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ABSTRACT

Roughly four decades ago, Taher ElGamal put forward what is
today one of the most widely known and best understood public key
encryption schemes. ElGamal encryption has been used in many
different contexts, chiefly among them by the OpenPGP standard.
Despite its simplicity, or perhaps because of it, in reality there is a
large degree of ambiguity on several key aspects of the cipher. Each
library in the OpenPGP ecosystem seems to have implemented a
slightly different “flavour” of ElGamal encryption. While —taken in
isolation- each implementation may be secure, we reveal that in the
interoperable world of OpenPGP, unforeseen cross-configuration
attacks become possible. Concretely, we propose different such
attacks and show their practical efficacy by recovering plaintexts
and even secret keys.
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1 INTRODUCTION

The ElGamal cryptosystem [14] is one of the oldest and best-known
public key encryption schemes. In the 80’s and 90’s it earned wide
adoption for being simultaneously efficient and patent-free. Its most
prominent use is arguably as part of OpenPGP [12], a standard
aimed to promote consumable, interoperable email security, where
it has been the default and most popular encryption option for
decades [30]. While the change in patent status of RSA encryption
slightly reduced its popularity, at the time of writing, still at least 1
in 6 registered OpenPGP keys have an ElGamal subkey [3], with
about a 1,000 new registrations per year.

The ElGamal scheme builds on elegant mathematical structures
and can be defined very compactly. This simplicity, together with
the opportunity to mature for roughly four decades now, suggests
that a crisp specification with clear parameter choices, rules, and
algorithms would be present in international standards, in partic-
ular in OpenPGP. Surprisingly, this turns out not to be the case:
our research reveals that OpenPGP’s understanding of EIGamal
encryption is open to interpretation, with several choices subject
to the discretion of the implementer.

In this article we consider cross-configuration attacks on OpenPGP.

Such attacks emerge when different interpretations (‘configura-
tions’) of the same standard interact insecurely with each other. To-
wards identifying such conditions for ElGamal encryption, we need
to first understand the universe of OpenPGP interpretations that
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are used in practice. We approach this challenge from various an-
gles: we carefully study RFC4880 [12] which defines OpenPGP, we
inspect the source code of three relevant OpenPGP-implementing
software libraries (the Go standard library, Crypto++, and gcrypt),
and we conduct a large-scale examination of millions of keys regis-
tered on OpenPGP key servers.

Our results reveal an insecure posture. For instance, we develop
and prototype a plaintext recovery attack that can be mounted
on ciphertexts produced by the ubiquitous GNU Privacy Guard
(and other implementations, e.g. Crypto++) against keys generated
following the original ElGamal specification [14]. The attack is
effective against 2048 bit keys, which are considered secure at the
time of writing. Our OpenPGP key server analysis reveals that more
than 2,000 OpenPGP users are currently exposed.! We further illus-
trate how cross-configuration attacks can be combined with known
side-channel exploitation techniques like FLUSH+RELOAD [38] or
PRIME+PROBE [33]. One of our targets is the ElGamal implementa-
tion of gcrypt, the cryptographic library used by the GNU Privacy
Guard. Interestingly, gcrypt has already been fixed twice after sem-
inal work [21, 38] on side-channel attacks identified weaknesses.
Concretely, by conducting an end-to-end attack we show that if a
2048 bit ElGamal key generated by Crypto++ is used by gcrypt to
decrypt a ciphertext, then an attacker that is OS- or VM-colocated
with the decrypter can fully recover the decryption key.

Given that interoperability is the explicit and almost exclusive
goal of any standardization effort, and commonplace in the OpenPGP
world, we conclude that our attack conditions are as realistic as
the attack results awakening. Our research is timely since a new
version of the OpenPGP standard is currently being discussed [18];
we hope that our findings will influence that discussion.

