
GhostBuster: understanding and overcoming the
pitfalls of transient execution vulnerability checkers

Andrea Mambretti∗†, Pasquale Convertini†, Alessandro Sorniotti†, Alexandra Sandulescu†,
Engin Kirda∗ and Anil Kurmus†

∗Khoury College of Computer Sciences, Northeastern University, Boston, USA
Email: {mbr, ek}@ccs.neu.edu

† IBM Research - Zurich, Rueschlikon, Switzerland
Email: pasqualeconvertini95@gmail.com, {aso, asa, kur}@zurich.ibm.com

Abstract—Transient execution vulnerabilities require system
administrators to evaluate whether their systems are vulnerable
and whether available mitigations are enabled. They are aided
in this task by multiple community-developed tools, transient
execution vulnerability checkers. Yet, no analysis of these tools
exists, in particular with respect to their shortcomings and
whether they might mislead administrators into a false sense
of security. In this paper, we provide the first comprehensive
analysis of these tools and underpinning methodologies. We
run the tools on a large set of combinations of Intel/AMD
architectures and Linux kernel versions and report on their
efficacy and shortcomings. We also run these tools on 17 of
the most prominent cloud providers, report the collected results
and present the current status on the preparedness of the IT
hosting industry against this class of attacks. Finally, we present
a new tool called GhostBuster, that combines methodologies
and results gathered by existing tools to provide a more accurate
view a system’s stance against transient execution attacks for a
given use case.

Keywords—Transient Execution; Hardware Security; Side
Channels; Microarchitectural Attacks; Vulnerability Checkers;
Cloud Security; Operating System Security;

I. INTRODUCTION

With the discovery of Spectre and Meltdown in 2018, many
threat models required a complete revision to include the new
category of transient execution attacks. These attacks leverage
optimizations or bugs in the microarchitecture of modern CPUs
to cross privilege boundaries and leak data [3].

In general, exploiting transient execution vulnerabilities
requires satisfying two conditions: the presence of a mi-
croarchitectural attack vector and the fulfillment of all the
constraints of the underlining threat model. For instance,
to perform the Meltdown [20] attack, two conditions have
to be met: first, the CPU has to defer the supervisor bit
check until instruction retirement (microarchitectural attack
vector) and second, the privileged memory region we want
to access should be mapped in the same address space of
the process (threat model requirement). Similarly, Spectre-
PHT [17] requires speculative execution support on the target
system and a double array access pattern in the victim process
(microarchitectural attack vector). Moreover, it also requires
a secret within the victim address space that we want to
leak (threat model requirement). Another example is Spectre-
BTB [17], where the attack vector is represented by the ability
of a process to inject entries in the branch target buffer for the

co-located thread, and the threat model requires that the victim
process contains a side channel primitive allowing leakage of
sensitive data. While some of these attacks are exploitable in
real-world settings, others have not left the realm of theoretical
vulnerabilities.

Owing to the high number of transient execution attacks
(both practical and theoretical) and the multitude of mitigation
mechanisms, the degree to which systems are safe against
speculative execution attackers is often hard to determine. The
determination is made even more complex by the fact that a
system might be affected by a certain microarchitectural attack
vector, while being safe in practice because the conditions of
the associated threat model are not met. Furthermore, it is
possible for a system to be unaffected by an attack vector
under a certain threat model, while being affected under a
different one: an example of this is Spectre-BTB, where most
of the defense mechanisms are applied between kernel and
user-space, but are not enforced when the attack is performed
uniquely in user-space.

CVE-2017-5715 aka ’Spectre Variant 2, branch target
injection’

* Mitigated according to the /sys interface: YES
(Enhanced IBRS, IBPB: conditional, RSB filling)

* Mitigation 1

* Kernel is compiled with IBRS support: YES

* IBRS enabled and active: YES

* Kernel is compiled with IBPB support: YES

* IBPB enabled and active: YES

* Mitigation 2

* Kernel has branch predictor hardening (arm): NO

* Kernel compiled with retpoline option: YES

* Kernel supports RSB filling: UNKNOWN
(kernel image missing)

> Status : NOT VULNERABLE (IBRS + IBPB are mitigating the
vulnerability)

Listing 1. Sample output from a commonly used tool to check vulnerability
of a system against transient execution attacks

To illustrate the practical implications of this observation,
we give in Listing 1 an example of the output of one of
the most commonly-used tools used to analyze a system’s
status with respect to speculative execution attacks, spectre-
meltdown-checker. The output of the tool seems to indicate
that the system is not vulnerable to Spectre-BTB (also known
as Spectre v2). In reality, though, this output only concerns
attacks directed at the kernel. This also outlines the need
to precisely distinguish use cases when assessing whether
a system is vulnerable to transient execution attacks, such



as targeting the kernel and targeting privileged userspace
programs.

An example of the impact that such misleading information
can have is shown by Bhattacharyya et al. [2] and Mambretti
et al. [23]. In both cases, the authors show that it is possible
to perform branch target injection in patched systems although
spectre-meltdown-checker reports that the system is not
vulnerable. Indeed, neither attack targets the kernel, which is
the use case implicitly considered by spectre-meltdown-
checker, they both target user space applications controlled
by the attacker.

Because of these considerations, tools designed to gauge
the security posture of systems against transient execution
attacks often give incomplete or erroneous information, either
leaving systems potentially exposed to attacks that might be
considered mitigated, or forcing expensive countermeasures
for attacks that are only theoretical. Therefore, a gap exists
for tools directed towards system administrators, analyzing
whether for a given use case, their system is vulnerable to
transient execution attacks.

In this paper, we answer the question: To what extent can
existing tools tell a system administrator whether a system
is vulnerable to transient execution attacks? To answer this
question, we consider the tools available at the time of writing
which check the security of a system in relation to transient
execution attacks. Some of these tools gather system informa-
tion and try to infer which attacks the system is vulnerable
to. Others, instead, run proof-of-concept attacks in the system
and try to assess empirically whether transient execution attack
vectors are exploitable. Our results empirically show that none
of the available tools are able to cover correctly the entire
spectrum of attacks. Based on this analysis, we propose a meta-
tool prototype, called GhostBuster, that more accurately
informs of a system’s vulnerability against transient execution
attacks, in particular by taking into account the target use case
and combining advantages of both information gathering and
empirical tools. Along with GhostBuster, we provide 5 main
recommendations for system administrators on how to use and
improve such vulnerability checkers.

In this paper, we make the following contributions:

• We analyze transient execution vulnerability checkers,
and report on identified shortcomings and pitfalls of these
tools.

• We provide the first large-scale analysis for transient
execution vulnerabilities on commercial cloud providers.

• We provide recommendations based on 6 different use
cases to correctly test for transient execution vulnerabil-
ities. As a result of our work, we provide a meta-tool,
GhostBuster, that combines and enhances existing tools
to avoid the pitfalls observed in the state-of-the-art.

II. BACKGROUND & RELATED WORK

In this section, we give detailed information about the
attacks, defenses and tools analyzed in this work. Specifically,
in Section II-A, we describe transient execution attacks; in Sec-
tion II-B, we report the available defense mechanisms; finally,
in Section II-C, we describe in detail the available tools we
consider for this work.

A. Transient execution attacks

Transient execution attacks are commonly divided into two
major families: Speculation-based and Fault-based [3]. In the
Speculation-based family we find the various versions of the
Spectre attacks that leverage speculative execution to achieve
data exfiltration. In the Fault-based family instead, we find all
the different variants of Meltdown that rely on bugs in the way
the CPU handles faults to achieve similar results.

