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Abstract—Kernel memory allocators remain a critical attack
surface, despite decades of research into memory corruption
defenses. While recent mitigation strategies have diminished the
effectiveness of conventional attack techniques, we show that
robust cross-cache attacks are still feasible and pose a significant
threat. In this paper, we introduce PCPLOST, a cross-cache
memory massaging technique that bypasses mainline mitigations
by carefully using side channels to infer the kernel allocator’s
internal state. We demonstrate that vulnerabilities such as out-
of-bounds (OOB) — and, via pivoting, use-after-free (UAF) and
double-free (DF) — can be exploited reliably through a cross-
cache attack, across all generic caches, even in the presence of
noise. We validate the generality and robustness of our approach
by exploiting 6 publicly disclosed CVEs by using PCPLOST,
and discuss possible mitigations. The significant reliability (over
90% in most cases) of our approach in obtaining a cross-cache
layout suggests that current mitigation strategies fail to offer
comprehensive protection against such attacks within the Linux
kernel.

I. INTRODUCTION

Linux powers much of today’s information technology, from
everyday items such as vacuum cleaners, mobile phones,
and cars to enterprise servers and critical infrastructure. Yet,
memory safety issues continue to plague the Linux kernel, and
allow attackers to bypass security measures [1].

Recently, much attention was given to kernel heap vulner-
abilities [2-20] by academia and practitioners alike. These
vulnerabilities, along with their corresponding mitigations,
can broadly be categorized as in-cache and cross-cache,
based on whether memory safety violations occur within the
boundaries of a single cache, a structure shared by similar
objects, or extend across caches. Hardening measures against
in-cache attacks [21-24] pushed attackers towards the more
complex cross-cache attacks [7, 9, 10, 12, 13, 25] leading
to the introduction of new cross-cache mitigations such as
SLAB_VIRTUAL [26].

In this paper, we show that despite the latest mitigations,
cross-cache attacks remain feasible. To support this claim, we
introduce PCPLOST, a novel and reliable cross-cache massag-
ing technique that successfully circumvents current mitigation
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strategies [21, 22]. Our findings demonstrate that modern
kernel defenses remain inadequate, as PCPLOST achieves
more than 90% reliability in most exploitation scenarios,
even against the experimental SLAB_VIRTUAL [26] protection
mechanism.

Our approach builds on a detailed analysis of the kernel
allocator, which uncovered hitherto overlooked interactions in
its internals. These can be used to extend the detection ability
of known side-channels to more effectively control the cache
layout, facilitating out-of-bounds (OOB) cross-cache attacks.
Furthermore, we show that the attack surface can be extended
by “pivoting” temporal bugs into OOB primitives, whereas
previous approaches pivoted from OOB to a temporal primitive
instead [7, 9].

The core motivation of our research is to challenge the
current belief that cross-cache exploitation is unreliable and
challenging to execute [27-29]. We argue that, as kernel
hardening techniques increasingly enforce strict separation
between object types [21, 24, 30], cross-cache exploitation is
emerging as a prevalent strategy in contemporary attacks. In
particular, we show that attackers can reliably perform memory
massaging to enable OOB read/write across arbitrary generic
cache pairs by uniquely exploiting the allocator’s interaction
with PCP lists and zoned free_area. Unlike notable works
such as PSPRAY [14], which targets in-cache attacks, or
SLUBStick [9], focused on page tables and mitigated by
SLAB_VIRTUAL [26], PCPLOST is broadly applicable and
effective across generic caches, even under noise and mit-
igations like SLAB_VIRTUAL. We test PCPLOST against 6
publicly disclosed CVEs, demonstrating its effectiveness in
both direct OOB exploitation and pivoted attacks derived from
temporal vulnerabilities. The results demonstrate PCPLOST’s
broad applicability and reliability, with a success rate in
achieving the desired cross-cache layout above 90% in most
cases, thereby underlining the need for cross-cache mitigations
for kernel security. More specifically, we make the following
contributions:

« Analysis of modern SLUB and Page Frame Allocator
internals: we examine critical, yet often overlooked,
design details for cross-cache exploitation of the Linux
kernel allocators, in particular presenting the inner work-
ings of PCP lists.

o PCP-list-based cross-cache memory massaging: we
introduce a cross-cache PCP list massaging technique that
bypasses mainline mitigation strategies.



« Novel use of software side-channel at the page allo-
cator level: building on previous research on software
side-channels in the SLUB allocator [9, 14] we introduce
a novel use of such techniques to reveal interactions
between SLUB, PCP lists and free_area.

« Amplification of cross-cache massaging applicabil-
ity with pivoting strategy: by leveraging the pivoting
technique, we successfully expand the attack surface to
vulnerabilities other than OOB.

« Evaluation against real-world CVEs and extensive
reliability analysis: we validate our PCP list massaging
technique using publicly disclosed CVEs and conduct a
thorough examination of its applicability against generic
(kmalloc) caches.

Threat model. As in previous kernel heap massaging
attacks, we consider an unprivileged local attacker that can
interact with the Linux kernel through system calls. For the
purpose of the side channel, the attacker needs to be capable
of performing fine-grained time measurements, for instance by
using the userspace-available instruction rdtsc. To achieve
privilege escalation or arbitrary read or write capability, the
attacker needs to combine this layout with a temporal or
spatial kernel heap memory safety vulnerability. Therefore, we
assume the presence of such a vulnerability.

II. BACKGROUND

In Section II-A and Section II-C, we provide the necessary
background on kernel memory allocation. In Section II-C, we
delve into the lesser-known optimization details used by the
kernel to allocate memory pages: these inner workings are
central to the success and reliability of PCPLOST.

A. SLUB Allocator

The Linux kernel employs the SLUB allocator for efficient
dynamic object allocation in kernel space [31, 32]. This
memory management system operates through two main al-
location APIs: kmem_ cache _alloc () and kmalloc (). The
kmem_cache_alloc () function allocates objects of specific
types (such as task_struct instances), while kmalloc ()
serves as a general-purpose wrapper for allocating untyped
memory buffers of specified sizes (Table V in Appendix A).

As shown in Figure 1, the SLUB architecture is cen-
tered around the kmem_cache object which groups physically
contiguous, possibly pre-initialized instances of objects of a
specific type into contiguous sequences of 2* pages called
slabs, and, within each slab, free objects are linked in a list
(freelist). To minimize locking overhead, each CPU is
assigned its own main slab (via a per-CPU variable of type
kmem_cache_cpu) for lockless access. When the current slab
of a CPU is exhausted, the allocator swaps it with a slab from
a partial slabs list (i.e., a list of slabs with one or more free
objects), to ensure a continuous supply of objects. As these
per-CPU partial slabs become fully utilized, SLUB extends its
search to partial slabs on the current NUMA node, thereby pre-
serving allocation efficiency (via kmem_cache_node). When
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Fig. 1: Overview of the SLUB allocator architecture. Ob-
jects are stored in slabs, which are set of contiguous mem-
ory pages. Each slab is managed by the kernel using the
kmem_cache_cpu data structure. This data structure is a per-
CPU version of the main kmem_cache, which stores metadata
to correctly manage kernel objects.

all slabs are consumed, SLUB obtains new pages from the
Page-Frame Allocator, described in II-B.

B. Page Frame Allocator

The Page Frame (Buddy) Allocator [31, 32] is used by
the Linux kernel to manage physical memory and reduce
fragmentation. Memory is allocated in pages, typically 4096
bytes each, and allocation is order-based: an order-%k page
consists of 2 contiguous pages, with k ranging from 0 to
MAX_PAGE_ORDER. Within a NUMA node, the Linux kernel
organizes physical memory into distinct zones shared among
CPU-cores. Each zone is independently managed by the
(zoned) Buddy Allocator and maintains its collection of free
page lists (the free_area) organized by order, as shown
in Figure 2. Moreover, each page has a specified migration
type (migrate_type), which determines the policy for page
migration: the kernel can choose to move the physical location
of pages within a NUMA system, while maintaining their
virtual addresses unchanged. Therefore, migration types group
pages with similar migration properties (e.g., movable or
unmovable).

When the kernel requests order-k pages, all physical pages
of that order can become exhausted. To obtain more pages, the
allocator performs a page split: it examines the next higher-
order list (order-k + 1), removes a page, and splits it into two
order-k pages. The first chunk is returned to the caller, while
the second is added to the order-k list in the free_area. We
refer to the two order-k page chunks involved in a split as
buddy pages. The first page is referred to as the left-buddy
(L-buddy) and the second page as the right-buddy (R-buddy).

C. Per-CPU-Pageset (PCP) lists

To mitigate the latency associated with allocations coming
from the free_area, which is shared among CPU-cores, the
kernel uses auxiliary structures known as Per-CPU-Pageset
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(a) Non-empty PCP list. Whenever SLUB needs to allocate
a new slab page of a certain order (say 0), it invokes the
underlying Page Frame Allocator. If possible, the latter allocates
the page from the head of the PCP list of the corresponding
order (@ - @) through the rmgqueue_pcplist () function.
This pool of memory pages is per-CPU, therefore allowing a
fast allocation path (no locking).
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(b) Empty PCP list. If the PCP list for the requested order and
migrate type is empty, the kernel executes rmqueue_bulk (). Here,
rmgueue_bulk () is called with batch=3: the PCP list is to be
expanded with three order-0 pages (transition @ - @). The request is
satisfied with two pages coming from the free_area directly, and
the third by splitting a higher order page. These 3 pages are reserved
in the PCP list, with the first one being returned to the caller (@ - @).

Fig. 2: Main allocation paths taken by the Page Frame Allocator when requesting an order-0 page. Figure 2a illustrates such an
allocation when the PCP list is not empty, whereas Figure 2b shows the allocation when the PCP list is empty. For simplicity,
figures 2a and 2b show pages of the same migrate type (e.g., UNMOVABLE).

(PCP) lists, i.e., a list of fresh pages for each page order and
migration type that is local to the CPU core.

When the kernel asks for a free order-k page, it checks
first the corresponding PCP list. If the list is not empty,
an order-k page is returned immediately from it (through
rmqueue_pcplist ()), as shown in Figure 2a. If the list
is empty, the kernel invokes the Buddy Allocator to acquire
multiple (=batch) fresh pages through rmqueue_bulk ()
(see Figure 2b). When the free_area for order-k pages is
emptied, the Buddy Allocator inspects higher-order lists in the
free_area and performs splits until it obtains the required
batch of order-k pages which are moved to the order-k PCP
list (batch allocation). Finally, the first order-k page in the
batch allocation gets removed from the PCP list and returned
to the kernel.

The Linux kernel attempts to maintain pages as close as
possible to the CPU core by utilizing these batch allocations
from the free_area and moving pages to the PCP list. Our
empirical analysis shows that pages with orders supported by
PCP lists (up to PAGE_ALLOC_COSTLY_ORDER = 3) exhibit
strong locality per CPU core, leading to sparse utilization
of the corresponding free_area lists and thereby better
multicore scaling.

III. RELATED WORK

In Section III-A, we introduce previous work on SLUB
attacks, and in Section III-B, we present related defenses.

A. SLUB Attacks

Memory corruption exploits in the SLUB allocator involve
two object types: vulnerable objects, which are susceptible to
a memory error such as an out-of-bounds (OOB) write, and
target objects, whose access or corruption can get an attacker
closer to their goal, such as obtaining privilege escalation
or simply greater kernel memory access. Exploits typically

progress incrementally, using vulnerable objects to corrupt
targets and expand control. To ensure reliability, attackers may
employ heap feng-shui or memory massaging [15, 33, 34],
which allows to strategically arrange the memory layout of
the SLUB allocator. These techniques categorize based on the
kmem-caches storing the objects. The following two sections
describe these different attack types and provide examples of
such techniques in related work.

1) In-Cache attacks: Efforts to exploit the SLUB allocator
have primarily focused on corrupting target objects that are
stored within the same kmem_cache as vulnerable objects, a
scenario commonly known as an in-cache attack. In these at-
tacks, an adversary often employs a technique called spraying
[11, 35-38], which involves inserting numerous instances of a
target object into memory. When dealing with OOB vulnera-
bilities, this method increases the likelihood that a target object
will be allocated adjacently to an object vulnerable in the same
slab cache. In contrast, the exploitation of use-after-free (UAF)
vulnerabilities requires an attacker to reclaim for the target
object a memory slot that, prior to freeing, was used to store
the vulnerable object. Different UAF exploitation strategies
then exist depending on how the freed object is subsequently
used.