This manuscript is organised as follows: In Section 2 we survey
(a) the meaningful options available when implementing ElGa-
mal encryption, (b) the options adopted by the Go, Crypto++, and
gerypt libraries, and (c) the options picked by over 800,000 users
in practice (as far as reflected on key server databases); we also
report on further interesting findings from our key server crawl. In
Section 3 we recall various standard algorithms for solving discrete
logarithms. In Section 4 we describe “vanilla” cross-configuration
attacks, and in Section 5 we describe those combined with side-
channel attacks. In Section 6 we conduct end-to-end exploits and
describe how we bring in the required side-channel information.
We conclude in Section 7.

1.1 Related Work

Since ElGamal encryption was first proposed [14], research efforts
were both steered towards formally confirming its security (e.g. via
reductions to the DDH problem [34]) and to shed light on its insecu-
rities (e.g. when used in its textbook form [10]). CVE-2018-6829 [2]

!We found that at most a small fraction of ElGamal keys is formed according to the
original specification of [14]; otherwise, more OpenPGP users would be affected.
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and CVE-2018-6594 [1] highlight corresponding issues in one of the
libraries that we investigate (gcrypt). However, OpenPGP employs
ElGamal encryption exclusively for key transport to achieve hybrid
encryption, and in this case the attacks do not seem to apply. To the
best of our knowledge, our work is the first to challenge the security
of ElGamal encryption in the specific way OpenPGP builds and
relies on it. (Early versions of OpenPGP also relied on the known
to be insecure ElGamal signatures [9]; the weaknesses of the latter
do not suggest weaknesses of ElGamal encryption.)

Several works on OpenPGP focus on Web of Trust aspects [7,
13, 35], on OpenPGP’s use of other cryptographic primitives such
as modes of operation of symmetric ciphers [25, 27], or on the
security of passphrases protecting keyrings [24]. An analysis of
keys collected from OpenPGP servers was performed in [30]. In
contrast to our work (see Section 2), [30] does not distinguish
between different flavours of ElGamal parameters and keys.

Modular exponentiation has been the subject of extensive re-
search to protect it from side-channel attacks [4, 15, 17, 23]. Specif-
ically cache-based attacks have been explored extensively, using
various techniques such as EVICT+TIME [8], PRIME+PROBE [33]
or FLUSH+RELOAD [6, 38]. These techniques attempt to observe
the micro-architectural traces left by the execution of sensitive cryp-
tographic operation to obtain knowledge about the secret inputs
thereto. For example, if a branch instruction is conditional to a se-
cret bit, that bit may be learned if the attacker observes whether the
instructions at the target or the fallthrough are present in the cache.
Presence or absence from the cache is observed through measur-
ables such as execution time, which is faster if the instructions are
cached or slower otherwise. Similar considerations can be made for
memory areas that are accessed at secret-dependent offsets: in this
case, an attacker may learn whether a specific location was accessed
by measuring access time to cache elements whose addresses are
congruent to the target location. Yarom and Falkner [38] in partic-
ular target the gcrypt implementation of modular exponentiation
which at the time was using square-and-multiply. Prompted by that
work, the implementation was significantly revised. The changes
are however not sufficient to protect against the attack we present
in Section 5. Most cache-based side-channel attacks target L1 or L2.
However, Liu et al. [21] show that exploitation based on last-level
cache is possible for attacks targeting both data and instructions.
The work also targets the gcrypt implementation of modular ex-
ponentiation and the library has also been fixed to avoid leaking
table accesses. Once again however, this is not sufficient to prevent
the attack described in Section 5. Other works present alternative
cache side-channels (FLUSH+FLUSH [16], S$A [5]) which may be
used to perform a practical exploitation of the attacks.

2 ELGAMAL ENCRYPTION

One of the earliest proposals to construct public key encryption is
by Taher ElGamal [14]. As a first approximation, the construction
is as follows.

@ GENERIC ELGAMAL ENCRYPTION. Let G be a (multiplicatively
written) group and g € G a generator. To create a key pair (sk, pk),
pick a random integer x, compute the group element X = g*, and
output (sk, pk) := (x, X). Given pk, to encrypt a message M, pick an
ephemeral random integer y, compute the group elements Y = g¥
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and Z = XY = ¢g*Y, and output C = (C1,C2) = (Y,M - Z) as the
ciphertext. Given sk, to decrypt C, first recover group element Z
from C;j by computing Z = Y* = ¢g¥* and then use Cy, Z to recover
M=C/Z.