In this work, we include transient execution attacks for
which the transientfail tool was able to identify a suc-
cessful attack, at the time we started the analysis. In the
speculation-based family, we focus on the following Spec-
tre variants (following the naming introduced by Canella et
al. [3]): Pattern History Table [17] (PHT), Branch Target
Buffer [17] (BTB), Return Stack Buffer [18], [21] (RSB)
and Store to Load [10] (STL). Concerning the fault-based
family, we focus on the following Meltdown variants: Bound
Range [3] (BR), Read-Write [16] (RW), User/Supervisor [20]
(US), General Protection [15], [1], [14] (GP), Protection
Key [3] (PK) and Foreshadow [26], [30] (P). In particular, we
do not cover Meltdown-family variants that were reported later
such as RIDL [28], ZombieLoad [24], LVI [27], and variants
identified by SPEECHMINER [31]. This does not affect our
conclusions on the adequacy of existing tools, which apply to
existing variants.

Transient execution attacks can be further classified accord-
ing to where the training of a predictor occurs. In particular, we
define the following relevant configurations: i) same address-
space (sAS) where training occurs in the same address space
as that of the victim process, or ii) cross address-space with
simultaneous multi-threading (cHT) where training occurs in
a separate process running on the same physical core, or
iii) cross address-space without simultaneous multi-threading
(cAS) where training occurs between two processes running
interleaved on the same physical core. Note that the cHT
setting is a setting where attacker training and victim spec-
ulation occur in temporal colocation (different logical core,
same time), whereas in the cAS setting they occur in spatial
colocation (same logical core, different time). These settings
are important because several attacks and mitigations rely on
them. Thus, considerations on the specific setting must be
taken into account in the threat model when evaluating the
security posture of a system.

1) Spectre Family: The Spectre family of attacks leverages
out-of-order execution and CPU speculation to misdirect the
execution flow towards sensitive paths with attacker controlled
inputs, that would not be otherwise executed. If the sensitive
path contains a sequence of instructions able to leave traces in
the cache based on a secret, the attacker can later retrieve such
secret by probing the cache with known techniques (e.g. Prime
and Probe, Flush and Reload). The various Spectre variants
target CPU internal components and optimizations that can
lead to such mispeculation.

Spectre-PHT, also known as Spectre v1, mistrains the
Pattern History Table (PHT) used by the CPU to make a
prediction on the outcome of conditional branches. This can
lead the CPU to mispeculate a branch towards a sensitive piece
of code (e.g. a Spectre v1 gadget).

Spectre-BTB, also known as Spectre v2, poisons the

2



Branch Target Buffer (BTB) to steer speculative execution to a
mispredicted branch target previously injected by the attacker.

Spectre-RSB, similarly to Spectre-BTB, targets backward
edge control flow transfer, rather than the forward edge. The
attacker, through poisoning of the Return Stack Buffer (RSB),
is able to hijack the prediction caused by a ret instruction
when the saved instruction pointer on the stack is not imme-
diately ready.

Spectre-STL, also known as Spectre v4, leverages a com-
pletely different source of speculation inside modern CPUs. It
targets data forwards happening between the store buffer and
the load buffer when an in-fly load requires a value from the
same location of a previously executed store. In this case, the
attacker can trick the CPU to forward to a load a wrong value
that is subsequently used during speculative execution.

2) Meltdown Family: The Meltdown family of attacks
exploits bugs within the CPU. During a Meltdown attack, the
attacker tries speculatively to perform operations that are not
allowed due to privilege boundaries. Meltdown relies on the
fact that faults are handled by the CPU only when the faulty
instruction retires, leaving speculative execution to continue
across privilege boundaries before the fault is registered. This
can allow an attacker to create a cache side channel with data
retrieved from a higher privilege level through out-of-order
execution. Each variant of Meltdown exploits a different fault
type.

Meltdown-US is the first discovered variant of the Melt-
down family. ‘US’ refers to the user/supervisor permission
check to restrict access to memory pages.

Meltdown-RW exploits the read-write fault (#RW), gen-
erated when a process tries to write to a read-only page.

Meltdown-P, known as Foreshadow, specifically affects
Intel CPUs. At the heart of this Meltdown variant lies the
so called L1 Terminal fault (L1TF) [26], triggered when an
address translation processing must be aborted due to a specific
set of conditions (e.g. the present (P) bit cleared in the page
table entry).

Meltdown-PK exploits the #PF fault raised when a process
tries to access a page shielded with a Protection Key (PK).

Meltdown-BR exploits the Bound Range fault (#BR)
raised in case of an out-of-bounds memory access.

Meltdown-GP is a variant of Meltdown that exploits
the General Protection (#GP) exception, raised whenever an
unprivileged process tries to access a privileged register, for
example by using the rdmsr instruction.

B. Defenses

Several mitigations have been developed to protect against
the attacks presented in the previous section. Some of these
mitigations repurpose existing instructions or sequence of
instructions to block speculative execution in sensitive areas
of the code. Others, instead, are new hardware features that
hardware vendors introduced in new iterations of the CPU.
Changes are also made at the operating system level, including
the re-design of entire subsystems. Hereafter, we describe the
mitigations currently available at the time of this writing:

Memory Fencing. Through the application of serialization
instructions, such as lfence on Intel, it is possible to force
the CPU pipeline to wait for prior instructions to retire and,
as a consequence, to block speculation and related Spectre
attacks. Such a pipeline interruption is an expensive operation,
therefore fencing instruction should be placed carefully either
manually or at compile time only where really needed. For
instance, the Linux kernel uses manually instrumented code,
if the Spectre mitigations are enabled.

Branchless masking is a mitigation against Spectre-PHT
attacks to harden load instructions that are gated by a con-
dition. The technique involves introducing a data dependency
(usually called mask) on the condition through a set of instruc-
tions which set the mask to zero in case the condition is false
(and to unsigned negative one otherwise). The mask is then
used to zero out pointers or array indices before performing the
load when invalid. Masking is for example used in the Linux
kernel [6] to block Spectre-PHT whenever a value coming
from userspace is used as an index for an array access. It is also
available as a compiler option (Speculative Load Hardening
(SLH) [4]) to instrument conditional branches with control-
flow dependent pointer masking.

Retpoline. As an answer to Spectre-BTB, the Retpo-
line [25] compile-time mitigation replaces indirect branches
with ret instructions to prevent branch poisoning. This
method ensures that return instructions always speculate into
an endless loop through the RSB.

KPTI mitigates Meltdown-US and fortifies KASLR. KPTI
is based on KAISER [3] (short for Kernel Address Isolation to
have Side-channels Efficiently Removed). If KPTI is enabled,
whenever user-space code is running, Linux ensures that only
the kernel memory pages required to enter and exit syscalls,
interrupts and exceptions are mapped. With no other pages
mapped, KPTI prevents the use of kernel virtual addresses
from user-space because they cannot be correctly translated.

IBRS [12] prevents indirect branch predictors executed in
privileged code from being trained by less privileged code (i.e
kernel-space cannot be influenced by user-space). This also
includes the case of attacks from another logical core on the
same physical core (cHT).