In either case, inferring the current state of the SLUB
allocator can assist attackers in determining if the memory
layout is favorable for an attack. Timing attacks serve as a
practical method for this inference. These attacks, extensively
studied for cross-CPU, cross-VM data leakage [39—41], and
KASLR circumvention [42], have recently been adapted to
reveal the SLUB allocator state. PSPRAY [14] shows that
system call timings can be used to infer the state of the SLUB
allocator, and discard those cases where the memory layout
is not favorable for the vulnerability at hand. In particular,
PSPRAY distinguishes between allocations via the per-CPU
slab free-list (fastest), from partial slabs (slower), and from



Technique Cross-cache  Page adjacency layout  Side-channel based ~ Bypasses SV [26]

SLUBStick [9] v X v/ x
PSPRAY [14] X X v N/A
BridgeRouter [29] v X X ?
PCPLoOST v v v v

TABLE I: Comparison with previous work. sv stands for
SLAB_VIRTUAL (without guard pages). The “?” sign indicates
we believe it could be used to bypass SLAB_VIRTUAL, but it is
not claimed nor demonstrated by BridgeRouter. For PSPRAY,
“N/A” indicates that SLAB_VIRTUAL is not applicable in this
case (in-cache).

the Buddy Allocator (slowest) and improve the success rate
of the attack.

2) Cross-Cache attacks: Due to recent kernel slab mit-
igations that increasingly segregate user-controlled objects
from critical kernel objects [43, 44] — and also objects of
different types in more general terms [21, 24, 30] — , the
probability of finding both vulnerable and target objects within
the same cache has significantly diminished. For instance,
struct msg_msg, extensively used in many kernel exploits,
is not allocated in kmalloc-* caches anymore, rather in their
accounted version (kmalloc-cg-x). In response, attackers
have shifted their focus towards a more general attack vector
known as cross-cache attacks [7, 9, 10, 12, 13]. In these
attacks, the vulnerable object and the target object are allocated
in separate caches, providing attackers with a broader range of
possibilities in terms of object types. However, this extended
attack surface introduces additional challenges to memory
massaging.

When exploiting cross-cache OOB vulnerabilities, the mem-
ory pages backing the caches of both vulnerable and target
object must be adjacent in memory. Attackers might use heap
massaging techniques [13, 34, 45, 46], to obtain the desired
(contiguous) memory layout through a careful sequence of
allocations triggered by appropriate system calls.

In contrast, cross-cache use-after-free (UAF) attacks rely
on page recycling [7, 9, 10, 12, 16, 47], i.e., forcing the page
containing the vulnerable object to be freed, and reusing it for
a target object. In this context, spraying involves flooding the
memory and selectively reclaiming some controlled objects
so that the SLUB allocator is tricked into freeing an entire
slab. Given the last-in-first-out (LIFO) handling of this list, any
subsequent slab allocation from the vulnerable cache is likely
to reuse the same page. After the same page is reused, the
attacker can allocate the full slab with target objects to reuse
the object slot controlled by the dangling pointer. Notably,
previous work [9, 12], which implemented a similar cross-
cache attack approach, use page tables as the target object,
focusing on a single target cache.

Thus, while both attack scenarios exploit traits of the
underlying Page Frame Allocator, they fundamentally differ:
cross-cache overflow attacks (OOB) rely on spatial adjacency
between caches, whereas cross-cache temporal attacks (UAF
or double-free (DF)) rely on the controlled recycling of pages
via spraying.

Covert timing measurements can help also in cross-cache
attacks. In particular, SLUBStick [9] introduces a novel tech-
nique to reduce noise when establishing a timing side-channel.
Instead of timing system calls indiscriminately, SLUBStick
distinguishes two categories of objects: (i) objects used solely
for measuring the system call delay (referred to as “timing
objects” in this work), and (ii) objects used to modify the state
of the SLUB allocator, which remain allocated (referred to as
“persistent objects”). Timing objects are allocated by system
calls that can enter an error state, leading to their immediate
deallocation upon function return. Therefore, the allocation
workflow involves a timing object allocation, which is used to
measure the time required to allocate the object while mini-
mizing non-allocation tasks at the kernel level, followed by a
persistent object allocation to make the change effective from
the SLUB side. This dual-object strategy significantly reduces
noise in timing measurements. SLUBStick uses this technique
to reveal the SLUB state, recycle the vulnerable slab page
and mount a cross-cache attack for temporal vulnerabilities,
focusing on page tables as target objects [9, 12].

Therefore, previous work on cross-cache massaging either
focuses on temporal vulnerabilities [9, 12], or establishes a
contiguous layout for out-of-bounds exploitation but without
inferring the internal state of the allocator [13, 34, 45-47],
yielding an unreliable solution [27-29]. None of the existing
work explores or makes use of the inner interaction between
PCP lists and Page Frame Allocator, nor provides a reliable
solution to cross-cache overflows.

B. SLUB Mitigations

Mainline mitigations for SLUB vulnerabilities primar-
ily address in-cache feng-shui and corruption. Among no-
table mitigations, SLAB_FREELIST_RANDOM [23] random-
izes the order of freed slots returned upon allocation,
while SLAB_FREELIST_HARDENED (free-list pointer obfus-
cation) [22] manipulates free-list next pointers to prevent
trivial pointer leaks and corruption. Other mitigations include
RANDOM_KMALLOC_CACHES [21] and SLAB_BUCKETS [24]
which probabilistically address heap spray and grooming
attacks [14], targeting fixed-sized and variable-sized heap
objects, respectively. In particular, SLAB_BUCKETS requires
explicit use by the programmer through a specific API,
while RANDOM_KMALLOC_CACHES, when enabled, affects all
kmalloc-« caches transparently. Finally, heap zeroing [48]
ensures that object slots are zero-initialized upon allocation
and deallocation, while structure layout randomization [49],
implemented as a GCC plugin [50], randomizes the order of
fields in C structs after boot, making it difficult for attackers to
predict offsets between fields and the start of a corruption tar-
get. These measures generally impose negligible performance
overhead and have been integrated into the upstream Linux
kernel.

For cross-cache memory massaging, the only defense mech-
anism proposed for contribution to the upstream kernel is
SLAB_VIRTUAL [26]. The goal of SLAB_VIRTUAL is to de-
terministically mitigate cross-cache attacks based on page



recycling by ensuring that virtual addresses used by one
kmem_cache are never reassigned to a different kmem_cache.
However, this mitigation strategy remains under consideration
and has not been merged upstream due to concerns raised by
Linus Torvalds and Ingo Molnér regarding performance and
the lack of DMA support [51].

We  must note that the  previously  cited
RANDOM_KMALLOC_CACHES [21] and SLAB_BUCKETS [24]
potentially make cross-cache attacks more difficult in practice:
attackers need to find suitable vulnerable and spray objects
sharing the same slab cache to successfully mount the page
spraying phase of the attack. However, as of kernel version
6.8 (the version used in our experiments) SLAB_BUCKETS
was not yet merged as a mainline solution; in subsequent
kernel versions, the mitigation applies only to a small subset
of objects. Instead, the RANDOM_KMALLOC_CACHES mitigation
is not enabled by default in most Linux distributions.

AUTOSLAB [52] is a proprietary solution developed by
grsecurity. To prevent in-cache corruption, AUTOSLAB sepa-
rates object allocations by type, ensuring that different object
types do not share the same cache and providing each generic
allocation site calling k+~alloc+ with its own dedicated
memory cache. Additionally, AUTOSLAB randomizes the
starting offset of the first object in each slab to reduce
the likelihood of successful cross-cache corruption. However,
separating kernel objects per slab also makes it easier for
attackers to recycle memory from the Buddy Allocator side,
potentially reusing the same pages [53].

To highlight the critical implications of cross-cache at-
tacks on kernel security, we evaluate the efficacy of our
memory massaging using Linux kernel version 6.8 (see Sec-
tion V) by selectively activating SLAB_FREELIST_RANDOM,
SLAB_VIRTUAL and SLAB_FREELIST_HARDENED. In partic-
ular, we demonstrate a bypass for both SLAB_VIRTUAL and
SLAB_FREELIST_RANDOM mitigations (Section V-C). Then, in
all CVEs evaluated in Section V-D, none of the implemented
attacks rely on free-list pointer leaks, providing effectiveness
against SLAB_FREELIST_HARDENED as well.

IV. APPROACH

The goal of PCPLOST is to assist an attacker in forcing
adjacency between two objects (vulnerable and target) that
belong to different caches. To achieve this, we utilize a
timing side-channel to determine whether a page allocation
was served from a PCP list or the zoned free_area (Section
II-B), assuming that these operations exhibit significant timing
differences, as discussed in Section IV-A.

We provide two strategies based on whether the target and
vulnerable object caches use same-order or differing-order
pages, referred to as “same-order cross-cache” and “cross-
order cross-cache” attacks, respectively. Each strategy lever-
ages distinct timing side-channels and incorporates additional
spray objects, which can either match or differ in type from
the vulnerable and target objects. These spray objects serve a
crucial purpose: they are utilized to force the SLUB allocator
to exhaust its available slots when requesting new pages.
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Fig. 3: Timing values for “timing objects” allocations in
kmalloc—« caches. Allocation types “PCP-list” and “From
free_areal]” refer to, respectively, allocations done through
rmqueue_pcplist () and rmqueue_bulk ().

Both strategies leverage timing objects [9] and persistent
objects. Timing objects serve solely as probes and are imme-
diately freed; they are utilized to infer the underlying SLUB
state from the execution time of the system call responsible
for their allocation. Persistent objects are employed to change
the SLUB state permanently. More specifically, PCPLOST
operates through a loop where, in each iteration, it first collects
a timing sample using timing objects. After that, it allocates
a persistent object (either vulnerable, target, or spray), which
effectively drains the free space; we refer to this sequence as
probe and drain.

In subsequent sections, we denote /N as the number of
objects per slab under investigation and refer to n,, and n; as
the page orders requested by the vulnerable and target caches,
respectively.

A. Timing side-channels

The proposed massaging technique is guided by hypotheses
regarding the potential state of SLUB. These hypotheses
are refined over time by observing internal SLUB events,
which are inferred from the timing of specific system calls
(side-channels) due to the impossibility of direct observation.
Specifically, we focus on events related to invocations of
rmgueue_pcplist () and rmqueue_bulk () following the
allocation of a timing object.

To recap from Section II, these invocations occur when
the SLUB exhausts available slabs and needs another slab
to store a new object. The kernel attempts to allocate a
new slab by retrieving a free page from the PCP list via
rmqueue_pcplist (). If a suitable page is found, it is re-
moved and returned. Otherwise, rmqueue_bulk () is used,
reserving multiple free pages from the zone’s free_area and
moving them to the PCP list. When necessary, a page is split
into two buddies.
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Fig. 4: Overview of the same-order cross-cache massaging.
We use pcp_list; to denote the PCP list of order ¢ and
free_areay to indicate the free_area list of order j. Here,
vulnerable and target cache both request order-O pages. The
lower section of each stage illustrates the states of relevant
PCP lists and free_area lists. Stage @ shows the initial
spray with vulnerable (spray) objects splitting pages at higher
orders, while stages ® and ® show, respectively, vulnerable
and target slabs allocation (contiguously) and successful target
object corruption.

This leads to three timings measured from the allocated tim-
ing objects. (i) “fast” allocation from SLUB without accessing
the PCP list; (ii) “slower” allocation requesting a new page
via rmqueue_pcplist (); (iii) “slowest” allocation, trigger-
ing rmqueue_bulk () from the zone free_area, potentially
involving a page split.

As shown in Figure 3, the values of these timing profiles
allows to discriminate between these events. While previ-
ous literature has exploited the difference between “fast”
and “slower/slowest” [9, 14], we are the first to utilize the
difference between “slower” and “slowest” for cross-cache
massaging. This three-events distinction is pivotal to compre-
hensively support page-adjacency attacks, for same-order and
cross-order caches. By optimizing to eliminate false positives,
as detailed in Section IV-D, we achieve a highly reliable
massaging strategy in most cases.

The following sections demonstrate how these timing side-
channels can be used to manipulate the SLUB memory layout
and execute a successful page-adjacency cross-cache attack.

B. Same-order cross-cache massaging

In same-order attacks, both the vulnerable and target caches
use same-order pages (n, = ny = k). The strategy proceeds as
follows. First, we probe and drain the vulnerable cache with
persistent objects to trigger a refill of the order-k PCP list
from the free_area (since the pages inserted in the PCP list
will be the result of a split, they will be contiguous). Next,
we coordinate a sequence of allocations to ensure that both
the vulnerable and target caches acquire one of these two
contiguous pages. This guarantees that a linear out-of-bounds
(OOB) read or write operation on the vulnerable object affects
the contents of the target object.

Let us consider a detailed example with £k = 0 (see
Figure 4). The attack begins with a probe and drain iter-

ation to drain both the main and partial slabs of the vul-
nerable cache. This forces the kernel to repeatedly trigger
new_slab (), which, in turn, activates rmqueue_pcplist ()
until the order-k PCP list becomes fully depleted (stage @,
first two rmqueue_pcplist () in Figure 4).