The ElGamal encryption scheme, as described above, is not yet
fully specified. To complete the specification, the following details
have to be fixed: Which group G shall be used? How is generator g
chosen, and shall it generate the full group G or just a subgroup?
From which sets are exponents x, y picked, and according to which
distributions? Multiple configurations for these parameters are pos-
sible and promise to lead to correct and secure public key encryption
instances.

In the following we describe four such configurations that have
in common that G is a ‘prime field group’, that is, the multiplicative
group Z; = (Z/pZ)* of a field Z/pZ where p is a large prime
number (also referred to as the modulus). In such cases the order
of G is given by ord(G) = p — 1 and the order of any subgroup
G’ € Gis an integer divisor of p — 1.

@ CONFIGURATION A: “THE ORIGINAL”. In the original proposal
of ElGamal [14], generator g is chosen such that it generates the full
group, i.e., cyclically generates a total of p — 1 elements. Further, the
exponents x, y are picked uniformly at random from the interval
[1..p — 1]. The only condition on p that is formulated in [14] is
that p — 1 have at least one large prime factor. This is to sufficiently
weaken the impact of the Pohlig-Hellman algorithm [28] so that it
remains infeasible to compute discrete logarithms in G. See Appen-
dix A for the recommendations in terms of size of p and of its large
prime factor.

Note that if keys are generated according to Configuration A,
then any element in G could become a public key. However, some
of these public keys would have a considerably lower multiplicative
order than others and thus promise less security. To see this, con-
sider that picking the secret key x = (p — 1)/2, i.e., the public key
X = ¢P~1/2 = _1 leads to Z € {+1,—1} for any y, meaning that
encrypted messages are easy to recover from their ciphertexts. In
general, if the indications of [14] are followed verbatim, many more
similarly weak low-order public keys exist. This can be prevented
by restricting the ElGamal group operations to a subgroup G’ ¢ G
such that G’ has prime order. Indeed, if G’ = (g) has prime order,
then all elements generated by g necessarily have the same order
as g (with the one exception of the neutral element which is easily
avoided or tested for).

Letp—1=qo - - - qn be the prime factor decomposition of ord(G).
As p is a large prime number and hence odd, we know that one of
these prime factors is 2, and we hence w.l.o.g. write p—1 = 2q1 - - - qn.
Now, for any prime g = g; in this list of factors there exists a
subgroup G’ € G of order g. The idea of using such groups G’ in
cryptography goes back to Schnorr [31].

@ CONFIGURATION B: “ELGAMAL OVER SCHNORR GROUPS”. Pick
a large prime group order g and a prime modulus p such that
q | (p — 1), choose a generator y with (y) = G and let g = y(P~1/q
and G’ = (g). Note that this implies ord(G") = q. Pick exponents
X,y in the interval [1.. g — 1]. Note that the condition on p (at least
one large prime factor) is already satisfied by the choice of p and q.

Note that Configuration B not only removes the described issues
related to small subgroups, but it also allows for more efficient
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implementations than Configuration A. This is so because the ex-
ponents x, y are now picked from the interval [1.. g — 1] instead
of the typically much larger interval [1..p — 1], which in general
leads to a significant efficiency gain for exponentiation operations.

A further advantage achieved by Configuration B is that the
prime-order subgroup setting is considerably easier tractable in
the framework of provable security. Indeed, virtually all textbook
formalizations of the ElGamal-related DDH problem assume prime-
order groups and would not be sufficient to make a formal statement
about the security of Configuration A.