IBPB [11] prevents code that executes before it from
affecting branch prediction for code that executes after. When
enabled, an IBPB barrier runs across user mode or guest mode
context switches. In this way, a different user cannot attack
a process of another user running on the same machine. On
Linux machines, IBPB can be conditionally or fully enabled:
in the first case, the barrier is raised only when switching to
processes that request it using seccomp or prctl.

STIBP [13] splits the branch predictor across sibling
threads of a core, removing the attack vector constituted by
a process training the predictor of a co-located victim process.
This prevents attacks like Spectre-BTB in the cHT setting.

RSB filling blocks Spectre-BTB and Spectre-RSB in the
cAS setting. It flushes the RSB whenever the CPU switches
across privilege levels. For instance when the CPU switches
from usermode to kernel mode the RSB might contain poi-
soned entries introduced by the attacker which might affect its

3



speculative control flow. The process of RSB filling removes
any such entry.

SSB mitigation. When software-based mitigations are not
feasible (such as inserting an lfence instruction between the
store and the load instructions) for Spectre-STL, some CPUs
support Speculate Store Bypass Disable that can be used to
mitigate speculative store bypass. When SSBD is set, loads
will not execute speculatively until the address of older stores
are known.

PTE inversion is used to block Meltdown-P attacks. When
a page table entry points to a non present page, the upper
address bits are inverted so that an access to such entry
resolves to uncacheable memory access. Given that Meltdown-
P can only exfiltrate data from L1 cache, forcing the address
translation to return an uncacheable address closes the attack
vector.

VMC conditional cache flushing is adopted on virtualized
environments. The mitigation flushes the L1 cache at every
VMENTER instruction. This way secrets possibly stored in
the cache are no longer accessible via the Foreshadow-VMM
attack.

C. Testing Tools

In this work, we analyze and use the 4 state-of-the-
art tools to discover if a system is vulnerable to transient
execution attacks. We divide the tools into two main categories:
information gathering and empirical.

1) Information gathering tools: These tools use the kernel,
the cpuid instruction and the microcode version as sources to
collect the necessary information. The kernel provides infor-
mation about Spectre and Meltdown vulnerabilities through
the sysfs virtual file system interface. They use the cpuid
instruction to determine if the CPU supports mitigations such
as IBRS. Due to the differences among the Linux distributions
and the way the necessary pieces of information are presented
by the several Linux kernel versions, these tools must con-
stantly be adapted to parse information correctly on all the
different distributions.

The spectre-meltdown-checker [19] script was re-
leased soon after the disclosure of Spectre and Meltdown. This
script inspects the local system for information related to tran-
sient execution patches. The spectre-meltdown-checker
script even understands if the kernel space is hardened against
transient execution attacks by also disassembling the kernel
image and counting the number of lfence instructions. The
tool is constantly updated by the community with tests for all
the newly disclosed attacks. It is considered the state-of-the-art
tool for verifying the system status.

The mdstool-cli [29] tool was published together with
the disclosure of the RIDL vulnerability to the public. It
aims to detect if the system is vulnerable to such attacks
and previously discovered ones. As for spectre-meltdown-
checker, mdstool-cli inspects locations inside the system
such as sysfs and the results of the cpuid instruction. While
more recent, mdstool-cli is less exhaustive compared to
spectre-meltdown-checker and only checks whether the
CPU self-reports itself as vulnerable to a specific class of

attacks. Mitigations status and availability information are also
gathered but they are not factor in the final report.

2) Empirical tools: As the name suggests, these tools use
an active approach to assess if the machine is vulnerable or not
to transient execution attacks. The tools under this category run
several tests to verify the presence of the attack vectors of each
of the known transient execution attacks. Each test emulates a
specific attack and determines whether the transient execution
attack is feasible. Two methods can be employed to make the
final determination: either cache side channels or Performance
Monitoring Counters (PMCs).

The approach with PMCs is less noisy than the cache-based
ones and provides a more accurate determination about the
presence or absence of the attack vector. The main drawback
of using PMCs is their limited availability on virtual machines:
they are rarely virtualized.

Transient Fail was released by Canella et al. [3]. It includes
a series of empirical tests/PoCs that cover all the known
transient execution vulnerabilities. This tool attempts to trigger
the vulnerabilities locally and determines whether the attempt
is successful by observing micro architectural side effects on
the cache. Based on those, it is possible to infer whether a
specific attack vector is present in the tested system.

Speculator [22] leverages CPU performance counters to
evaluate speculative execution. We extend speculator with
tests for each known transient execution attack since they
are not available in the original version of the tool. We use
markers presented along with speculator [22] as signals to
verify whether the attack was successful. This mode of opera-
tion differs from the one used in transientfail that relies
instead on known cache side-channels (e.g. Prime+Probe,
Flush+Reload). While Das et al. [7] suggest that PMCs
should not be used in security applications to detect attacks,
Mambretti et al. [22] prove instead that they can be reliably
used to monitor tests results in the context of transient execu-
tion attacks. Moreover, speculator implementation carefully
follows Das et al. [7] guideline to eliminate common mistakes
in PMC usage.

TABLE I. CPU families the tools have been tested with the
corresponding kernel version

CPU Family Kernel
Intel Ivy Bridge 4.15.0
Intel Haswell 4.15.0
Intel Broadwell 5.0.0
Intel Skylake 4.15.0
Intel Kaby Lake 4.15.0
Intel Kaby Lake R 4.15.0
Intel Cascade Lake 4.15.0
AMD Ryzen 4.15.0
AMD Ryzen 2 4.15.0

At the time of our analysis, spectre-meltdown-
checker and mdstool-cli were last updated at the end of
May 2019, while transientfail on August 2019. Another
tool, called SafeSide [9], is under development with the same
goal and design of transientfail. However, due to the early
stages of the tool when our experiments were run and its great
similarity with transientfail, we decided not to include it
in our comparison.

4



III. METHODOLOGY

In this section, we describe the methodology we follow
to evaluate the tools. At first we describe a few meaningful
contexts in which the tools may be run: we focus on 6 practical
use cases in which a system administrator may want to execute
one or more of the tools to measure the degree of security of
their system against a speculative adversary, keeping the use
case of that system into account. We also describe the systems
in which we tested the various tools.

A. Use Cases

This section details the use cases we considered to evaluate
the impact of transient execution attacks. We categorize use
cases based on the security domain at which attacker and
victim operate. The considered cases are the following.

• Sandbox to process (S-P): we consider an attacker running
sandboxed code, such as Javascript, eBPF, or NaCL [32],
aiming to leak data from the process that runs the sand-
box.

• User to user (U-U): we consider an attacker controlling an
unprivileged process, targeting a privileged process such
as a process running as root on the same machine.

• User to kernel (U-K): we consider a local attacker target-
ing an OS kernel.

• VM Guest to Guest (G-G): we consider an attacker that
controls a VM guest OS, and targets other VM guests
running on the same host.

• VM Guest to Host (G-H): we consider an attacker that
controls a VM guest OS, and targets the hypervisor (also
known as VM Monitor).

• Host to SGX (H-SGX): we consider an attacker in control
of the system (i.e., able to load its own kernel) targeting
an SGX enclave. SgxPectre [5] presents a series of attacks
in this setting, exploiting different variants of Spectre v2.