When a subsequent allocation occurs, rmqueue_bulk ()
engages with the free_area to reserve batch pages (stage
@, the last step in Figure 4). The kernel prioritizes fulfilling
this request through either immediate next-order (k+ 1) pages
or higher-order alternatives, depending on current availability.
By repeating this process, attackers can increase the likelihood
of obtaining adjacent page batches, a critical requirement for
successful cross-cache attacks via page adjacency, as detailed
in Section IV-B1. In our specific scenario, rmqueue_bulk ()
acquires three pages ((2) and (3)) from both order-0 and
order-1 free_area lists. These pages constitute two buddies,
indicating that they are physically contiguous in memory.

After completing the spraying session, we probe and drain
the vulnerable cache again (stage @ in Figure 4) until a new
order-k page allocation from the PCP list is detected. This
page is acquired by the vulnerable cache as its main slab. We
proceed to fill it with N — 1 objects, which can be either
vulnerable or spray objects, followed by a single allocation of
a vulnerable object located at the end of the slab.

If the spraying phase at stage @ was successful, this object
will be contiguous to the first order-k page in the PCP list,
which has not yet been allocated (page (3) in Figure 4).
We thus probe and drain the target cache until that page is
allocated and fill it with target objects. Crucially, the first target
object allocated will be adjacent to the vulnerable object that
was allocated earlier, allowing an OOB vulnerability to be
triggered (stage ® in Figure 4).

1) The preliminary “probe and drain” phase: The first
stage of same-order massaging involves “probe and drain”
(page spraying). This round of allocations aims to drain pages
from the PCP list and split them at higher orders. We empiri-
cally validate that using a base value of 512, adjusted based on
the page order via base_value >> page_order, allows us
to determine the number of page requests — inferred through
the side-channel (Section IV-A) — that consistently achieve
high reliability across all same-order massaging scenarios in
generic caches, as shown by our experiments (see Table II
and Table IX in Appendix C-B). Intuitively, the number of
pages to drain must decrease as the page order increases: the
higher the page order, the smaller the batch value (see Table
VI), which results in a smaller average number of pages to
drain in the PCP list. Consequently, performing this quantity
of page allocations almost always results in splits at higher
orders. This process ensures that batches of contiguous pages
are moved to the corresponding PCP list, which is crucial for
both cross-cache adjacency layout and facilitating same-order
cross-cache attacks.

C. Cross-order cross-cache massaging

In the cross-order attack scenario, vulnerable and target
caches request different page orders to initialize new slabs
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Fig. 5: Overview of the cross-order cross-cache massaging.
Here, the vulnerable cache requests order-1 pages, while the
target cache requests order-0 pages, thereby showing the n,, >
ng case, where n, and n, are the vulnerable and target cache
orders. The lower section of each stage illustrates the states
of relevant PCP lists and free_area lists. Stages @, ® and
® show vulnerable cache massaging, while stages @, ® and
® show target cache massaging, placing the two contiguously
in memory. Stage @ shows successful corruption.

(ny # nyg). Therefore, within this massaging strategy, two
possible scenarios may arise: (i) the vulnerable cache requests
a page order greater than the target cache (n, > n.); (ii) the
vulnerable cache requests a smaller page order compared to
the target cache (n, < ni).

In both cases, we exhaust all slots in the vulnerable
cache and all PCP list pages of order n, through alloca-
tions. This process forces the zoned Buddy Allocator (via
rmqueue_bulk ()) to execute a page split while reserving
batch pages of order n,. As a consequence, the last page
in the PCP list from the batch allocation is typically an L-
buddy of the higher-order split, while the corresponding R-
buddy is located in the free_area. Next, we deplete the PCP
list through vulnerable (or spray) object allocations until we
reach the L-buddy, at which point we allocate a target object,
ensuring that the R-buddy is utilized by the target cache. This
ensures that an OOB in the vulnerable object (L-buddy) will
affect the target object (R-buddy).

While the high-level attack strategy is similar in both cases,
there are several subtleties that we will address in the following
sections.

1) The n, > ny case: In this case, we probe and
drain the vulnerable cache (stage @) until a single call to
rmqueue_bulk () is detected (stage ® in Figure 5 with
n, = 1 and ny = 0). We then perform N X batch — 1
(spray) object allocations to consume those pages, finally using
the last slot for the vulnerable object (stage ®, lower section
of each stage illustrates the states of relevant PCP lists and
free_area lists). Given the sparse use of free_area lists
of orders supported by the PCP optimization, the last page in
the batch allocation was likely involved in a high-order page
split. Hence, it is the L-buddy of another contiguous page that
got moved in the free_area and is now ready to be allocated
by the next call to rmqueue_bulk (); for example in Figure
5, page (3) — split in stage @ and allocated as the main slab
of the vulnerable cache in stage ® — is the L-buddy of the
page identified by the hatched rectangle in stage @.

We now probe and drain the target cache (stage @ in Figure
5) until a call to rmqueue_bulk () is detected (stage @). Such
an invocation reserves batch pages starting from the order-
ny free_area list. For the reasons previously discussed, the
reservation of batch pages by rmqueue_bulk () likely taps
into a free_area list whose order is > n,, including the
R-buddy page that is contiguous to the previously allocated
vulnerable cache’s main slab (stage ®).

If this step succeeds, vulnerable and target slabs are con-
tiguous and allow the desired OOB (stage @).

While in Figure 5, A = ||n, — n¢]| = 1, the massaging
strategy presented above generalizes to A > 1. The only
modification to the strategy pertains to the massaging of the
target cache: PCPLOST needs to cause allocation requests
from the lower target cache order m; to cause page splits
at higher order n,. This can be reliably accomplished via
multiple invocations of rmqueue_bulk (), as we shall see in
Section V.

2) The n, < ny case: To describe this case, let us consider
the case n, = 0 and n; = 1 as shown in Figure 6. As before
we start with probing and draining the vulnerable cache until
detecting a call to rmqueue_bulk () (stage @). Also in this
case, the rmqueue_bulk () function likely triggers page splits
at orders > n,. For instance, in Figure 6, the page split at
stage @ involves order-2 pages, while the vulnerable cache
requests order-0 pages. These probe and drain operations
can be continued until rmqueue_bulk () taps into the order-
(ng + 1) lists in the free_area. At this point, any split at
an order > n; produces an L-buddy page (recursively split
afterwards until reaching order n,) and an R-buddy page that
gets moved into the free_area. At this point we drain all
pages involved in the batch allocation in the vulnerable cache
(stage ®) through N X batch — 1 spray object allocations
followed by one vulnerable object allocation.

We then probe and drain the target cache (stage @) up
until detecting an rmqueue_bulk () (stage @). This results
in batch pages from free_area being reserved, and with
the first one being returned to the caller. The latter likely
corresponds to the R-buddy page previously split by vulnerable
cache allocations (stage @). As a result, vulnerable and target
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Fig. 6: Overview of the cross-order cross-cache massaging.
In this example, the vulnerable cache requests order-O pages,
while the target cache requests order-1 pages, thereby showing
the n, < n; case, where n, and n; are, respectively, the
vulnerable and target cache orders. Stages @, ® and ® show
the vulnerable cache massaging, while stages @ and ® show
the target cache massaging, placing the two contiguously in
memory. Stage ® shows the successful corruption.

slabs would now be contiguous: any OOB write would corrupt
the attacker-chosen target object (stage ®).

In Figure 6, A = ||n, — n¢|| = 1. However, the massaging
strategy presented above generalizes to A > 1, showing
varying success rates. Indeed, when A > 1, an attacker can
spray page allocations to trigger calls to rmqueue_bulk ()
to eventually reach the order-n; free_area list. Although
an attacker can detect calls to rmqueue_bulk (), the number
of such calls they should force the kernel to perform in
order to reach the order-n; list is not known. To overcome
this uncertainty, the attacker could spray vulnerable slabs
allocations multiple times, knowing that they would eventually
reach order-n; pages in the free_area. The imprecision
resulting from spraying vulnerable objects compels attack-
ers to trigger the vulnerability multiple times. While object
spraying was effective for target objects, it proves less so for
vulnerable ones. Indeed, repeatedly triggering the vulnerability
substantially increases the likelihood of causing a kernel crash.

However, this scenario where n, < n; and A = ||n, —
n¢|| > 1 represents an edge case. Attackers can select target
objects to either match the vulnerable cache’s order, reducing
it to the n, = n; situation described in Section IV-B, or opt
for a more favorable configuration.

D. Minimizing false positives

To enhance the accuracy of the detection of the two events
(rmgueue_pcplist () and rmgqueue_bulk ()) by our side-
channel and minimize false positives, we adopt the following
strategy: instead of relying on a single timing sample within
a given range as evidence of an allocation event, we test
for recurrence after spraying sufficient allocations to refill
the area supposedly provided by the original event. If sub-

sequent timing samples match expectations, we infer with
high probability that the allocation event (from either the PCP
list or free_area) occurred. By utilizing this strategy, we
minimize false positives, but we may discard some viable hits.
Apart from potentially allocating more than strictly necessary,
discarding good hits does not pose a significant issue from the
PCPLOST massaging perspective. Inducing a slightly higher
memory pressure can be considered an acceptable cost, given
a higher overall success rate. In Table VII, we provide an
evaluation of false positive and negative rates.

E. Exploiting temporal vulnerabilities

PCPLOST produces a contiguous layout between vulnerable
and target caches in the SLUB allocator. This contiguous
layout is favorable for OOB vulnerabilities, where the attacker
can corrupt the target object (stored in the target cache)
through a linear overflow from the vulnerable one. However,
by means of pivoting techniques, PCPLOST supports temporal
as well, broadening its applicability. The overall strategy is
to establish page-adjacency between vulnerable (to UAF or
DF) and target caches, to then pivot from temporal bug to an
OOB primitive, and exploit the contiguous layout provided by
PCPLOST to corrupt the target object.

We define pivor object as a specific target object that enables
a pivot from a temporal vulnerability (UAF or DF) to a spatial
vulnerability (OOB) by corrupting one of its fields. The pivot
object may be either from the same cache as the vulnerable
object (in-cache pivoting) or from a different cache (cross-
cache pivoting).

a) UAF vulnerabilities: To pivot from a UAF vulnera-
bility to an OOB vulnerability, we can manipulate the length
field of suitable pivot objects [54] during the “use” phase of
the UAF (struct msg_msg is a widely used example of pivot
object). Intuitively, the pivot is obtained by (i) using PCPLOST
to prepare cross-cache adjacency between UAF-vulnerable and
target cache pages (ii) allocating the vulnerable object and
immediately freeing it, holding a dangling pointer to it. After,
(iii) allocate a pivot object in the same slot as the vulnerable
object. Note that depending on the type of pivot (in-cache or
cross-cache), this step may require releasing the page to the
buddy allocator, and later reclaiming the page for a cache of
pivot objects. Then, (iv) corrupt the length field of the pivot
object through the UAF and trigger an OOB write. If the
pivot object occupies the last position in the cache, the OOB
operation will affect objects in the target cache, finalising the
attack.

b) DF vulnerabilities: Pivoting from DF to OOB in-
volves transforming the DF vulnerability into a UAF vulner-
ability [9] and subsequently applying the previous strategy.
Specifically, the attacker allocates the DF object to obtain
pointer pp, frees it, and then immediately reallocates it to
acquire py (which points to the same address). Freeing p;
a second time leaves p, dangling, allowing the application of
the previous strategy from step (iii).



In Section V-B, we discuss the experimental results and the
primary challenges associated with pivoting UAF and DF into
OOB.

V. EVALUATION

In this section, we discuss the evaluation criteria to establish
the effectiveness of PCPLOST and present experiments that
address four research questions (RQs):

« RQ1: How reliable is PCPLOST in achieving the desired

cross-cache memory layout for OOB vulnerabilities?

¢« RQ2: Can PCPLOST be broadened to support other

classes of vulnerabilities like UAF and DF?

« RQ3: Can PCPLOST bypass cross-cache defenses pro-

posed, or already accepted, as mainline solutions?

« RQ4: What is the applicability of the PCPLOST tech-

nique to real-world vulnerabilities?

Experiments were conducted on a 64-bit x86 QEMU virtual
machine with 12 CPU cores and 32 GB of RAM, running a
Debian installation (trixie/sid) and Linux kernel version 6.8.

The host machine is a 64-bit x86 architecture equipped with
a Xeon Gold 6210U CPU, featuring 20 cores per socket and
2 threads per core, and is configured with 394 GB of RAM.

A. Cross-cache massaging

RQ1: How reliable is PCPLOST in achieving the de-
sired cross-cache memory layout for OOB vulnerabili-
ties?

To address this question, we evaluate the success rates of both
same-order and cross-order cross-cache memory massaging
on generic SLUB caches under two assumptions: “adjacency-
only” and “adjacency + object alignment”.