The small subgroup issues removed by Configuration B are rel-
evant when ElGamal is operated according to specification, i.e.,
in attack settings that involve only passive adversaries. If we also
admit active adversaries, then additional issues arise:2 Consider a
communication flow between two honest parties and assume an ac-
tive adversary that intercepts a ciphertext C = (C1,C2) = (Y, M- Z)
and re-injects it as C’ = (Cy, C;) = (=Cy, C2). When decrypting C’,
the receiver will compute value Z’ = (-Y)* = (-1)*Y* = (-1)*Z
and use it to recover message M’ = C;/Z’ = (M-Z)/(-1)* /Z. Note
that if x is an even number then the decryption succeeds with the
correct message M’ = M, while if x is an odd number then the
decryption results in a wrong message M’ # M. As parties will
react differently to correct (meaningful) and incorrect (effectively
random) messages, more often than not it is observable from the
outside whether a decryption is successful or not, and in such cases
the ciphertext manipulation leaks one bit of the secret key x to the
adversary.

The following generalization of the attack can be used to leak
more than a single bit of the secret key. It is based on the observa-
tion that for any t with ¢ | (p — 1) there exists a group element a
of order t, i.e., with @ = 1and 1 ¢ {a,a?,...,a’"!}. Fix such a
pair (¢, @), let C = (C1,C2) be an honestly generated ciphertext as
above, and assume an adversary that intercepts C and re-injects
itas C' = (C{,C}) = (aCy, alCy), where h € [1..t]. When pro-
cessing C’, the decrypter will obtain the message M’ = C,/Z" =
(ahCZ)/(axCi‘) = a"*M.Note that M’ = Miffa" * = 1iff h = x
(mod t), while otherwise M’ # M. That is, by testing whether the
injected ciphertext C” properly decrypts, the adversary can confirm
or refute a guess on x (mod t). Recovering x (mod t1), x (mod t3),
... for carefully picked values t1, 2, . . . allows recovering the full
exponent x via the Chinese Remainder Theorem. Note that for each
t-value the adversary has to request up to t decryptions, so that
small t-values are a precondition for the attack to be effective.

To prevent the attack, two countermeasures are immediate: one
is to ensure that the number of distinct integer divisors t of p — 1 is
very small, while the other is to arrange that all admissible t-values
are very large. Configurations C and D formalize these ideas; the
techniques can be traced back to Pollard [29] and Lim and Lee [20],
respectively.

@ CONFIGURATION C: “ELGAMAL OVER SAFE PRIMES”. This is a
refinement of Configuration B where the number of prime factors
of p — 1 is reduced to the minimum and thus prime numbers p, q

21t is well-known that ElGamal encryption is malleable and thus not IND-CCA secure.
However, our analysis here is not concerned with indistinguishability but key recovery.
3 A third countermeasure is to explicitly ascertain the order of ciphertext component cy,
i, to refuse decrypting C” if (C])? # 1. This however would require an additional
exponentiation.

have almost the same size: Pick a large prime group order q and a
prime modulus p such that p — 1 = 2q, choose a generator y with
(y) = Gandlet g = y?~1/9 = y2 and G’ = (g). Choose exponents
X,y in the interval [1..q — 1].

Note that, in this configuration, choosing g = 4 = (+2)? is always
feasible, leading to a reduced public key size when compared to
Configuration B. On the other hand, exponents x, y became large
again, which negatively impacts exponentiation performance. In
practice, some implementations hence work with ‘short exponents’
despite the group order g being considerably larger.

@ CONFIGURATION D: “ELGAMAL OVER LiM-LEE PRIMES”. This is
a refinement of Configuration B where all prime factors of (p —1)/2
are chosen to be of roughly the same size: Pick a prime modulus p
such that if p — 1 = 2q; - - - g, is a prime factorization and we let
q = q1 then for all ¢; € {q2,...,qn} we have ¢g; = ¢; in particular,
computing discrete logarithms shall be hard modulo all factors of
(p — 1)/2. Given such a setting, choose a generator y with (y) =G
and let g = y(P_l)/q and G’ = (g). Choose exponents x, y in the
interval [1..q — 1].