B. Systems and Platforms

This section describes the choice of platform, architecture
and Linux kernel version that are used to evaluate the tools.
We test each tool on several different CPU families and
kernel versions: Table I shows the CPU families and the
corresponding kernel version where the 4 tools have been
tested. We run the information gathering tools on each system
and collect their final report. The approach of this set of tools
consists of simply parsing information gathered in the system,
thus the execution time of both mdstool-cli and spectre-
meltdown-checker is roughly constant. Concerning empiri-
cal tools, we execute each test available in speculator and
transientfail on the machines listed in Table I. We set a
20 seconds timeout for all transientfail empirical test runs
with the exception of the Spectre-BTB one where the threshold
was set to 250 seconds because its runs are significantly slower.
Most of the tests are meant to run indefinitely while others
until a secret is revealed. The timeout is necessary to avoid
infinite iterations. Spectre-BTB is a rather noisy attack and
the test is run in batches with an incremental number of
iterations (e.g. 100k, 200k, 300k etc.) until either the attack
is successful or the time expired. We adjusted its timeout to
allow this incremental search of the right number of iterations.
For speculator instead, we execute all tests with 10k runs

per instance. While in the case of transientfail tests can
be run as a standard user, speculator requires root access
on each machine to access the PMC interface.

We run all tools on systems hosted by 17 different
infrastructure-as-a-service (IaaS) cloud providers: we collect
samples for all three main IaaS offerings, namely:

• multi-tenant solutions: each tenant gets access to a virtual
machine deployed on a set of physical resources shared
with other customers;
• single-tenant solutions: the tenant gets access to a ma-

chine with a hypervisor whose physical resources are not
shared with other customers;
• bare metal solutions: the machine is delivered without

any virtualization solution and is fully devoted to a single
customer.

Testing on real cloud systems as opposed to self hosted
and managed hardware provides useful additional insight on
the use of these tools in real-world scenarios: the choice of
virtualization platform and its effects on the availability of
the PMC infrastructure, the impact of workload from other
tenants on the cache side channels, and default configurations
for the systems are just a few. More will be discussed in Sec-
tion IV-A1.

Overall we perform tests on 28 different machines as many
cloud providers support more than one of the above mentioned
solutions. To keep our analysis as general as possible, we
collect the results from clouds of different sizes and market
share: according to Gartner [8], the clouds we test, cover
together more than the 75% of the IaaS market share in 2018.

IV. RESULTS

In this section, we report results related to the comparison
between the methodologies underpinning the tools, underlining
pros and cons of each. We also present the results of our
analysis on the 17 tested providers. Finally, we report, based on
the use cases described in Section III-A, which methodology
might be better suited to determine the security of a system
with respect to transient execution attacks.

CVE-2017-5753 aka ’Spectre Variant 1, bounds check bypass’

* Mitigated according to the /sys interface:

YES (Mitigation: usercopy/swapgs barriers and
__user pointer sanitization)

* Kernel has array_index_mask_nospec:

YES (1 occurrence(s) found of x86 64 bits
array_index_mask_nospec())

* Kernel has the Red Hat/Ubuntu patch:

NO

* Kernel has mask_nospec64 (arm64):

NO

> STATUS : NOT VULNERABLE (Mitigation: usercopy/swapgs
barriers and __user pointer sanitization)

Listing 2. spectre-meltdown-checker sample output for Spectre
PHT

A. Tools comparison

Table II presents a comparison between the tools we
employed in our study. We enumerate here advantages and
disadvantages of each, providing examples from our analysis
as support.

5



TABLE II. Major pitfalls and limitations observed for each tool. We indicate with 3 that the pitfall is present, whereas we leave blank otherwise.

Parsing Error Use Case Imprecision Attack Vector only Cache Noise PMC req. Root req.
mdstool-cli 3 3
spectre-meltdown-checker 3 3
transientfail 3 3
speculator 3 3 3

TABLE III. Classification of the result types for each of the attacks with respect to the use cases described in Section III-A. Empirical tools do not focus
on specific use cases but rather on the existence of the attack vector. The table reflects this by referring the use case as synthetic. Results are reported as: 3 if
the tool reports information about a certain attack within the use case considered; ⇒ if the information can be inferred but it is not directly reported; 7 where
either no information can be inferred from the tool; finally the cell is left blank where the attack cannot be performed or it is not feasible under the specific

use case.
Spectre Meltdown

Tools Use Case PHT BTB RSB STL US RW P PK BR GP

spectre-meltdown-checker

S-P 7 7 7 ⇒ 7 7 7
U-U 7 7 7
U-K 3 3 ⇒ 3 3 7 3 7 ⇒
G-G 7 7 7 3 ⇒
G-H 7 7 7 7
H-SGX 7 7 7 3

mdstool-cli

S-P 7 7 7 7 7 7 7
U-U 7 7 7
U-K ⇒ ⇒ 7 ⇒ ⇒ 7 ⇒ 7 7
G-G 7 7 7 7 7
G-H 7 7 7 7
H-SGX 7 7 7 7

transientfail synthetic 3 3 3 3 3 3 3 3 3 3

speculator synthetic 3 3 3 3 7 3 7 7 3 7

1) Pitfalls: Parsing errors. Information gathering tools may
wrongly parse system information, thereby providing wrong
data to the user. For example, the mdstool-cli tool uses
sysfs file system provided by the Linux kernel to detect which
mitigations are used against Spectre-PHT. The content of this
file has changed over different kernel versions, and mdstool
-cli only recognizes output with an outdated format, which
leads it to conclude that a system with mitigations for Spectre-
PHT is vulnerable, in contradiction with the kernel-provided
output. In contrast, spectre-meltdown-checker parses the
output correctly for all tested kernel versions.

A similar parsing problem arises on older kernels when
the /sys interface is not present. While spectre-meltdown-
checker reports that the interface is missing, mdstool-cli

does not and reports that CPUs are safe against Spectre-
PHT, Spectre-BTB, Meltdown-US and Meltdown-P. This issue
may mislead the tool user into considering a system safe. We
discovered the flawed mdstool-cli reports while running our
experiments on one of the cloud providers listed in Table V.

Inaccuracies from implicit assumptions. A second, very
common issue for information gathering tools is related to
the assumptions that are implicitly made over the consid-
ered use case: the tools report results in very generic terms,
whereas in reality they only analyze a specific use case. For
example, both spectre-meltdown-checker and mdstool-
cli report results about Spectre-BTB, when in reality they
only consider the effects of the Spectre-BTB attack vector
on a user-to-kernel use case. Similar arguments can be made
for most transient execution attacks, wherein the same attack
vector applies to multiple use cases: the tacit assumptions
and lack of precision can be misleading. A related and more
subtle issue concerns the confusion between the attack vector
and mitigations against specific attacks leveraging it. As an
example, the Linux kernel includes software mitigations to
prevent a subset of Spectre-PHT attacks; spectre-meltdown
-checker checks whether they are enabled and – based on
that – reports whether the system is vulnerable to Spectre-PHT.
This report, shown in Listing 2, is however misleading because

the mitigations it evaluates do not necessarily protect from
all Spectre-PHT attacks. First, Spectre-PHT attacks are not
limited to attacks targeting the kernel: any user-space program
could be the target of such an attack, as long as the target
program contains a vulnerable code pattern and has not been
compiled with mitigations such as SLH [4]. Second, Spectre-
PHT attacks against the Linux kernel may still be feasible in
isolated cases, as the mitigations are based on false-negative
prone static analysis and manual code analysis.