In the “adjacency-only” scenario, memory massaging is
deemed successful if a simple page adjacency is achieved
between the vulnerable and target caches. In the ‘“adjacency
+ object alignment” scenario, a successful memory massaging
requires not only contiguous caches but also the precise place-
ment of the vulnerable object at the end of its corresponding
cache’s main slab (with SLAB_FREELIST_RANDOM disabled).
These two massaging settings are evaluated under three oper-
ating conditions: “Idle with CPU pinning”, “Idle without CPU
pinning”, and “Noise with CPU pinning”. The first two cases
correspond to an Idle CPU where the process is or isn’t pinned
to a CPU core to prevent context switching. “Noise with CPU
pinning” corresponds to a system under a heavy workload
generated by stress-ng in the background, creating pressure
on SLUB caches, while the massaging process is pinned to
a CPU core. We do not consider the scenario of background
noise without CPU pinning, as an unprivileged user can always
pin a process to a specific CPU core when the system is noisy.

To conduct our experiments, we use 40 distinct QEMU
sessions, performing 20 attack runs per session, resulting in a
total of 800 runs. We record the success or failure of each run
and model our sample distribution as a binomial distribution.
Finally, we compute the 95% confidence interval (95%-CI)
using the Wilson interval score for each scenario described
above.

Table II presents the reliability results for same-order
(n, = n¢) and cross-order massaging for the case (n, > ny).
Appendix C provides reliability results for the opposite case
(n, < ny) and offers a more extensive evaluation of the same-
order case (n, = n;) across all generic kmem-caches, as Table
II includes only a subset of these caches.

In the following three paragraphs, we discuss the experi-
mental results for the cases mentioned above.

a) n, = ny: The same-order case is the most common
scenario in exploitation, as attackers can often choose both the
target object and cache, selecting a target with the same page
order as the vulnerable cache. According to Table II (same-
order case), the success rate consistently exceeds 90% across
all scenarios, regardless of SLUB cache characteristics, such
as the number of objects per slab or page order (see Table V).
The results in Table IX from Appendix C further demonstrate
that generic caches exhibit high reliability. We note that
background noise has a minimal impact on the success rate due
to the reduced complexity of the memory massaging process,
as the only requirement is to obtain two contiguous pages from
the PCP list and allocate them sequentially with vulnerable and
target caches.

b) n, > ny: Table II shows that the success rate for
cross-order massaging remains consistently high with CPU
pinning under “Idle” and “Noise” operating conditions (around
90%) while it decreases up to 41% without CPU pinning. This
suggests that descheduling can affect the success rate, as other
processes may interact with the free_area while the attack
process is sleeping, thereby interferring with key massaging
operations.

¢) n, < ng: The overall success rate of the massaging,
as shown in Table Xc in Appendix C, decreases significantly.
This cross-order scenario exhibits increased complexity and
inherent nondeterminism due to the challenges attackers face
in predicting when to stop allocating from the vulnerable
cache (see Section IV-C). Furthermore, the greater the distance
between the two orders A = ||n, — ny|, the higher the
uncertainty and the smaller the success rate, reaching as low as
20%. While this remains the least reliable case, the attackers
can avoid it by selecting a target object in the n,, > n; cases.

B. Cross-cache temporal to spatial pivoting

RQ2: Can PCPLOST be broadened to support other
classes of vulnerabilities like UAF and DF?

We demonstrate that starting from a UAF or DF vulnera-
bility, by selecting an appropriate pivot object, this type of
vulnerability can be transformed into an OOB vulnerability,
exploitable with PCPLOST, a technique known as pivoting.
To test this, we employ a custom kernel module to introduce
a temporal vulnerability and apply PCPLOST on top. For an
evaluation on real-world vulnerabilities, we refer to RQ4.

a) UAF to OOB pivoting: To validate the effectiveness
of the UAF to OOB pivoting, we use a custom kernel
module to create a synthetic UAF vulnerability and use
it as the vulnerable object. As pivot object we use the
struct msg_msg kernel object in kmalloc-cg—+ caches.




Vulnerable cache  Target cache

Success rate

Adjacency only

Adjacency + object alignment

Idle (CPU pinning) Idle (No CPU pinning)

Noise (CPU pinning)

Idle (CPU pinning) Idle (No CPU pinning) Noise (CPU pinning)

Avg. (%) 95%-ClI Avg. (%) 95%-CI Avg. (%)

(ny = nt)

kmalloc-16 kmalloc-64 98.75 (97.98,99.23) 99.14 (98.47,99.52) 97.26
kmalloc-16  kmalloc-128  98.59  (97.79,99.10)  98.83  (98.07,99.29)  96.48
kmalloc-64 kmalloc-16 98.59 (97.79,99.11) 94.60 (93.23,95.72) 92.50
kmalloc-64 kmalloc-128 97.73 (96.76, 98.42) 96.09 (94.89,97.02) 91.33
kmalloc-128 kmalloc-16 99.68 (99.20, 99.88) 99.69 (99.20, 99.88) 98.51
kmalloc-128 kmalloc-64 99.37 (98.77,99.68) 99.21 (98.57,99.57) 98.75
(ny > nt)

kmalloc-2k kmalloc-16 95.15 (93.84,96.20) 47.66 (44.93,50.39) 87.34
kmalloc-2k kmalloc-64 90.55 (88.82,92.03) 43.91 (41.21,46.64) 91.87
kmalloc-2k kmalloc-128  96.48  (95.33,97.36)  52.81 (50.07,55.53)  87.58
kmalloc-4k kmalloc-16 96.01 (94.90, 96.96) 55.86 (53.12, 58.56) 87.89
kmalloc-4k kmalloc-64 93.20 (91.69, 94.46) 48.91 (46.17,51.64) 91.48
kmalloc-4k kmalloc-128 91.09 (89.41,92.53) 41.33 (38.66,44.05) 92.42

95%-CI Ave. (%) 95%-CI Ave. (%) 95%-CI Ave. (%) 95%-CI
(96.22,98.02)  98.83  (98.07,99.20)  98.51  (97.69,99.05)  97.42  (96.40,98.16)
(95.33,97.36)  98.35  (97.50,98.92)  98.91  (98.17,99.35)  96.80  (95.68,97.63)
(90.92,93.82)  95.78  (94.54,96.75)  96.09  (94.89,97.02) 9226  (90.67,93.60)
(89.66,92.75)  96.80  (95.68,97.63)  95.62  (94.36,96.61)  90.94  (89.24,92.39)
(97.69,99.04)  99.84  (99.43,99.96)  99.53  (98.98,99.78)  98.28  (97.41,98.86)
(97.98,99.22)  99.61  (99.10,99.83)  99.37  (98.77,99.68)  98.28  (97.41,98.86)
(85.41,89.05)  94.30  (92.89,95.43)  47.96  (45.24,50.71)  87.58  (85.66,89.27)
(90.25,93.25)  91.88  (90.25,93.25)  42.50  (39.81,45.23) 9148  (89.83,92.89)
(85.66,89.27)  95.47  (94.19,96.48)  48.98  (46.25,51.72)  88.12  (86.23,89.78)
(85.99,89.56)  95.94  (94.71,96.89)  50.62  (47.89,53.36)  87.97  (86.07,89.64)
(89.83,92.89)  93.20  (91.69,94.46)  49.45  (46.72,52.19) 9242  (90.84,93.75)
(90.84,93.75)  90.31  (88.57,91.81)  44.22  (41.52,46.95)  90.08  (88.32,91.60)

TABLE II: Success rate for cross-cache massaging. We evaluate the success rate of the same-order (n,, = n;) and cross-order
massaging (n,, > n;) in three cases: system in IDLE (no external stress workloads) with and without pinning to a CPU-core,
and under heavy workload generated by stress-ng while pinning.

In this preliminary experiment, we perform the UAF to
OOB pivoting by corrupting the m_ts field (message text
size) of struct msg_msg. After obtaining an out-of-bounds
primitive with struct msg_msg, we mount a reliable cross-
cache attack, targeting st ruct shm_file_data, allocated in
kmalloc—-32.

The challenging aspect of the pivoting phase revolves
around identifying a suitable pivot object for the vulnerability
at hand. From our experiments, an ideal type of object for
this phase is one that has a “length” field used in the primitive
method provided by the object, which is later used in a memcpy
operation. The UAF vulnerability must allow an attacker to
overwrite with attacker-controlled data the memory location
containing the length field. If these requirements are met, due
to the broad applicability of timing objects [9], and given the
high success rate of PCPLOST, the reliability of the pivoting
phase depends only on the specific vulnerability at hand.

b) DF to OOB pivoting: For the DF to OOB pivoting,
we perform an evaluation analogous to the one of the UAF
to OOB case, targeting the same objects and caches, with the
additional pivot from DF to UAF using our custom kernel
module. We rely on the fact that most DF vulnerabilities can
be turned into UAFs: by allocating an object after the first free,
the subsequent free creates a dangling pointer to that object.
Following the preliminary pivoting to UAF, we apply the
UAF-OOB pivoting. Since the DF-OOB pivoting is a double
pivot from DF to UAF and finally OOB, the same challenges
for the UAF-OOB pivoting apply. In particular, due to the
broad applicability of timing objects and the high success rate
of PCPLOST, the reliability of the DF-OOB pivoting phase
depends only on the specific vulnerability at hand, as the UAF-
OOB pivoting case.

C. SLUB defenses bypass

RQ3: Can PCPLOST bypass cross-cache defenses pro-
posed, or already accepted, as mainline solutions?

We analyze the effectiveness of PCPLost against
SLAB_VIRTUAL (proposed mainline mitigation against cross-
cache attacks, Section V-C1) and SLAB_FREELIST_RANDOM
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(which randomizes the order of allocations within a slab,
Section V-C2).

1) Bypassing SLAB_VIRTUAL: SLAB_VIRTUAL is a hard-
ening solution proposed in 2023 on the Linux Kernel Mailing
List [26]. Its goal is to mitigate cross-cache attacks arising
from page recycling by ensuring that virtual addresses are
never reassigned to slabs from different kmem_caches. When
this mitigation is enabled, kernel logical addresses are no
longer directly mapped.

a) Spatial vulnerabilities: Our experiments show that
PCPLOST exhibits high reliability (over 90%) in producing
favorable OOB layout both in same-order and cross-order
massaging when SLAB_VIRTUAL is enabled (see Table Xa,
Appendix C).

The success rate is even higher in some cases (compared
to a vanilla kernel): SLAB_VIRTUAL has a highly predictable
allocation strategy, where slabs gets reserved from a virtually
contiguous region of memory. When the free slab pool is
exhausted and a new slab is allocated, the addresses involved
remain virtually contiguous. Allocating a vulnerable slab
followed immediately by a target slab therefore creates a
contiguous virtual layout with very high probability.

b) Temporal vulnerabilities : It is also possible to employ
the pivoting technique described in Section IV-E to exploit
temporal vulnerabilities: this shows how PCPLOST is effec-
tive against SLAB_VIRTUAL. To bypass SLAB_VIRTUAL, only
the in-cache pivoting strategy can be employed: cross-cache
pivoting is thwarted by the fact that SLAB_VIRTUAL prevents
page reuse across caches by design. For such in-cache variant,
vulnerable and pivot object must reside in the same SLUB
cache, but the eventual target object is cross-cache.

The strategy proceeds as follows: (i) PCPLOST ensures a
contiguous layout between the vulnerable and target slabs.
(i1) We allocate N —1 spray objects and one vulnerable object,
where NN is the number of objects in the vulnerable slab.
Afterwards, the vulnerable object is freed while maintaining a
dangling pointer to it. (iii) We then allocate the pivot object,
using the recently freed slot in the vulnerable cache due to the
LIFO nature of SLUB free-lists. (iv) Through the dangling
pointer, the length field of the pivot object is corrupted to
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Fig. 7: Overview of the SLAB_FREELIST_RANDOM bypass.
The payload is structured in a way that the corruption pattern
(cp) overlaps with target objects.

transition from temporal to spatial vulnerability. (v) Due to
the contiguous layout established in (i), OOB writes from the
vulnerable cache can corrupt the target object.

We evaluate the effectiveness of the SLAB_VIRTUAL bypass
strategy using both synthetic and real-world out-of-bounds
(temporal and spatial) vulnerabilities. In Table III, we provide
our real-world experiments, where we explicitly highlight the
scenarios where SLAB_VIRTUAL is successfully bypassed.

2) Bypassing SLAB_FREELIST_RANDOM: The PCPLOST
technique achieves a cross-cache layout with the target slab
placed right after the vulnerable slab. Once this layout is
achieved, it is in general very easy to place to vulnerable object
adjacent to the target object, by ensuring that the vulnerable
object is the last allocation within the vulnerable slab, and the
target object is the first allocation of the adjacent vulnerable
slab. However, this is more challenging to achieve when
the SLAB_FREELIST_RANDOM mitigation [23] is in use. The
SLAB_FREELIST_RANDOM mitigation randomizes the order of
allocations within a slab, thereby making it difficult for the at-
tacker to be able to infer the first (or last) allocation. PSPRAY
bypasses this mitigation via a side-channel [14]. Unfortunately
this in-cache bypass is not applicable for our cross-cache
attack. We refer to Section VI-E for an explanation.