Note that both Configurations C and D effectively protect against
small subgroup attacks in active attack settings, but while Configu-
ration C allows for smaller public keys, Configuration D promises
more efficient exponentiations. When building (or standardizing)
a secure system from scratch, it seems advisable to use one of
these two options. Unfortunately, as we will see next, the OpenPGP
standard does not give the same suggestion.

2.1 ElGamal in OpenPGP

A widely-deployed cryptography standard that suggests using, and
mandates implementing, ElGamal encryption is OpenPGP. While its
first version was put forward in 1998 as RFC2440, the latest official
version appeared in 2007 and is formalized in RFC4880 [12]. Given
the unclarity over what is actually meant by ElGamal encryption,
we analyse the RFC4880 document with respect to the precise
understanding of ElGamal encryption that it assumes or conveys,
paying special attention to the details connected to parameter and
key generation, and to the encryption and decryption operations.

In [12, Sect. 9.1], two references to where to find specifications
of the ElGamal encryption algorithms are given. The one is to
ElGamal’s original paper [14], and the other is to the Handbook
of Applied Cryptography [22]. We note that the latter has two
specifications of ElGamal encryption: [22, Sect. 8.4.1] describes the
original scheme from [14], and [22, Sect. 8.4.2] describes a fully
generic version that can be instantiated over any cyclic group. We
conclude that the setting that Sect. 9.1 of RFC4880 describes is
precisely what we refer to as “Configuration A”.

Sects. 5.1 and 5.5.2 and 5.5.3 of [12] define how ElGamal cipher-
texts, public keys, and secret keys, respectively, must be represented
as binary strings, but add nothing to the picture that RFC4880 con-
veys of ElGamal encryption. As these are the only technical state-
ments that RFC4880 makes on ElGamal encryption, we conclude
that, while the standard is precise with the formatting of keys and
ciphertexts, it does not go beyond a bare interpretation of [14] when
it comes to how keys and randomnesses are meant to be picked and
how key generation, encryption, and decryption are supposed to
be conducted.
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ElGamal in OpenPGP libraries. This motivates us to look at the
way OpenPGP libraries interpret the standard. Here are our findings
on three of the most popular ones:

Go Go does not provide code to generate ElGamal keys; it only
provides algorithms to encrypt and decrypt. The ephemeral
exponent y used in encryption is chosen from [0..p — 1].
This is fully conform with RFC4880.

Crypto++ The Crypto++ library follows Configuration C by gen-
erating a random safe prime and choosing for the generator
the smallest quadratic residue. It however deviates from Con-
figuration C by picking both exponents x and y from a short

interval [1 .2 [2'4 "ln(")z_sJ ], where n = [log,(p)]. For
convenience, we tabulate the upper bound in Appendix A.
As the group generator is not primitive, this setting is in
conflict with RFC4880.

gerypt The gerypt library generates a Lim-Lee modulus like in
Configuration D; the minimum size of the prime factors
qil(p — 1) is determined by a hard-coded table with entries
very close to the upper bound in the Crypto++ case above.
Unlike in Configuration D, the generator is chosen to be the
smallest integer generating the full group Z;. Both expo-
nents x and y are sampled from short intervals of size roughly
q3/ 2. We give the exact sizes for g;, x and y in Appendix A.
Due to the short exponents, this setting is in conflict with
RFC4880.

ElGamal parameters in the wild. To get a complete picture of
the use of ElIGamal in OpenPGP, it is not sufficient to look at the
prominent open-source libraries. Indeed a large portion of the user
base relies on proprietary or exotic implementations, which are
impossible to track. To address these, we look at the OpenPGP keys
registered on public key servers. We analyse an OpenPGP server
dump [3] produced on Jan 15, 2021 containing 2,721,869 keys, out
of which 835,144 contain ElGamal subkeys.

An OpenPGP ElGamal public key consists of the triplet (p, g, X).
This information alone is not sufficient to ascribe the key to one
configuration with certainty, however partial information can be
deduced by attempting to factor p — 1. For example, safe primes are
easily recognized by running a primality test on (p — 1)/2, then a
quadratic residuosity test reveals whether g generates the prime
order subgroup or the full group. For random primes of the sizes
we look at, it is in general infeasible to obtain a full factorization of
p — 1, however partial factorizations and residuosity tests let us at
least formulate credible hypotheses on the key generation process.