Not considering same-address space training. We have
identified that Spectre-BTB attacks are implicitly assumed by
empirical tools to be in the cross-address space (cAS or cHT)
variant. This is problematic and may lead to a false sense of
security: Spectre-BTB attacks may also be performed in the
same address-space (sAS) setting. Mitigations such as Intel’s
IBRS, STIBP, and IBPB only apply to the cross address space
setting.

Attack vector only. Empirical tools draw conclusions based
on synthetic attack scenarios. Thus, they are only able to report
results on the presence or absence of the specific transient
attack vector on which an end-to-end attack may be built.
However, the presence of the attack vector does not necessarily
mean that an attack could be mounted in a particular use
case, i.e. that the system is vulnerable. For example, in the
context of Spectre-BTB in the cHT setting, an empirical tool
can verify with a synthetic attack if the branch predictor is
shared or not between the logic cores of a system. Although
the attack is synthetic, a negative result means that the attack
vector is not present, and that no attack of this kind can be
performed. However, a positive result does not mean a system
is vulnerable: it only means that further requirements need to
be fulfilled for a valid end-to-end attack.

Cache noise. transientfail faces problems when the
system under test has competing cache activity. This can give
the user wrong or inaccurate results. During our cloud analysis,
we experienced such a problem on one provider where none
of the transientfail proof-of-concept attacks ran correctly.

6



PMC & root requirement. A problem specific to
speculator is the availability of PMCs. In particular, dur-
ing our analysis of cloud providers, in all but one cloud
provider PMCs were not available, due to the lack of the
performance counter interface in the virtualized environment.
Also, speculator requires root privileges to use the PMCs
infrastructure, which limits the use of the tool to the adminis-
trators of the system.

TABLE IV. Tools version used in the experiments

Tool Commit hash
spectre-meltdown-checker 91d0699
mdstool-cli 11b3240
transientfail 7b0c9b2
speculator 4973a19

2) Tools vs use cases: Table III describes the effectiveness
of each tool in evaluating transient execution attacks in each
of the applicable use cases.

spectre-meltdown-checker reports information for the
U-K use case for almost all attack families. It is also the only
tool the user can run to determine if Meltdown-P is patched in
three out of the six use cases, and the only tool that checks the
CPU microcode to determine whether the machine is patched
against Meltdown-GP. mdstool-cli limits its output to the
information exposed by the kernel through sysfs; this mainly
includes information about the state of the mitigations, with
few details about the use cases under analysis. Nevertheless, a
user with good knowledge of the mitigations listed in the final
report of this tool can infer if the machine is vulnerable in the
U-K use case.

Empirical tools verify instead the existence of the attack
vectors at the base of Spectre and Meltdown variants. Both
transientfail and speculator execute test applications
in user space in order to verify the feasibility of an attack.
However, the attacks are usually run in the same address
space of the victim, or from an attacker to a victim process
not hardened against the attack. Therefore, the empirical tools
reports are not linked with the use cases considered for the
other tools; results are thus labeled as synthetic in Table III.

B. Analysis

In this section, we present results collected by running all
tools on systems hosted by 17 of the most prominent cloud
providers.

1) Information gathering tools: Results from spectre-
meltdown-checker and mdstool-cli show that 16 out
of the 17 tested cloud providers make use of the proper
mitigations to harden the kernel against transient execution
attacks: only one provider uses a kernel version (4.4.0) that
does not include mitigations against Spectre and Meltdown
attacks.

Regarding Spectre, 16 cloud providers run a kernel prop-
erly recompiled with lfence instructions and retpoline. Ad-
ditionally, all enable mitigations such as IBPB, STIBP and
SSBD. The default setup of these mitigations is conditionally
enabled which means that the mitigations are not enforced to
user space applications unless specifically requested, however
the patched kernel in these settings uses them when needed.

TABLE V. List of the 17 cloud provider tested and their available
configurations

Cloud Multi-tenant Single-tenant B. Metal
AWS 3 3 3
Alibaba 3
Azure 3 3
IBM Cloud 3 3 3
GCP 3 3
Digital Ocean 3
OVH 3
Hetzner 3 3
Oracle 3 3 3
Packet 3
Scaleway 3 3
Vultr 3 3 3
Bigstep 3
Cloudsigma 3
Tencent 3
RamNode 3
Zenlayer 3

Hence, the kernel cannot be attacked in any of the depicted
scenarios (sAS, cAS and cHT).

Regarding Meltdown, all the tested Intel machines, except-
ing those of one provider, use KPTI and PTE inversion to
block respectively Meltdown-US and Meltdown-P. However,
the Meltdown-US test from the transientfail suite showed
that KPTI does not stop Meltdown-US over pages mapped
as kernel-pages at runtime. Moreover, spectre-meltdown-
checker reports that the CPU microcode of such machines is
patched to stop Meltdown-GP. As for AMD-based machines,
Meltdown attacks do not affect them.

2) Empirical tools: Here, we report the results obtained by
running the empirical tools on the considered cloud providers.
Tests for Spectre-PHT and Spectre-BTB succeed in the cAS
case on all machines. Not all cloud providers are affected in
the cHT case since on virtual machines, hyper-threading is not
always available, making this scenario unfeasible. Specifically,
we find that 4 clouds disable hyper-threading in their multi-
tenant solutions. Results for Spectre-RSB are negative, indicat-
ing that this attack vector is prevented owing to the fact that
RSB filling is enabled: at every context switch, possibly poi-
sonous RSB entries are flushed. The cHT scenario is unfeasible
because the RSB is only shared between processes running
interleaved on the same logical core. Spectre-STL succeeds
on all machines since SSBD is only conditionally enabled,
being inactive in practice: SSBD must be fully enabled to
prevent the attack in both user-space and kernel-space. Tests
for Meltdown-RW succeed on all Intel-based nodes except
for those based on the new Cascade Lake microarchitecture.
For what concerns Meltdown-BR, the tests are successful on
Intel CPUs supporting the mpx instructions, while they report
negative results on Ivy Bridge and Broadwell families. None
of the Meltdown variants show positive results on AMD.

We conclude that the empirical tools generally report most
known attack vectors as present and exploitable. Instead, the
information gathering tools report the security stance of the
system in the U-K use case, which generally results in the
system being classified as not vulnerable due to the widely
enabled kernel mitigations. The results discrepancy is justified
by the following:

• the default configuration of all tested systems only con-
ditionally enable user-space (U-U) mitigations;

• the code implementing the synthetic attack scenarios in

7



speculator and transientfail restricts generaliza-
tion to other target applications on the system. By design,
these tools are unaware of the mitigations enabled outside
of the synthetic environment.

V. RECOMMENDATIONS

During our analysis, we find that all available tools have
shortcomings about their ability to determine whether a system
is vulnerable. Based on the experience gained during our work,
we propose 5 main recommendations directed towards systems
administrators using such tools, as well as developers of these
tools.

A. Limit cache noise

When working with empirical tools such as
transientfail, it is very important to pay particular
attention to workloads running on the same physical machine.
Heavy cache activity, for instance from the last-level-cache
(LLC) that is often shared across cores might cause the
test to report that an attack is not feasible while actually
the failure is caused by temporary cache activity. If the
user/administrator has the ability to control the load on the
system, we recommend to pause any workload during the
test’s execution. Additionally, we recommend to run the tests
several times with enough time between each run. Finally,
when possible, we recommend using PMC-based approaches
whenever available, as they are less prone to noise.