The natural approach for an attacker to bypass
SLAB_FREELIST_RANDOM would be to spray vulnerable
objects into the vulnerable slab, and target objects into the
target slab. However, because the attacker does not know
which vulnerable object is placed last, it would have to try
multiple times. If the vulnerability is an out-of-bounds read
this is an acceptable solution. However, in the case of an
out-of-bounds write, this overwrites other vulnerable objects,
meaning that a subsequent trigger of such an overwritten
object will likely lead to a kernel panic. We propose here a
generic solution to avoid this issue.

If the out-of-bounds write vulnerability allows the attacker
to write at least SLAB_SIZE+overwrite_offset bytes be-
yond the bounds of the vulnerable object, as shown in Figure
7, whereby SLAB_SIZE is the size of the vulnerable slab in
bytes, the attacker can obtain a successful cross-cache attack
even when SLAB_FREELIST_RANDOM is active. We notice in
the simple spraying scenario above that, although the attacker
does not know which vulnerable object will be triggered, they
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are guaranteed that there will be a target object placed at
offset sLAB_SIZE starting from the end of any vulnerable
object, as long as the slab size of the target slab is more than
SLAB_SIZE: this is guaranteed in both the same-order case and
the cross-order case when n; > n,. Therefore, a strategy for
the attacker could consist in writing at least SLAB_SIZE bytes
and the overwriting the target object with the desired contents.
Finally, the attacker can trigger all sprayed target objects, one
after the other, testing for success in between. To guarantee
that no panic occurs when making use of the sprayed target
objects, the attacker needs to repeat the corruption pattern such
that any corrupted target object will be a valid trigger. With
this method, only one of the sprayed vulnerable objects needs
to be triggered, therefore the corruption of the other vulnerable
objects does not lead to a panic.

If n; < n,, the same method applies, with the caveat that
the corruption may overwrite beyond the bounds of the target
slab, potentially leading to a panic if the object is not under
the attacker’s usage. A simple fix is to reduce in this case the
size of the write to the size of the target slab instead. This may
lead to a case where no target object is overwritten, therefore
resulting in a case where triggering all sprayed target objects
would not lead to the exploit succeeding. In this case, the
attacker could start over the entire attack until they eventually
succeed.

This observation leads to a solution in the generic case
where the attacker may only be able to write a limited
number of bytes, but still desires an attack that would not
trigger a panic, at the cost of a longer exploit runtime: by
repeating PCPLOST with the limited overwrite and the above
method, the attacker will eventually achieve its goal, as long as
PCPLOST can reliably establish the cross-cache layout each
time.

We evaluate the effectiveness of this bypass strategy using
both synthetic and real-world out-of-bounds vulnerabilities.
In Table III, we explicitly highlight the scenarios where
SLAB_FREELIST_RANDOM is enabled an bypassed in our real-
world experiments. In general, we notice that for some target
objects, a desirable feature of the vulnerability is its ability to
write zeroes. This nullifies pointers and it is useful in many
cases to avoid kernel crashes and corrupt the target object(s)
reliably.

D. Real-world vulnerabilities

RQ4: What is the applicability of the PCPLOST tech-
nique to real-world vulnerabilities?

To assess the effectiveness of PCPLOST in real-world
scenarios, we evaluate its applicability using 6 publicly avail-
able CVEs. In Table III, alongside the name and category
(temporal, spatial) of the CVEs, we highlight the step in the
exploitation chain where we employ PCPLOST. In addition,
we also specify the SLUB mitigations employed in each
scenario. Enabling mitigations often adds complexity to the
exploitation strategy, and requires additional work for the
exploit writer, but PCPLOST remains effective. This is a
key difference with previous work on cross-cache attacks:



CVE Category Caches Objects Attack type  Mitigations bypassed
Vulnerable cache Target cache Vulnerable object Target object(s) (RW) (FR/SV/FH)
CVE-2024-53141 OOB kmalloc-cg-1k kmalloc-cg-2k struct bitmap_ip struct msg_msgseg W SV,FH
CVE-2021-22555 OOB/UAF < kmalloc-cg-4k kmalloc-cg-lk struct xt_table_info struct pipe_buffer R FR,SV,FH
CVE-2022-0185 OOB kmalloc-4k kmalloc-cg-4k ctx->legacy_data struct msg_msg W SV,FH
CVE-2023-0461 UAF < kmalloc-512 kmalloc-cg-1k struct tls_context struct pipe_buffer R FR,SV,FH
CVE-2021-3715 UAF & kmalloc-192 kmalloc-32 struct routed4_filter struct shm_file_data R FR,FH
CVE-2022-27666 ~ OOB - kmalloc-4k pfrag->page struct user_key_payload W FR,FH
TABLE III: PCPLOST applicability on real-world CVEs. Under “Attack type”, we use W to denote a cross-cache

(write) corruption and R for a cross-cache leak (read). For employed mitigations, FR, SV and FH indicates, respectively,
SLAB_FREELIST_RANDOM, SLAB_VIRTUAL and SLAB_FREELIST_HARDENED. The « sign for temporal vulnerabilities indicates
an in-cache pivot from UAF to OOB, while 4 indicates a cross-cache pivot.

Generic cache type Objects

kmalloc—x* caches
kmalloc-cg—+ caches

TABLE IV: Objects used in the PCPLOST spraying phase
during evaluation with real-world vulnerabilities.

poll_list, shm _file_data
simple_xattr, sk_buff, msg_msg, pipe_inode_info

SLAB_VIRTUAL [26] renders the manipulation technique sus-
taining the SLUBStick [9] attack unfeasible.

We use PCPLOST at different steps of the exploitation
chain, even multiple times in the same exploit, where it
makes sense. For instance, with CVE-2024-53141, a heap
overflow vulnerability in bitmap_ip, we use PCPLOST to
establish a cross-cache adjacency between kmalloc-cg-1k
(vulnerable cache) and kmalloc-cg-2k, where we allocate
struct msg_msgseg (target object). This enables a cross-
cache overflow from the vulnerable to the target cache.
In the same exploit, we leverage PCPLOST to create a
predictable (contiguous) layout between kmalloc-192 and
kmalloc-cg-192: we leverage the read primitive provided
by msg_msgseg to leak a kmalloc-192 heap address and,
provided the contiguous layout, we can arbitrarily free (using
msg_msgseg again) objects in kmalloc-cg-192, including
struct cred. This allows to create fake credentials and
escalate privileges.

For temporal vulnerabilities, we can additionally perform
a vulnerability pivot (c.f., Section IV-E), exploiting PC-
PLoOST for cross-cache attacks, or use our massaging tech-
nique to create predictable and contiguous memory layouts,
useful in many primitives. For instance, with CVE-2021-
22555, a heap OOB vulnerability in netfilter that allows
writing a few bytes (all zeroes) out-of-bounds, we employ
PCPLOST to prepare a predictable cross-cache layout be-
tween kmalloc-cg-4k and kmalloc—cg-1k, which is used
later on in the exploit. From the out-of-bounds primitive,
we pivot to a use-after-free, and from there to an out-of-
bounds leak (kmalloc-cg-4k addresses). Then, leveraging
the temporal vulnerability, we counterfeit struct msg_msg
and perform a KASLR leak in kmalloc-cg-1k (with
struct pipe_buffer as victim), exploiting the predictable
and contiguous layout established by PCPLOST. The free
primitive provided by struct msg_msg can be further used
to counterfeit st ruct pipe_buffer and obtain code execu-
tion. As before, even in the presence of a hypothetical future
mitigation segregating massage-sensitive objects in a differ-
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ent cache (in this case, struct pipe_buffer), PCPLOST
allows attackers to employ any target object allocated in a
different cache from the vulnerable one.

VI. DISCUSSION

In this section, we expand on the PCPLOST’s effects on
existing mitigations, its applicability with other techniques in
related work, as well as suggesting potential hardening solu-
tions to reduce the effectiveness of our proposed massaging
strategy.

A. Kernel objects segregation

Modern kernel heap mitigations are shifting towards segre-
gating object allocations based on their type [21, 44, 53, 55].
While this method is generally effective in countering in-cache
spray attacks [11, 35], its efficacy diminishes when faced
with page-level manipulation strategies such as PCPLOST or
page-recycling [9, 12]. Specifically, hardening measures that
do not account for allocation and reclaiming processes at the
Page Allocator level, such as RANDOM_KMALLOC_CACHES [21]
or SLAB_BUCKETS [24], are insufficient in mitigating these
advanced manipulation techniques.

In particular, two considerations are noteworthy as far
as cross-cache massaging techniques are concerned: (i) for
page-adjacency, the kernel allocates pages (with new_slab ())
from the same memory area for all object types, ensuring that
PCPLOST remains applicable; (ii) instead, for page-recycling,
the attacker can always induce memory pressure and force
the kernel to reclaim pages at the Page Frame Allocator level.
This in turn ensures that the same memory page can eventually
be reused for both vulnerable and target cache, to which the
attacker has access through the dangling pointer.

Mitigations implemented at the Page Frame Allocator
level [53, 55] effectively prevent the two identified scenarios
above from occurring. More specifically, these solutions define
an allocation context, typically based on the object type, and
create distinct memory areas for each context. This ensures
that both page allocation and reclaim activities are confined
within their respective areas. Such hardening measures signifi-
cantly diminish the effectiveness of PCPLOST. However, their
performance impact is potentially high, as they may prevent
physical memory from being re-used across segregated mem-
ory areas. Moreover, no mitigation of this sort has appeared
as mainline solution for the Linux kernel.



B. Guard pages in SLAB_VIRTUAL

In its publicly available patch [26], SLAB_VIRTUAL prevents
page-recycling based cross-cache attacks, without sacrificing
physical memory usage, by ensuring that only virtual addresses
are used for slabs (and are not re-used). However, this does
not prevent page-adjacency attack as we show. This can be
fixed by adding guard pages around each allocated slab. We
have discussed this issue with one of its authors, and they
pointed out that the new version of SLAB_VIRTUAL deployed
in Google’s kernelCTF [56] platform uses guard pages. We
refer to this implementation as SLAB_VIRTUAL_GP. We as-
sessed the performance impact of SLAB_VIRTUAL_GP using
the LMBench benchmarking suite. The results, summarized in
Table XI (Appendix C-C), quantify the associated overhead.
SLAB_VIRTUAL_GP has demonstrated robust effectiveness in
mitigating cross-cache linear overflows with PCPLOST, reli-
ably and consistently preventing our attack.

However, while such a solution effectively mitigates linear
OOB vulnerabilities, it fails to mitigate non-linear overflows
(e.g., those allowing to write some bytes at an offset from
the vulnerable object). Given distance_to_slab_end as
the distance between the vulnerable object and the bound-
ary of its slab, an attacker can employ PCPLOST to es-
tablish a cross-cache page-adjacency layout and write after
the guard page (assuming that the offset is greater than
distance_to_slab_end+PAGE_SIZE). While this solution
constraints the exploitation strategy further, it still leaves a
residual attack surface.

C. Specialized slabs

PCPLOST performs a cross-cache massaging between
generic caches (accounted and non-accounted). We apply our
technique on generic caches because of the timing primitive
we use [9]. For specialized slabs, PCPLOST also applies if
a suitable timing primitive is available. The timing primitive
needs to satisfy the following constraint: non-allocation tasks
performed by the system call allocating the SLUB object
should be as minimal as possible. Provided a similar primitive
that allocates objects in specialized caches, or a similarly
effective side channel, the PCPLOST technique can exploit it
to detect PCP list allocations and interactions with the zoned
free_area and mount the attack reliably.

D. Higher order slabs

In the Linux kernel, the Per-CPU-Pageset optimization was
originally used for order-0 pages only. However, a 2021
patch by Mel Gorman enabled their use also for higher order
pages [57]. At the time of writing, every page whose order is
less than PAGE_ALLOC_COSTLY_ORDER = 3 allocates from
PCP lists. SLUB caches mainly request page orders ranging
from O to 3, thereby often using PCP lists. In our experiments,
only one cache, namely 9p-fcall-cache-1, requires pages
with an order greater than 3. In this edge case, PCPLOST
should remain an effective approach after a few necessary
adjustments. The major challenge is related to the side channel.
On code paths bypassing PCP lists, attackers are interested
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in two different kernel events: (i) Simple allocations from
the free_area and (ii) Higher-order page splits from the
free_area. Distinguishing these two events would allow
implementing an attack similar to PCPLOST. However, the
two events occur in the same kernel function, and differ only
by few machine instructions. Nevertheless, an attacker may
employ techniques to amplify the timing disparity between
these two events [20, 58, 59] to achieve a robust side channel
in this context.