To classify public keys, we conducted trial division on p — 1
with primes up to 223, then repeatedly applied the elliptic curve
factorisation method (ECM) [19], until we felt guilty for the carbon
emissions. Then we applied n-th residuosity tests to g for the factors
we found. We did not attempt to gain information on the exponent
x that defines X = g*. Our findings are as follows:

® 69.4% use safe primes: 12.8% match Configuration C, while
55.6% use a quadratic non-residue for g. Surprisingly, only
16 primes account for all but 237 of these keys, and only 4 ac-
count for all but 1,493, indicating a lion’s share of “standard”
safe primes.
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e For 25.3% of the moduli we could prove that (p — 1)/2 is not
prime, but we could find no factor, likely pointing to Lim-Lee
primes. For all but 47 keys g fails all residuosity tests, which
would be consistent with gcrypt’s key generation.

e There is a small share (5.0%) of “quasi-safe primes”, i.e.,
primes of the form p = Q - ¢ + 1 where ¢ is an unusually
large prime (0.988 times the size of p on average) and Q > 2,
which suggests that ¢ was chosen before p. Only 21 of these
keys use a generator of the group of order g and are thus
consistent with Configuration B; the rest is either consistent
with Configuration A, or with none.

e Finally there are only 2,158 moduli for which we found non-
trivial factors, but we were not able to finish the factorization,
indicating that they were either chosen at random, or like
in Configuration B. Looking at the order of g, only 30 are
consistent with Configuration B, the rest being either consis-
tent with Configuration A, or none. These would almost be
irrelevant if it wasn’t for the attack we describe in Section 4.

3 COMPUTING DISCRETE LOGARITHMS

In the next sections we will need to solve discrete logarithms given
partial knowledge of the exponent. We review here the necessary
algorithms. In what follows we let g be a group generator of order
N, and we let X = g* be the element of which we seek the discrete
logarithm.

Pollard’s Rho algorithm [29] is the most efficient generic al-
gorithm to compute discrete logarithms. On average, it performs
v7N /2 group operations, and uses a constant amount of memory.
In [29], Pollard also introduced the lesser known Lambda method,
which performs better when it is known that x < B < N, requiring
only ~ 2VB group operations and O(log(B)) memory [37, §5.1].

When N = LM, we can compute x mod L by solving a discrete
logarithm in the group of order L generated by g™. The Pohlig-
Hellman algorithm [28] applies this to all prime factors of N, and
then recovers x via the Chinese Remainder Theorem (CRT).

We will combine all of these techniques in the case where N =
qo- - qn,andx < B. Assume qp < -+ < qp,andletQ =qo - - qn-1.
We first compute x mod g; for 0 < i < n using Pollard’s Rho, then
use the CRT to compute w := x mod Q. Thus ¢¥ = ¢?Q*" for
some unknown z < [B/Q]. Finally, we recover z as the discrete
logarithm of g¥ /g™ to base g9, using Pollard’s Lambda. The total
cost is O(+/qn—1 + \/JTQ) time and O(log(B/Q)) storage. We stress
that this is only better than Pohlig-Hellman when B < N.

This strategy was already used by van Oorschot and Wiener to
reduce the security of variants of Configuration A that use short
exponents for public keys [36]. We will use it, instead, to recover
ephemeral secrets in cross-configuration scenarios described in
Section 4.

In Section 5.4, we will need to solve discrete logarithm instances
where some non-adjacent bits of x are known. Neither the Rho
nor the Lambda method can take advantage of this information,
but the simpler baby-step/giant-step (BSGS) method [32] can. If x
has n unknown bits, BSGS performs 1.5 - 2n/2 group operations on
average, and stores 27/2 hash table entries. A linear time/memory
trade-off is possible in BSGS.
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However, as n becomes larger, BSGS has two important draw-
backs: it uses unrealistically large amounts of memory, and it par-
allelizes poorly. A better alternative is van Oorschot and Wiener’s
(vOW) parallel collision search applied to meet-in-the-middle al-
gorithms [37, §5.3], which is much more memory efficient, and
promises a linear parallel speed-up. Based on their analysis, vVOW
is expected to require 7 - 23n/4-m/2-1, group operations, where 2™
is the amount of storage available, counted as a number of hash
table entries, and subject to the constraint m < n/2.