CVE-2018-3639 aka ’Variant 4, speculative store bypass’

* Mitigated according to the /sys interface: YES
(Speculative Store Bypass disabled via prctl and seccomp)

* Kernel supports disabling speculative store bypass (SSB):

YES (found in /proc/self/status)

* SSB mitigation is enabled and active: YES
(per-thread through prctl)

> STATUS : NOT VULNERABLE (Mitigation: Speculative Store
Bypass disabled via prctl and seccomp)

Listing 3. spectre-meltdown-checker sample output for Spectre
STL

========= SPECTRE STL =========

* Attack success rate (synthetic test): 93.0%

* Attack vector: Present

* Difficulty: High - No practical attack demonstrated

------ USE CASES -------

* S-P: SSB is not fully disabled. Check that the victim
program is compiled with seccomp()/prctl().

* U-U: SSB is not fully disabled. Check that the victim
program is compiled with seccomp()/prctl().

* U-K: SSB is not fully disabled. Your kernel is vulnerable
.

* G-G: Check if SSB is fully disabled on the host machine.

* G-H: Check if the kernel on the host machine supports
disabling SSB.

* H-SGX: SSB is not fully disabled.

Listing 4. GhostBuster sample output for Spectre STL

B. Define the right use case and understand your threat model

Most of the mitigations currently available (described
in Section II-B) incur a medium to high overhead. In fact,
it is very common for these mitigations to be disabled by
default. Enabling one or more of them when not necessary is
generally not indicated. Therefore, it is important for a system
administrator or user to understand which of the attacks flagged

by one of the tools for a specific system falls under the use
case(s) the administrator/user cares about. An example of such
a case would be enabling a system-wide mitigation like STIBP
when the only use case considered important is the User to
Kernel (U-K) one. This is because, by default, STIBP already
prevents attacks such as Spectre-BTB under the U-K scenario
and it would be a performance waste to enforce it system-wide.

C. Understanding information gathering tools results

Tools should report as clearly as possible the assumptions
underlying the reported results and the considered use cases. In
the current state of these tools, we recommend to verify either
through the tool documentation (if any) or the source code of
the tool (if available) which use cases is under analysis. Our
analysis suggests it is possible that the assumptions made by
existing tools do not match those of the user, leading to a false
sense of security or a lack of action.

========= SPECTRE BTB same address-space =========

* Attack success rate (synthetic test): 95.00%

* Attack vector: Present

* Difficulty: High - No practical attacks demonstrated.

------ USE CASES -------

* S-P: Check that the target process is compiled with lfence
or retpoline.

* U-U: Check that the target process is compiled with lfence
or retpoline.

* U-K: This kernel is not vulnerable: Full retpoline + IBPB
are mitigating the vulnerability.

* G-G: Check that the target process is compiled with lfence
or retpoline.

* G-H: Check that host kernel is compiled with retpoline and
supports RSB filling.

* H-SGX: Check that the target process is compiled with
lfence or retpoline.

Listing 5. GhostBuster sample output for Spectre BTB same address-
space

D. Use a mixed approach

Based on our analysis, we make the observation that the
two types of tools, information gathering and empirical, report
different types of information. While using only one or the
other gives a very limited snapshot of the system security,
their combination allows to gather more robust information
about the system in general but also allows for a greater
ability to infer information and inform the user. For instance,
if we consider the Spectre-BTB in the cross address-space
case and we successfully verify the presence of such attack
vector using either speculator or transientfail. Now,
we can combine this result with the output on spectre-
meltdown-checker and connect which use cases this attack
vector might affect. For example, assuming that spectre-
meltdown-checker tells us that STIBP is at default settings
(conditionally enabled), we can infer that the attack vector we
verified with the empirical tools affects the U-U and S-P use
cases but it does not affect U-K.

E. Static analysis

A clear limitation of information gathering tools considered
in this work is that, for attacks such as Spectre-PHT, their
verification is at best a coarse approximation. This is because
none of the tools inspects the target application at code
level to verify if proper mitigations are inserted (e.g. lfencing
sensible branches or branchless masking). While no compre-
hensive static analysis tool is available, known techniques

8



GhostBuster

Spectre Meltdown
Checker

Speculator

M-GP

S-PHT

S-BTB

...

M-RW

Gathering
SysInfo

AggregationUse cases

Fig. 1. GhostBuster’s overview. GhostBuster leverages spectre-meltdown-checker and our modified version of speculator to
assess the system security using both known methodologies, gathering and empirical. Then, it aggregates the results in a final report factoring in also
the various use cases we identified to give a more accurate picture to the user. With solid circles we describe the major components of GhostBuster while
with dotted circles we highlight operations performed.

such as lfence counting (which is implemented in spectre-
meltdown-checker only for the current kernel image) can
help determine whether such protections are in place. We
recommend future work to integrate this type of static analysis
to be able to inform users better, in particular with respect to
U-U use cases targeting important user space programs and
libraries, such as OpenSSH or OpenSSL.
========= SPECTRE BTB cross address-space =========

* Attack success rate (synthetic test): 75.00% (spatial
colocation), 56.00% (temporal colocation)

* Attack vector: Present

* Difficulty: Low - Practical attacks demonstrated in user
-to-kernel and user-to-user use cases.

------ USE CASES -------

* S-P: This use case does not apply for this attack.

* U-U: Check that the target process is compiled with lfence
or retpoline.

IBPB is conditionally enabled: check that the target
process invokes it with prctl/seccomp.

STIBP is conditionally enabled: check that the target
process invokes it with prctl/seccomp.

* U-K: This kernel is not vulnerable: Full retpoline + IBPB
are mitigating the vulnerability.

* G-G: Enable STIBP and IBRS system-wide on the guest
machine. If STIBP and IBPB are conditionally enabled,
check that the target process invokes them with prctl/
seccomp or is compiled with retpoline.

* G-H: Check that IBRS is enabled on the host, or that it is
compiled with retpoline and uses IBPB.

* H-SGX: Not vulnerable: IBRS is enabled.

Listing 6. GhostBuster sample output for Spectre BTB cross address-
space

VI. GHOSTBUSTER

Given that none of the four available tools provide a
complete and consumable answer as to whether a system is
vulnerable to the various classes of transient execution attacks,
we prototype a new tool, GhostBuster, shown in Figure 1,
that takes into account the recommendations presented in
the previous section and provides a system administrator
with accurate information to decide whether their system is
vulnerable.

The tool is built on the foundation of empirical and
information gathering methodologies combined, as a result of
the insights collected during our analysis. GhostBuster is a
meta-tool combining a modified version of speculator and
spectre-meltdown-checker, which allows us to use the
best of each available approach. Another key difference from
existing tools is that GhostBuster provides information ex-
plicitly based on use cases presented in Section III-A. The use
case information is integrated with speculator and spectre
-meltdown-checker outputs during the Aggregation phase
as depicted in Figure 1.

In GhostBuster, the first tool we leverage is an enhanced
version of speculator. For GhostBuster, we include two
sets of empirical tests, the PMC based we used during our
analysis in Section II-C2 and a second set, a cache based
series of tests similar to the ones used in transientfail.
The two set of tests for empirical verification are necessary
to make sure we can have a fallback mechanism when one
of the two is not available, once again making the best out
of available approaches to avoid the pitfalls we identified.
As mentioned in Section IV-A, PMC-based tests cannot be
used in a virtualized environment because such interface is
not exported to the guest. Similarly, there are cases in which
the system has too much LLC activity, making the tests using
the cache unreliable and therefore requiring the PMC-based
tool. When the system setup allows so, GhostBuster runs
both empirical test sets to have confirmation of the results and
detects any mismatch. If GhostBuster detects a huge amount
of LLC activity, it prompt a warning to the user to signal that
possible problems can arise while running transientfail.