E. PSPRAY massaging applicability

The PSPRAY [14] massaging technique is an in-cache mem-
ory massaging designed to improve the overall reliability of
kernel exploits and to bypass SLAB_FREELIST_RANDOM [23].
This approach targets both spatial and temporal vulnerabilities.
Let us use NNy as the number of objects per slab in the
target cache. For OOB vulnerabilities, PSPRAY bypasses
SLAB_FREELIST_RANDOM by detecting a new page alloca-
tion via a timing side-channel and allocating N, — 1 target
objects. This leaves a free slot for the vulnerable object
allocation, knowing that it will be surrounded by target ob-
jects. For UAF and DF vulnerabilities, PSPRAY bypasses
SLAB_FREELIST_RANDOM by detecting a page allocation and
allocating the vulnerable object (alongside additional objects),
which is then immediately freed. Subsequently, it allocates
the target object, ensuring its placement in the slot previously
occupied by the vulnerable object, where control is maintained
through a dangling pointer.

While the PSPRAY technique is effective for in-cache mas-
saging against SLAB_FREELIST_RANDOM, it is not applicable
to cross-cache OOB attacks. Specifically, corruption occurs in
a separate slab within a different cache. Consequently, target
objects are allocated independently, and no guarantee exists
that a vulnerable object will precede a target object, which
is essential for the effective exploitation. For this reason, we
propose a different SLAB_FREELIST_RANDOM bypass method
(Section V-C2).

VII. CONCLUSION

This work introduces PCPLOST, a cross-cache memory
massaging technique within the Linux kernel. By strategically
exploiting the page split feature of the Page Frame Allocator,
PCPLOST establishes a contiguous cross-cache layout favor-
able for exploiting out-of-bounds (OOB) vulnerabilities in the
SLUB allocator. This massaging is made practical by using a
timing side-channel that allows to detect interactions between
SLUB, PCP lists and free_area, revealing their state. By em-
ploying a “pivoting” strategy, we expand the attack surface to
include temporal vulnerabilities, significantly broadening the
applicability of our technique. We evaluate PCPLOST success
rate over the frequently used generic caches (kmalloc—x),
reaching a high reliability (over 90% in most cases), and apply
our technique on real-world CVEs. The significant efficacy of
our approach suggests that current mitigation strategies are
inadequate to provide comprehensive protection against cross-
cache attacks within the Linux kernel.



ETHICS CONSIDERATIONS

PCPLOST is a heap massaging technique that can only be
used by attackers together with a memory safety vulnerability
targeting the kernel heap. We do not disclose any such new
memory safety vulnerability in this paper, therefore systems
are not immediately put at risk by this work. Nevertheless, we
are in discussion with Linux kernel developers regarding PC-
PLOST, including regarding possible mitigations. As part of
the NDSS Artifact evaluation, we commit to making available
artifacts developed for this paper upon acceptance, including
tooling developed for measuring PCPLOST reliability, our
detailed benchmark data, and the corresponding kernel images.
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APPENDIX A
THE SLUB ALLOCATOR

This section provides further details on the SLUB Alloca-
tor’s internal workings. In SLUB, generic caches differ based
on the size of the objects they accommodate. Their object
size also influences the number of pages used to allocate one
slab to store such objects. The more we go towards higher
object sizes, the smaller the number of objects per slab and
the higher the page order. Table V shows the object size in
bytes, the number of objects per slab and the page order for
each generic cache (and accounted counterparts) in the Linux
kernel.

When requesting pages of orders greater than 0, slabs
allocate contiguous page-sized chunks. Indeed, slabs are sets
of contiguous memory pages provided by the Page Frame
Allocator. The strategy of allocating contiguous pages for slabs
allows to exploit data locality on the hardware cache level.
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Generic cache Object size (bytes) Objects per slab  Page order
kmalloc-(cg-)8 8 512 0
kmalloc—-(cg-)16 16 256 0
kmalloc-(cg-) 32 32 128 0
kmalloc-(cg-) 64 64 64 0
kmalloc-(cg—) 96 96 42 0
kmalloc-(cg-)128 128 32 0
kmalloc—-(cg—-)192 192 21 0
kmalloc-(cg-)256 256 32 1
kmalloc-(cg-) 512 512 32 2
kmalloc—-(cg-)1lk 1024 32 3
kmalloc-(cg-) 2k 2048 16 3
kmalloc-(cg-) 4k 4096 8 3

TABLE V: The capacity of generic caches (accounted and
non-accounted) varies with object size, resulting in different
numbers of objects per slab and page orders. The data was
obtained from experiments conducted on a 12-core machine.

PCP list order batch value

0 63> 0=163
1 63>1=231
2 63> 2=15
3 63>3="7

TABLE VI: The value of batch when varying the page order.
According to the table above, a base_batch value of 63
determines the computation of the final batch (computed as
max (base_batch >> order, 2)). The data was obtained
from experiments conducted on a 12-core machine.

APPENDIX B
THE PAGE FRAME ALLOCATOR

As discussed in Section II-B, the Page Frame Allocator has
an optimization called Per-CPU-Pageset (PCP) to provide a
per-CPU page allocation pool to serve requests locally to the
CPU-core. These per-CPU lists store free pages for each order,
up to PAGE_ALLOC_COSTLY_ORDER 3. When exhausted,
PCP lists allocate (reserve) pages from the zoned free_area,
according to a value called batch (see Section II-B for further
details). Table VI shows the value of batch for each page
order supported by the Per-CPU-Pageset optimization.

APPENDIX C
ADDITIONAL DETAILS ON THE EVALUATION

A. PCP list side-channel

Cache Order False positives False negatives
PCP list allocations

kmalloc-256 1 6.60% 0.06%
kmalloc-2k 3 17.84% 0.22%
kmalloc-1k 3 18.34% 0.08%
kmalloc—-4k 3 19.42% 0.48%
free_area allocations

kmalloc-256 1 50.0% 0.01%
kmalloc-2k 3 25.50% 0.14%
kmalloc-1k 3 30.0% 0.01%
kmalloc—-4k 3 23.90% 0.39%

TABLE VII: False positive and false negative rates for two
events (PCP list and free_area allocations) across caches.
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This section provides further details on the evaluation
strategy employed to assess the feasibility of the timing side-
channel in the context of the Page Frame Allocator’s PCP
lists and free_area. Figure 3 in Section IV-A illustrates the
timing values of generic kmem-caches using histograms.

The timing distributions for “timing objects” allocations
show the same trend suggested by previous work [9, 14].
However, we highlight that the same side-channel strategy can
be used to infer two further page allocation events: interactions
with PCP lists (fast page allocation path) and allocations from
the free_area (slow page allocation path). Table VII shows
the false positive/negative rates for our side-channel. Combin-
ing the two different thresholds to differentiate between the
two events with the double measurement described in Section
IV-D, our side-channel yields substantial massaging reliability
in almost all cases (see Section V and Appendix C-B).

To collect the timings of objects and categorize their
allocations, we utilize a custom kernel module to allocate
kmalloc-x objects and obtain their addresses. Therefore,
from a user-space program, we measure the clock cycles
required to allocate timing objects (through rdtsc) and then
perform a persistent object allocation, retrieving the allocated
address. Given the nature of “timing objects” and their im-
mediate freeing, the object slot allocated for the persistent
object is the same as that used for the timing object, due to
the LIFO nature of SLUB free-lists. We leverage ftrace to
observe kernel allocations and cross-reference the allocation
type (according to the object virtual address) with the time
observed from the user-space program.

B. Massaging success rate

Extended experiments (Table VIII, Table IX, Table X) were
conducted across both bare-metal and virtualized environ-
ments. For the virtualized setup, x86-based evaluations utilized
a 64-bit QEMU virtual machine configured with 12 CPU cores
and 32 GB of RAM, running Debian trixie/sid and Ubuntu
jammy 22.04, each with Linux kernel version 6.8. ARM-
based experiments were carried out on an ARM QEMU virtual
machine provisioned with 8 CPU cores and 8 GB of RAM.
To evaluate the feasibility of PCPLOST in a non-virtualized
context, we additionally deployed our strategy on a bare-metal
machine equipped with an AMD Ryzen 7 CPU (16 cores) and
16 GB of RAM.

C. SLAB VIRTUAL overhead evaluation

This section presents the performance overhead introduced
by SLAB_VIRTUAL with guard pages (SLAB_VIRTUAL_GP).
While its publicly available patch [26] does not use guard
pages, the new version of SLAB_VIRTUAL deployed in
Google’s kernelCTF [56] platform reserves a virtual page —
without a corresponding physical frame — around each virtual
slab, effectively acting as a guard page. The detailed overhead
evaluation of SLAB_VIRTUAL_GP using the LMBench suite is
summarized in Table XI.



Vulnerable cache

Target cache

Success rate

Adjacency only

Adjacency + object alignment

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Avg. (%) 95%-CI Avg. (%) 95%-CI Avg. (%) 95%-Cl Avg. (%) 95%-CI Avg. (%) 95%-CI Avg. (%) 95%-CI
kmalloc-1k  kmalloc-2k 995  (97.2299.91)  100.0  (98.11,100) 770 (70.79.82.29) 1000  (98.11,100) 99.5 (97.22,99.91) 81.0 (75,85.83)
kmalloc-1k  kmalloc-4k 995  (97.2299.91)  100.0  (98.11,100) 75.0  (69.09.80.94) 1000  (98.11,100) 100.0 (98.11,100) 770 (70.69.82.29)
kmalloc-2k  kmalloc-1k 995  (97.2299.91)  93.5  (89.19.96.16)  76.0  (69.6381.39)  97.0  (93.6198.62)  97.0  (0.936198.61)  76.0  (69.62.81.39)
kmalloc-2k  kmalloc-4k 995  (97.2299.91)  100.0  (98.11,100) 83.0  (T7.1887.57) 1000  (98.11,100) 99.5 (97.22,99.91) 840  (78.28,88.43)
kmalloc-4k  kmalloc-1k 885  (83.33,9221) 840  (38.438843) 8843  (88.43.88.43)  83.0  (88.43.88.43) 8843  (88.4388.43) 66.0  (88.43,88.43)
kmalloc-4k  kmalloc-2k  97.5  (94.2898.92) 935  (88.438843)  78.0  (88.4388.43)  93.0  (88.43.88.43) 920 (88.43,88.43) 8843  (88.4388.43)

(a) Massaging evaluated on ARM64 QEMU machine.

Experiments run for this evaluation involve less samples:
massaging executions per run, as opposed to Table II where we perform 40 QEMU runs and 20 massaging executions per run.

10 QEMU runs and 5

Vulnerable cache

Target cache

Success rate

Adjacency only

Adjacency + object alignment

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Avg. (%) 95%-CI Avg. (%) 95%-CI Avg. (%) 95%-CI Avg. (%) 95%-CI Avg. (%) 95%-CI Avg. (%) 95%-CI
kmalloc-1lk kmalloc-2k 100.0 (96.30,100) 100.0 (96.30,100) 100 (96.30,100) 100 (96.30,100) 100 (96.30,100) 100 (96.30,100)
kmalloc-1k kmalloc-4k 100.0 (96.30,100) 100.0 (96.30,100) 100 (96.30,100) 100 (96.30,100) 100 (96.30,100) 100 (96.30,100)
kmalloc-2k kmalloc-1k 100.0 (96.30,100) 100.0 (96.30,100) 100 (96.30,100) 100 (96.30,100) 100 (96.30,100) 100 (96.30,100)
kmalloc-2k kmalloc-4k 100.0 (96.30,100) 100.0 (96.30,100) 100 (96.30,100) 100 (96.30,100) 100 (96.30,100) 100 (96.30,100)
kmalloc-4k kmalloc-1k 100.0 (96.30,100) 100.0 (96.30,100) 100 (96.30,100) 100 (96.30,100) 100 (96.30,100) 100 (96.30,100)
kmalloc-4k kmalloc-2k 100.0 (96.30,100) 100.0 (96.30,100) 100 (96.30,100) 100 (96.30,100) 100 (96.30,100) 100 (96.30,100)

(b) Massaging evaluated on a AMD bare-metal machine with 16 GB of RAM. Experiments run for this evaluation involve less samples: 10
machine runs and 10 massaging executions per run, as opposed to Table II where we perform 40 QEMU runs and 20 massaging executions

per run.

TABLE VIII: Same-order massaging (n, = n;) for order-3 caches, under different settings; SLAB_VIRTUAL disabled.

