998525835200494b74
https://arxiv.org/abs/1807.10535
https://arxiv.org/abs/1807.10535
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886

	Introduction
	Background and Related Work
	Speculative Control Flow Hijacking Attacks
	Related Side channels

	Icache attack
	Discussion

	Double BTI attack
	Phase 1
	Phase 2
	Practical considerations

	Evaluation
	icache attack
	Double BTI Attack

	Mitigations
	Conclusion