GhostBuster uses the spectre-meltdown-checker
output in the analysis phase, for its comprehensive report

on supported mitigations on the target system, together with
their activation status. This enables GhostBuster to connect
the synthetic results provided by the tests with the actual
use cases. Subsequent to information gathering and analysis,
GhostBuster presents the results based on each use case. It
presents information about the difficulty level D of the attack,
which we provide based on whether real-world attacks using
that attack vector exist and how easy it is for the attacker to
meet the requirements for the attack. Formally, we compute it
as follows:

D = 100−

40 rw +

60−
N∑
j=0

WjRj

 (1)

=


[0, 40) Low
[40, 70) Medium
[70, 100] High

(2)

where rw ∈ {0, 1} indicates whether the considered attack has
a real world instance, Rj ∈ {0, 1} indicates if the identified
attack requirement j is present for the attack, N is the total
number of possible requirements found for a certain type of
attack, and Wj represents the difficulty weight for each of the
requirements, that for the sake of simplicity we set Wj = 60

N
for each requirement j.

When possible, GhostBuster reports the system status,

9



vulnerable or not vulnerable. In cases when such a conclusion
cannot be drawn, as may be the case with Spectre-PHT or
Spectre-BTB where the attack and mitigations are program
dependent, GhostBuster provides a checklist that the user
can follow to verify the security of such application. We prefer
to provide a checklist for some of the cases instead of trying an
automatic approach because there are no error-free methods to
detect, for instance, if an application is instrumented with SLH
against Spectre-PHT. False positive results might induce a false
sense of security which is against the principles GhostBuster
is designed with, so we suggest the user what exactly requires
manual verification instead.

Listing 1 shows the output of spectre-meltdown-
checker and Listing 5 and Listing 6 show the output of
GhostBuster in relation to the Spectre-BTB attack. These
outputs are taken from the same machine in the same set-
tings. spectre-meltdown-checker provides raw informa-
tion about the mitigations status (e.g. present/not present). For
instance, it confirms the availability of mitigations such as
IBRS and IBPB, and marks them as active. Also, it shows
that the kernel is compiled with retpoline. Finally it informs the
user that the system is not vulnerable because both mitigations
IBRS and IBPB are present on the machine. We deem this
output to be misleading because the same machine tested under
speculator is reported vulnerable to the Spectre-BTB attack
vector despite the picture depicted by spectre-meltdown-
checker output. In practice, this means existing known attacks
such as SMoTherSpectre [2] leaking bytes from OpenSSL are
feasible on this machine.

In contrast, GhostBuster provides more precise informa-
tion. First, it provides the attack success rate that empirical
tests have obtained and it confirms the presence of the attack
vector. This information is retrieved thanks to our enhanced
version of speculator fork.

Second, based on the output of spectre-meltdown-
checker we are able to provide a more detailed view re-
garding each one of the use cases. It is possible to notice that
GhostBuster considers the system protected against Spectre-
BTB under the U-K use case. This confirms the output of
spectre-meltdown-checker from Listing 1 that strictly fo-
cuses on the kernel protection from transient execution attacks.
Instead, for cases such as U-U, GhostBuster recognizes
that there are settings (e.g. same address space) in which no
information regarding mitigations is available and therefore
no final decision can be taken based on available information.
In such cases GhostBuster provides suggestions such as to
verify that the target application is compiled with lfence/ret-
poline, thereby not misleading the user into a false sense
of security. Third, GhostBuster considers, when necessary,
the various attack settings (cAS/cHT/sAS). For Spectre-BTB,
GhostBuster provides different outputs for same and cross
address space and adjusts the recommendation accordingly to
the scenario. For instance, for the U-U use case in the cross
address space setting, it suggests to the user to verify if the
target application requests to enable STIBP and IBPB to the
kernel through either seccomp or prctl interface. In fact,
it even distinguishes between the need for STIBP (mitigating
temporal colocation, cHT) and for IBPB (mitigation spatial
colocation, cAS) depending on whether none, either, or both
of the two empirical tests are successful. In the output shown

here, both tests pass and both attack vectors are present,
therefore the recommendation is to enable both STIBP and
IBPB.

Another example for comparison between GhostBuster
and spectre-meltdown-checker is provided by Listing 3
and Listing 4 for the Spectre-STL attack. Here, spectre-
meltdown-checker detects that the system supports Specu-
lative Store Bypass (SSB) and simply declares the system not
vulnerable based on this information. In reality, the system
should be considered vulnerable for most of the use cases
because the SSB mitigation is enabled only conditionally,
which is reflected in the GhostBuster output. Therefore, in
use cases such as U-U and S-P, the target application must be
checked and forced to use either seccomp or prctl which
would enforce the mitigation for the current process. Never-
theless, GhostBuster also makes sure to let the administrator
know that this is a minor threat, given that no known attacks
exist to this date.

This type of output comparison is valid for all the sup-
ported attacks, which we do not report for sake of space.
As shown, GhostBuster enhances current tools output to
include use cases and more targeted information, thus standing
out as a more accurate and usable tool. Although our current
GhostBuster implementation is meant for x86/x86 64 Linux
machines, the principles incorporated and its design remain
valid for other architectures (e.g ARM) and other Operating
Systems (e.g. Windows).

To conclude, GhostBuster provides a more detailed and
accurate view of a system’s vulnerability to transient execution
attacks by simply combining the best features of existing
approaches and presenting them in an understandable way.
While for certain use cases the assessment is binary, vulnerable
or not vulnerable, for others, GhostBuster guides the user on
testing whether the target application meets the correct safety
requirements against an attack under the considered use case.

VII. CONCLUSION

In this work, we look into current tools and methodologies
that aim to help system administrators and users to verify
the exposure of their systems to transient execution attacks.
We test and gather results for each of the tools on 17
different platforms including both AMD and Intel CPUs. We
find that current techniques do not cover important settings
of transient execution attacks and often provide misleading
outputs. While empirical tools focus solely on verifying the
presence of the attack vector on the system in a synthetic
manner, the information gathering tools check for the presence
of mitigations and kernel information that hint the protection
of the system but come short in clearly specifying the use
cases in which the system is actually protected. We report
our results in relation with 6 different use cases and underline
the major pitfalls found in each. Based on our experience,
we propose 5 main recommendations and propose a meta-
tool, GhostBuster, which incorporates our recommendations.
GhostBuster combines the best of each tool to enhance the
accuracy and clarity of the results, guiding system adminis-
trators and users towards the right actions to properly protect
their system without unnecessarily sacrificing performance.

10



ACKNOWLEDGEMENT

This work was partially-supported by National Science
Foundation under grant CNS-1703454, and ONR under the
”In Situ Malware” project.

REFERENCES

[1] ARM LIMITED, “Vulnerability of Speculative Processors to Cache
Timing Side-Channel Mechanism,” 2018.

[2] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: Exploiting
speculative execution through port contention,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019., 2019, pp.
785–800. [Online]. Available: https://doi.org/10.1145/3319535.3363194

[3] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A Systematic Evaluation
of Transient Execution Attacks and Defenses,” in USENIX Security
Symposium, 2019, extended classification tree at https://transient.fail/.