Vulnerable cache

Target cache

Success rate

Adjacency only

Adjacency + object alignment

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Avg. (%) 95%-CI Avg. (%) 95%-CI Avg. (%) 95%-Cl Avg. (%) 95%-Cl Avg. (%) 95%-CI Avg. (%) 95%-CI
kmalloc-1k  kmalloc-2k 1000  (99.05,100)  99.50  (98.19,99.86)  99.75  (98.60,99.95)  99.75  (98.60,99.95)  99.0  (97.46,99. 99.50  (98.19,99.86)
kmalloc-1k  kmalloc-4k  100.0  (99.05,100) 1000 (99.05,100)  99.75  (98.60,99.95)  100.0  (99.05,100) 1000 (99.05,100) 1000  (99.05,100)
kmalloc-1k  kmalloc-8k  100.0  (99.05,100) 1000 (99.05,100)  99.75  (98.60,99.95)  100.0  (99.05,100) 100.0  (99.05,100) 99.0  (97.46,99.61)
kmalloc-2k  kmalloc-1k 9875  (97.11,99.46)  95.25  (92.70,96.94)  9O7.5  (95.46,98.64)  99.75  (98.60,90.95)  92.50  (89.49,94.70) 985  (96.77,99.31)
kmalloc—2k  kmalloc—4k 1000  (99.05,100) 1000 (99.05,100) 99.0  (97.46,99.61)  100.0  (99.05,100) 1000 (99.05,100) 9950  (98.19,99.86)
kmalloc-2k  kmalloc-8k  100.0  (99.05,100) 1000 (99.05,100) 99.0  (97.46,99.61) 1000  (99.05,100) 1000 (99.05,100) 9950  (98.19,99.86)
kmalloc-dk  kmalloc-lk 9250  (89.49,04.70)  79.25  (75.01,82.94) 9125  (88.07,93.64) 9425  (9152,96.14) 850  (SL17,88.16) 925  (89.49,94.70)
kmalloc-4k  kmalloc-2k 980  (96.10,98.98) 910  (87.79,93.43)  97.50  (95.46,98.64)  98.0  (96.10,98.98)  92.75  (89.78,94.90)  96.75  (94.52,98.09)
kmalloc-4k  kmalloc-8k  100.0  (99.05,100) 1000 (99.05,100) 99.0  (97.46,99.61) 1000  (99.05,100) 1000 (99.05,100)  99.25  (97.82,99.74)

(a) Order-3 caches.

Vulnerable cache

Target cache

Success rate

Adjacency only

Adjacency + object alignment

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Avg. (%) 95%-CI Avg. (%) 95%-C1 Avg. (%) 95%-CI Ave. (%) 95%-CI Avg. (%) 95%-CI Avg. (%) 95%-CI
kmalloc-8 kmalloc-16 98.75  (97.11,99.46)  99.25  (97.82,99.74) 925  (89.49,9470)  97.25  (95.14,98.46) 985  (96.77,99.31)  91.0
kmalloc-8 kmalloc-32 9825  (96.43,99.15)  97.25  (95.14,98.46)  91.0  (87.79,93.43)  96.75  (94.52,98.09)  99.50  (98.19,99.86)  93.5
kmalloc-8 kmalloc-64 98.25  (96.43,99.15)  98.5  (96.77,99.31)  91.25  (88.07,93.64)  97.75  (95.78,98.81)  98.0  (96.10,98.98)  90.0
kmalloc-8 kmalloc-96 98.0  (96.10,98.98)  99.25  (97.82,99.74)  92.75  (89.78,94.90)  98.0  (96.10,98.98) 9825  ( 5 9L5
kmalloc-8 kmalloc-128  97.5  (95.46,98.64)  99.0  (97.46,99.61) 9125  (88.07,93.64)  98.25 .15)  99.25 (97 $2,9974) 9275
kmalloc-8 kmalloc-192  98.25  (96.43,99.15)  99.50  (98.19,99.86) 935  (90.64,95.52)  98.50 31) 9825 (96, 15) 9225
kmalloc-16  kmalloc-8 99.25  (97.82,99.74)  99.25  (97.82,99.74) (93.30,97.33)  98.75 46) 985 (96.77,99.31)  94.75
kmalloc-16  kmalloc-32 985  (96.77,99.31)  98.75  (97.11,99.46) (91.81,96.34)  99.50 ) 980 (96 10,98.98)  97.0
kmalloc-16  kmalloc—64 9950  (98.19,99.86)  99.50  (98.19,99.86) 30,97.33) 9 ) 9950 (€ 6)  97.25
kmalloc-16  kmalloc-96 99.0  (97.46,99.61)  98.75  (97.11,99.46) 52,96.13) 9 ) 9925 (97, ) 9425
kmalloc-16  kmalloc-128  98.75  (97.11,99.46)  98.0  (96.10,98.98) (95.46,98.64)  98.75 46) 9875 (9T.11,99.46)  95.25
kmalloc-16  kmalloc-192 980  (96.10,98.98)  98.25  (96.43,99.15) (95.14,98.46)  99.50 86) 980 (96.10,98.98)  94.0
kmalloc-32  kmalloc-8 99.25  (97.82,99.74)  99.75  (98.60,99.95) (96.43,99.15)  99.25 74)  99.75 (98 60,99.95)  99.0
kmalloc-32  kmalloc-16 99.75  (98.60, 99.25  (97.82,99.74) (96.77,99.31)  99.25 74) 9975 (€ 95)  98.75
kmalloc-32  kmalloc—64 99.50  (98.19, 99.25  (97.82,99.74) (96.10,98.98) 9 .95)  99.25 (97, 74) 9875
kmalloc-32  kmalloc-96 99.75  (98.60,99. 9;) 99.50  (98.19,99.86) (97.11,99.46)  99.50 86) 9975 (98.60,99.95)  99.0
kmalloc-32  kmalloc-128  99.75  (98.60,99.95)  99.50  (98.19,99.86) (98.19,99.86)  99.0 61)  100.0 (99.05,100)  98.25
kmalloc-32  kmalloc-192  99.75  (98.60,99.95)  99.25  (97.82,99.74) (96.43,99.15)  99.50 5)  99.0  (97.46,99.61)
kmalloc-64  kmalloc-8 99.25  (97.82,99.74)  95.75  (93.30,97.33) (96.10,98.98)  99.0 1) 970 (94.83,98.27)
kmalloc-64  kmalloc-16 97.25  (95.14,98.46)  97.5  (95.46,98.64) (94.83,98.27)  99.50 ) 97.25  (95.14,98.46)
kmalloc-64  kmalloc—32 96.5  (94.21,97.90)  97.75  (95.78,98.81) (94.83,98.27)  99.25 ) 980 (96 10,98.98)
kmalloc-64  kmalloc-96 99.25  (97.82,99.74)  98.25  (96.43,99.15) (94.21,97.90)  100.0 (99.05,100) 9825 (96.43,99.15)
kmalloc-64  kmalloc-128  97.25  (95.14,98.46)  96.0  (93.60,97.52) (93.60,97.52)  100.0 (99.05,100) 9650  (94.21,97.90)
kmalloc-64  kmalloc-192  97.50  (95.46,98.64)  97.75  (95.78,98.81) (94.83,98. 27) 9950  (98.19,99.86)  98.50 (96 77,99.31)
kmalloc-96  kmalloc-8 9850  (96.77,99.31)  98.0  (96.10,98.98) (90.64,95.52)  98.0  (96.10,98.98)  99.0  ( )
kmalloc-96  kmalloc-16 98.75  (97.11,99.46)  97.50  (95.46,98.64) (89.21,94.49)  99.50  (98.19,99.86)  98.0 (¢ )
kmalloc-96  kmalloc-32 98.25  (96.43,99.15)  98.0  (96.10,98.98) (88.92,94.28) 9 (9711,99.46) 975 (95.46,98.64)
kmalloc-96  kmalloc-64 99.25  (97.82,99.74)  98.0  (96.10,98.98) (85.64,94.06)  99.25  (97.82,99.74)  97.75  (95.78,98.81)
kmalloc-96  kmalloc-128  99.0  (97.46,99.61)  98.75  (97.11,99.46) (88.36,93.85)  97.75  (95.78,98.82)  98.75  (97.11,99.46)
kmalloc-96  kmalloc-192  98.75  (97.11,99.46)  98.75  (97.11,99.46) (80.78,94.90)  99.25  (97.82,99.74)  97.75  (95.78,98.82)
kmalloc-128 kmalloc-8 100.0 (99.05,100) 100.0 99.05, 100) (98.60,99.95)  100.0 (99.05,100) 100.0 (99.05,100)
kmalloc-128 kmalloc-16 99.75  (98.60,99.95)  99.50  (98.19,99.86) (98.60,99.95)  99.50  (98.19,99.86)  99.75

kmalloc-128 kmalloc-32 100.0 (99.05,100) 99.0  (97.46,99.61) (97.82,99.74)  99.75  (98.60,99.95)  98.75

kmalloc-128 kmalloc-64 99.75  (98.60,99.95)  99.0  (97.46,99. 61) (J' 11,90.46) 9975 (98.60,99.95)  98.0

kmalloc-128 kmalloc-96 100.0 (99.05,100) 97.0  (94.83,98.2 ,99.15)  100.0 (99.05,100)  97.75

kmalloc-128 kmalloc-192  100.0 (99.05,100) 99.25  (97.82,99. 74) (9@ 143/9915)  99.50 98.75

kmalloc-192 kmalloc-8 97.25  (95.14,98.46)  98.75  (97.11,99.46) (77.94,85.45)  100.0 99.0

kmalloc-192 kmalloc-16 95.5 (92.0,97.13) 99.0  (97.46,99.61) (86.95,92.78)  97.25 99.50

kmalloc-192  kmalloc-32 96,25  (93.90,97.71)  98.25  (96.43,99.15) 890  (35.55,91.70)  96.25 98.25

kmalloc-192 kmalloc-64 9525  (92.70,96.94)  98.25  (96.43,99.15)  89.0  (85.55,91.70)  95.25 98.25

kmalloc-192 kmalloc-96 9525  (9270,96.94) 9725  (95.14,98.46)  89.5  (36.11,92.14)  97.5 97.0

kmalloc-192 kmalloc-128  98.75  (97.11,99.46)  98.25  (96.43,99.15)  86.5  (82.80,80.50)  92.75 98.5

(b) Order-0 caches.

TABLE IX: Same-order massaging (n,, = n;); SLAB_VIRTUAL disabled. In this case, we consider all kmem-caches, yielding a
more comprehensive evaluation. Table IXa presents the success rate for order-3 caches, while Table IXb presents the success
rate for order-0 caches. Experiments run for this more extensive evaluation involve less samples: 20 QEMU runs and 20
massaging executions per run, as opposed to Table I where we perform 40 QEMU runs and 20 massaging executions per run.
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(a) Same-order massaging (n, = n¢); SLAB_VIRTUAL enabled. The experimental results show that the massaging reliability remains
comparable to Table II (SLAB_VIRTUAL disabled) in Section V.

Vulnerable cache

Target cache

Success rate

Adjacency only

Adjacency + object alignment

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Avg. (%) 95%-C1 Avg. (%) 95%-C1 Avg. (%) 95%-CI Avg. (%) 95%-CI Avg. (%) 95%-CI Avg. (%) 95%-CI
kmalloc-16  kmalloc-64 99.87  (99.29,99.98)  100.0 (99.52, mn) 99.87  (99.29,99.98)  99.75  (99.09,99.93)  99.87  (99.29,99.98)  100.0 (99.52,100)
kmalloc-16  kmalloc-128  100.0 (99.52,100) 99.87 29 100.0 (99.52,100) 100.0 (99.52,100) 100.0 (99.52,100) 100.0 (99.52,100)
kmalloc-64  kmalloc-16 100.0 (99.52,100) 99.87 99.87 (99 zJ uu 98)  99.87  (99.20,99.98)  99.62  (98.90,99.87)  99.87  (99.29,99.98)
kmalloc-64  kmalloc-128  100.0 (39 52,100)  99.875 99.75 100.0 100.0 (93 52,100) 100.0 (99 52, lUO)
kmalloc-128 kmalloc-16 100.0 99.75 98.87 100.0 99.87  (99.29,99.98)  99.125 57)
kmalloc-128 kmalloc-64 99.87 . 9875 (¢ 99.75 100.0 99.25  (98.37,99.65)  99.25 a. )
kmalloc-2k  kmalloc—4k 100.0 (9 100.0 (99,52, 100) 0875 (97.71,9932)  100.0 100.0 (99.52,100) 98.0 6)
kmalloc-4k  kmalloc-2k 98.37 (97 21 90 0;) 89.87  (87.59,91.78)  97.25  (95.87,98.18)  98.87 90.75  (88.54,92.57)  96.75 (9; 28,97.77)