[4] C. Carruth, “Speculative Load Hardening,” https://lists.llvm.org/
pipermail/llvm-dev/2018-March/122085.html, 2018.

[5] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in
2019 IEEE European Symposium on Security and Privacy (EuroS P),
2019, pp. 142–157.

[6] J. Corbet, “Meltdown/spectre mitigation for 4.15 and beyond,” https:
//lwn.net/Articles/744287/, 2018.

[7] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
“Sok: The challenges, pitfalls, and perils of using hardware performance
counters for security,” 09 2018.

[8] Gartner, “Gartner says worldwide iaas public cloud services
market grew 31.3in 2018,” 2018. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2019-07-29-
gartner-says-worldwide-iaas-public-cloud-services-market-grew-
31point3-percent-in-2018

[9] Google, “Google safeside project,” 2019. [Online]. Available: https:
//github.com/google/safeside

[10] J. Horn, “Speculative Execution, variant 4: speculative store bypass,”
2018.

[11] Intel, “Deep dive: Indirect branch predictor barrier,”
https://software.intel.com/security-software-guidance/insights/deep-
dive-indirect-branch-predictor-barrier, 2018.

[12] ——, “Deep dive: Indirect branch restricted speculation,”
https://software.intel.com/security-software-guidance/insights/deep-
dive-indirect-branch-restricted-speculation, 2018.

[13] ——, “Deep dive: Single thread indirect branch predictors,”
https://software.intel.com/security-software-guidance/insights/deep-
dive-single-thread-indirect-branch-predictors, 2018.

[14] ——, “Intel Analysis of Speculative Execution Side Channels, Revision
4.0,” July 2018.

[15] ——, “Q2 2018 Speculative Execution Side Channel Update,” May
2018.

[16] V. Kiriansky and C. Waldspurger, “Speculative Buffer Overflows:
Attacks and Defenses,” https://people.csail.mit.edu/vlk/spectre11.pdf,
2018.

[17] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” in IEEE Symposium on Security and
Privacy, 2018.

[18] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
USENIX Workshop On Offensive Technologies, 2018.

[19] S. Lesimple, “spectre-meltdown-checker script,” 2018. [Online].
Available: https://github.com/speed47/spectre-meltdown-checker

[20] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security Symposium, 2018.

[21] G. Maisuradze and C. Rossow, “Ret2spec: Speculative execution using
return stack buffers,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS
’18. New York, NY, USA: ACM, 2018, pp. 2109–2122. [Online].
Available: http://doi.acm.org/10.1145/3243734.3243761

[22] A. Mambretti, M. Neugschwandtner, A. Sorniotti, E. Kirda,
W. Robertson, and A. Kurmus, “Speculator: A tool to analyze
speculative execution attacks and mitigations,” in Proceedings
of the 35th Annual Computer Security Applications Conference,
ser. ACSAC ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 747–761. [Online]. Available:
https://doi.org/10.1145/3359789.3359837

[23] A. Mambretti, A. Sandulescu, M. Neugschwandtner, A. Sorniotti, and
A. Kurmus, “Two methods for exploiting speculative control flow
hijacks,” in 13th USENIX Workshop on Offensive Technologies
(WOOT 19). Santa Clara, CA: USENIX Association, Aug.
2019. [Online]. Available: https://www.usenix.org/conference/woot19/
presentation/mambretti

[24] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary data
sampling,” in CCS, 2019.

[25] P. Turner, “Retpoline: a software construct for preventing branch-target-
injection,” https://support.google.com/faqs/answer/7625886, 2018.

[26] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-
of-order execution,” in Proceedings of the 27th USENIX Security
Symposium. USENIX Association, August 2018, see also technical
report Foreshadow-NG [30].

[27] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI:
Hijacking Transient Execution through Microarchitectural Load Value
Injection,” in 41th IEEE Symposium on Security and Privacy (S&P’20),
2020.

[28] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue In-flight Data
Load,” in S&P, May 2019, intel Bounty Reward (Highest To Date) ,
Pwnie Award Nomination for Most Innovative Research, CSAW Best
Paper Award Runner-up. [Online]. Available: https://mdsattacks.com

[29] VUSec, “mdstool-cli tool,” 2019. [Online]. Available: https://github.
com/vusec/ridl

[30] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-
NG: Breaking the virtual memory abstraction with transient out-of-order
execution,” Technical report, 2018, see also USENIX Security paper
Foreshadow [26].

[31] Y. Xiao, Y. Zhang, and R. Teodorescu, “SPEECHMINER: A
framework for investigating and measuring speculative execution
vulnerabilities,” in 27th Annual Network and Distributed System
Security Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society, 2020. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/speechminer-
a-framework-for-investigating-and-measuring-speculative-execution-
vulnerabilities/

[32] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox
for portable, untrusted x86 native code,” IEEE, pp. 79–93, 2009.

11

https://doi.org/10.1145/3319535.3363194
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://lwn.net/Articles/744287/
https://lwn.net/Articles/744287/
https://www.gartner.com/en/newsroom/press-releases/2019-07-29-gartner-says-worldwide-iaas-public-cloud-services-market-grew-31point3-percent-in-2018
https://www.gartner.com/en/newsroom/press-releases/2019-07-29-gartner-says-worldwide-iaas-public-cloud-services-market-grew-31point3-percent-in-2018
https://www.gartner.com/en/newsroom/press-releases/2019-07-29-gartner-says-worldwide-iaas-public-cloud-services-market-grew-31point3-percent-in-2018
https://github.com/google/safeside
https://github.com/google/safeside
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-predictor-barrier
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-predictor-barrier
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/insights/deep-dive-single-thread-indirect-branch-predictors
https://software.intel.com/security-software-guidance/insights/deep-dive-single-thread-indirect-branch-predictors
https://people.csail.mit.edu/vlk/spectre11.pdf
https://github.com/speed47/spectre-meltdown-checker
http://doi.acm.org/10.1145/3243734.3243761
https://doi.org/10.1145/3359789.3359837
https://www.usenix.org/conference/woot19/presentation/mambretti
https://www.usenix.org/conference/woot19/presentation/mambretti
https://support.google.com/faqs/answer/7625886
https://mdsattacks.com
https://github.com/vusec/ridl
https://github.com/vusec/ridl
https://www.ndss-symposium.org/ndss-paper/speechminer-a-framework-for-investigating-and-measuring-speculative-execution-vulnerabilities/
https://www.ndss-symposium.org/ndss-paper/speechminer-a-framework-for-investigating-and-measuring-speculative-execution-vulnerabilities/
https://www.ndss-symposium.org/ndss-paper/speechminer-a-framework-for-investigating-and-measuring-speculative-execution-vulnerabilities/

	Introduction
	Background & Related Work
	Transient execution attacks
	Spectre Family
	Meltdown Family

	Defenses
	Testing Tools
	Information gathering tools
	Empirical tools


	Methodology
	Use Cases
	Systems and Platforms

	Results
	Tools comparison
	Pitfalls
	Tools vs use cases

	Analysis
	Information gathering tools
	Empirical tools


	Recommendations
	Limit cache noise
	Define the right use case and understand your threat model
	Understanding information gathering tools results
	Use a mixed approach
	Static analysis

	GhostBuster
	Conclusion
	References