Vulnerable cache

Target cache

Success rate

Adjacency only

Adjacency + object alignment

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Avg. (%) 95%-C1 Avg. (%) 95%-C1 Avg. (%) 95%-Cl Avg. (%) 95%-Cl Avg. (%) 95%-Cl Avg. (%) 95%-Cl
kmalloc-2k  kmalloc-16 100.0 98.87  (97.87,99.41)  98.62 3)  99.87  (99.20,99.98)  98.87 98.62
kmalloc-2k  kmalloc-64 99.87 99.12  (98.20,99.57)  99.75 3)  99.87 9.98)  99.0 99.75
kmalloc-2k  kmalloc-128  99.87 9.95)  98.62  (9755,99.23) 9937  (985499.73) 9987  (99.20,99.98)  99.12 99.75
kmalloc-4k  kmalloc-16 9937 (98.54,99.73) 9712 (95.72,98.08)  9S.87  (97.87,99.41)  99.87  (99.20,99.98)  97.87 98.87
kmalloc-4k  kmalloc-64 9937  (98.54,99.73)  97.12  (95.72,98.08)  99.37  (98.54,99.73) 9950  (98.72,99.80)  97.12 99.0
kmalloc-4k  kmalloc-128  99.75  (99.09,99.93)  96.87  (95.43,97.87) 9950  (98.72,99.80)  99.50  (98.72,99.80)  96.75 99.37

(b) Cross-order massaging (n, > n:); SLAB_VIRTUAL enabled. The experimental results

comparable to Table II (SLAB_VIRTUAL disabled) in Section V.

show that the massaging reliability remains

Vulnerable cache

Target cache

Success rate

Adjacency only

Adjacency + object alignment

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Idle (CPU pinning)

Idle (No CPU pinning)

Noise (CPU pinning)

Avg. (%) 95%-Cl Avg. (%) 95%-CI Avg. (%) 95%-CI Ave. (%) 95%-CI Avg. (%) 95%-CI Avg. (%) 95%-CI
kmalloc-512 kmalloc-2k 3164 (20.15,34.24) 828 (6.89,9.92) 4508 (42.37,47.81) 3336 (30.83,35.99)  8.28 (6.89,9.92) 44.37
kmalloc-512 kmalloc-4k 2851 (26.11,31.05) 742 ) 4273 (40.05,45.46)  23.98  (21.72,26.40)  7.89 (6.54,9.50) 43.12
kmalloc-256 kmalloc-2k 2226 (20.07,24.62)  8.83 2219 (20.00,24.54) 20187 (19.70,24.22)  9.92 (8.40,11.68)  22.58
kmalloc-256 kmalloc—4k 2133 (19.17,23.66)  10.00 23.90  (21.65,26.32)  20.78  (18.65,23.10)  9.84 (8.33,11.60)  22.81
kmalloc-256 kmalloc-512 4562  (4291,4836) 1930  (17.23,2155) 4703  (4431,4977) 3242  (2091.35.03) 1992  (17.82,2220) 4484

(c) Cross-order massaging (n, < n:); SLAB_VIRTUAL disabled. The success rate drops significantly in this case for reasons described in
Section IV-C. Vulnerable caches with n, = 0 are omitted as their success rate is negligible.

TABLE X: Success rate for the cross-cache massaging. Table Xa and Table Xb show the PCPLOST success rate for, respectively,
the same-order (n,, = n;) and cross-order (n, > n;) cases with SLAB_VIRTUAL enabled. Table Xc, instead, presents the success

rate for the cross-order massaging with n, < n; and SLAB_VIRTUAL disabled.

TABLE XI: Overhead and speedup of SLAB_VIRTUAL_GP across, respectively, latency and bandwidth benchmarks from the
LMBench suite. Benchmark results (30 runs) were obtained on a bare-metal AMD system equipped with 16 cores and 16 GB
of RAM.

Latency Bandwidth

Benchmark Overhead  Benchmark Speedup
Simple syscall —1.01%  AF_UNIX sock stream 1.92%
Simple read 2.57% Pipe —0.92%
Simple write 0.17% File /var/tmp/XXX write —1.18%
Simple stat 0.40% Socket using localhost 0.91%
Simple fstat —0.32%  read —15.83%
Simple open/close 2.36% read open2close —15.86%
Select on 10 fd’s —2.46%  Mmap read 0.49%
Select on 100 fd’s 0.12% Mmap read open2close —8.89%
Select on 250 fd’s 0.12% libc beopy unaligned —1.60%
Select on 500 fd’s —2.80% libc beopy aligned —1.59%
Select on 10 tcp fd’s 0.11% Memory bzero —0.25%
Select on 100 tcp fd’s —2.50%  unrolled bcopy unaligned —7.35%
Select on 250 tcp fd’s —0.29%  unrolled partial bcopy unaligned —6.56%
Select on 500 tcp fd’s —1.04%  Memory read 0.18%
Signal handler installation —1.11%  Memory partial read —1.06%
Signal handler overhead —0.42%  Memory write —3.95%
Protection fault 7.79% Memory partial write —0.30%
Pipe latency 1.03% Memory partial read/write 0.15%
AF_UNIX sock stream latency 3.27%

Process fork+exit 3.51%

Process fork+execve 0.99%

Process fork+/bin/sh 2.48%

TCP latency using localhost 0.72%

UDP latency using localhost 0.27%

TCP/IP connection cost to localhost 9.37%

Geomean 0.90% Geomean —3.58%
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APPENDIX D
ARTIFACT APPENDIX

This appendix provides a self-contained guide for setting
up, executing, and validating the artifact accompanying our

paper.

A. Description & Requirements

1) How to access: The artifact is publicly available on
Zenodo [60].

2) Hardware dependencies: This section outlines the min-
imum hardware specifications required to successfully run the
artifact and reproduce the experimental results.

« Machine: A standard commodity x86_64 laptop or
workstation.

o« CPU: Minimum of 8 cores to match the QEMU instance
used in our experiments.

o« Memory: At least 16 GB of RAM to ensure stable
execution of the virtual machines.

e Storage: A minimum of 5 GB of free disk space
is required to store the Docker image and temporary
evaluation artifacts.

3) Software dependencies: This section outlines the soft-
ware environment required to run the artifact.

o Operating system: A Linux-based host system is rec-
ommended. The artifact was tested on Ubuntu 22.04
(Jammy) with kernel version 5.15.0-140-generic.

o Programs: To extract and build the containerized envi-
ronment, the following dependencies are required for the

host:

- GNU Make — tested with version 4.3
(x86_64—pc-linux—gnu).

— Docker — tested with version 27.5.1 (build

27.5.1-0ubuntu3~22.04.2).

— GNU GCC — tested with version 11.4.0.

— GNU tar and zstd — tested with versions 1.34 and
1.4.8, respectively.

Any reasonably recent version of these tools should work
as well.

4) Benchmarks: None.

B. Artifact Installation & Configuration

To set up the environment for artifact evaluation, reviewers
should select a target directory and place the provided archive
file in it. Extract the contents using:

$ tar —-xf ndss26ae-fall-paper66-
submission_packaged_artifact.zst

After extraction, navigate to the resulting directory:
$ cd pcplost-artifact—-evaluation

Once in the root directory, build the Docker container by
running:

S make
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In addition to creating the container, the provided Makefile
also compiles the user-space programs responsible for imple-
menting the massaging technique (pcplost_massaging.c)
and for collecting timing data for the side-channel
(pcplost_timing.c).

From this point, the evaluation process can begin following
the instructions provided in the accompanying documentation.

C. Experiment Workflow

All experiments be executed
the main script directory located
pcplost-artifact-evaluation/artifacts/scripts,
once inside the Docker container. Upon test execution
completion, reviewers may occasionally encounter issues with
terminal autocompletion. To mitigate this, we recommend the
following workflow:

from
at

can

1) Run the desired experiment from within the container.

2) Exit the container using exit or Ctrl+D.

3) From the host system, navigate to the root directory
(pcplost-artifact-evaluation) and reconnect to
the container using make connect.

4) Once reconnected, results can be inspected in the /tmp
directory inside the container.

D. Major Claims

e (C1): The PCPLOST massaging technique achieves high
reliability (exceeding 90% in most cases) against generic
kmem-caches in the same-order scenario on a Linux
kernel without experimental mitigations. This claim is
substantiated by experiment (E1), with results reported
in Table II, case n, = n; (Section V-A).

(C2): The PCPLOST massaging technique maintains high
reliability (exceeding 90% in most cases) against generic
kmem-caches in the same-order scenario on a Linux
kernel with the experimental SLAB_VIRTUAL mitigation.
This claim is validated by experiment (E2), with results
presented in Table Xa (Appendix C).

(C3): The PCPLOST massaging technique achieves high
reliability (around 90% under idle load) against generic
kmem-caches in the cross-order scenario on a Linux kernel
without experimental mitigations. This claim is supported
by experiment (E3), with results shown in Table II, case
n, > n; (Section V-A).

(C4): The side-channel used by PCPLOST can detect
three kernel-level events: object allocations, page allo-
cations from the PCP list and page allocations from the
free_area. This claim is supported by experiment (E4),
with results shown in Figure 3.

E. Evaluation

a) Experimental Scope and Scaling: To improve repro-
ducibility and reduce runtime during artifact evaluation, we
scaled down the number of QEMU and attack runs per session.
Specifically, we use 10 QEMU runs and 5 attack runs per
QEMU session, compared to 20 QEMU runs and 20 attack



runs in the original experiments. While this reduction may
slightly affect average values and confidence intervals, the
results remain representative and statistically meaningful.

b) Core Experiments (EI-E3) [20 human-minutes +
12 compute-hours]: The following experiments are exe-
cuted via the massaging_evaluation script located in
artifacts/scripts. The entry point is the start script,
located in the same directory. Running this script performs
three core evaluations:

o (E1): Reliability of PCPLOST same-order massaging
against generic kmem-caches (vanilla kernel). Results are
reported in Table I, case n, = ny.

e (E2): Same as (El), but with the SLAB_VIRTUAL mit-
igation enabled. Results are shown in Table VI.LA (Ap-
pendix).

o (E3): Reliability of PCPLOST cross-order massaging
(ny > ny) against generic kmem-caches (vanilla kernel).
Results are reported in Table I, case n, > n;.

[Preparation]

Ensure Docker is installed and the user is part of the

docker group.

From the pcplost-artifact-evaluation directory,

run make to build the container environment.

If KVM is not available on the host, comment out

the —cpu host and -accel kvm lines in the QEMU

scripts located in artifacts/scripts. This however
will affect the final results.

[Execution]
o Enter the Docker container and execute:
$ ./start

e This command runs all three experiments (E1-E3) se-
quentially.

[Results]

o Results are stored in the /tmp/csv_results directory.
Each file is timestamped and named according to the
experiment:

- (El):
attack_eval_order0O_vanilla_partial.csv

— (E2): attack_eval_order0O_slabvirt.csv

— (E3): attack_eval_crossorder_vanilla.csv

o Success rates are expressed as decimal values (e.g., 0.73).
Refer to Tables I and VI.A for percentage representations.

c) Experiment E4 [25 human-minutes + 1 compute-
hour]: This experiment evaluates the feasibility of a side-
channel attack targeting SLUB-related kernel allocations, us-
ing system call timing as the observation vector. It is exe-
cuted via the side_channel_evaluation script located in
artifacts/scripts, with measure as the main entry point.

o (E4): Side-channel measurement of allocation behavior in
the Linux kernel. The timing-based channel distinguishes
between three types of allocation events:
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1) Object allocation from SLUB caches.

2) Page allocation from the per-CPU page (PCP) lists.

3) Page allocation from the free_area (buddy allocator).
[Preparation]
Ensure Docker is installed and the current user belongs
to the docker group.
From the pcplost-artifact-evaluation directory,
run make to build the container environment.
If KVM is not available on the host, comment out
the —-cpu host and -accel kvm lines in the QEMU
scripts located in artifacts/scripts. This however
will affect the final results.

[Execution]
« Enter the Docker container and execute:

$

./measure

This command launches a fresh QEMU instance and
collects timing measurements, using the execution time
of system calls as observation vector. These timing mea-
surements are then linked to data coming from ftrace,
to later categorize the allocation type (with the observed

timing).

[Results]

e Results are stored in the /tmp/timing_results
directory. Each file is named according to
the cache being evaluated. @ For  example,
auto-plotting-kmalloc-2k.csv contains

timing data for the kmalloc-2k cache.

Measurements are reported in clock cycles. To validate
the side-channel, the average timing differences between
allocation types should be significant:

— Object vs. PCP list page: typically a few hundred
cycles.

— PCP list page vs. free_area page: similarly distin-
guishable.

The measure script prints the median and average clock

cycle values for each allocation category, facilitating

direct comparison.

An appropriately structured output would be a CSV file

containing timing data for all three allocation types —

object, PCP list and buddy — with each type’s timing

clearly distinguishable from the others based on differ-

ences in clock cycles.

F. Notes

E3 results can vary depending on hardware characteristics
and may yield lower success rates (e.g., around 50%) for
some cache pairs. To achieve higher reliability, the free_area
threshold parameter used by the side-channel needs to be tuned
for the specific configuration, using the timing measurement
script. The resulting number can be used as FREE_AREA_THR
in artifacts/pcplost/lib/timing_utils.h. On some
machines, this number can require further manual modifica-
tion.
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