4 CROSS-CONFIGURATION ATTACKS

The disagreements on the interpretation of the OpenPGP standard
may raise doubts on the interoperability between the libraries. For
instance, in an imaginary setting where the Crypto++ code is used
to generate a key pair, the Go code is used to encrypt a message to the
public key, and the gcrypt code is used to decrypt the ciphertext,
it has to be asked whether confidentiality is maintained. While
in a basic scenario these three libraries can, to the best of our
knowledge, in fact interoperate securely, we shall now see that
some choices made by Crypto++ and gcrypt prove to be fatal in a
broader context.

van Oorschot and Wiener [36] had already observed that, if: (1)
p — 1 contains enough small factors, and (2) g generates the full
group (e.g., in Configuration A), then using short exponents in
the public key X = ¢* can lead to key recovery, as described in
Section 3. As we have seen, Crypto++ uses safe primes, so it is not
at risk. Although gcrypt generates p — 1 with many distinct factors,
none of these is small, and it is thus also safe.

However, both Crypto++and gcrypt also use short exponents in
the ephemeral key Y = §¥. But the generator § is part of a public key
that may have been generated by a different library, possibly one
adhering to Configuration A. Our analysis of registered keys shows
that such public keys, albeit rare, do exist. This immediately leads
to a message recovery attack: given a ciphertext (§¥, M - §*Y), the
attacker finds y, uses the public key to compute §*Y, and recovers
the cleartext M.

To recap, whenever (1) the public key of the receiver defines a
generator g of a group containing “enough” small-order subgroups,
and (2) the sender uses short exponents in the ephemeral key, a
message intercepting attacker can decrypt any communication from
sender to receiver. The exact attack cost depends on the number
and the size of the small subgroups, which we analyze next.

Practical exploitation. Like in Section 3,1et N = qo - - qn =: Qqn
be the group order of a public key, with g, not necessarily prime.
Assume that ephemeral exponents for encryption are sampled from
a short interval [0, B[, with B < N. As we saw, the cost of recover-
ing the exponent depends on two factors: the largest divisor qp—1
of Q, and B/Q.

Note that, while Q and the g;’s depend on the receiver’s public
key, the bound B is set by the sender. To compare the relative risk
for several public keys, without taking a specific sender library into
account, it is best to look at the sizes of g,—1 and 1/Q: the first
number measures the maximum effort done by the Rho algorithm,
the latter measures an amount of effort “spared” by the Lambda
algorithm.
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120 4
100 A 10-2
80
60 - 1073

100 150 200 250 300

Bits learned

Figure 1: Normalized cumulative distribution function
®(A, p) of group orders N that contain a 2°-smooth factor Q
of at least A bits.

To quantify the threat, we look at these two quantities for those
groups in the OpenPGP key dump that contain small factors. None
of the moduli we called “quasi-safe” are seriously at risk, since Q
is too small. From the remaining 2,158 keys, we narrow down the
selection to those that had 2048 bits modulus, were not created
before 2016, and were not expired nor revoked, leaving us with
2,071 keys. Because we could not complete the factorization of any
of these, we can only state an upper bound on the cost of attacking
them, but it is entirely possible that some keys are much more
vulnerable than what our findings suggest.

In Figure 1 we plot the (normalized) cumulative counting func-
tion

®(Ap)=#{N=qo- " qn=0Qqn | qo,-...qn-1 <2°,Q > 2’1},

which counts, among the 2,071 keys, how many are exposed to
message recovery with a Rho effort at most 2°/24/7/2 and a Lambda
effort at most VB/24/271 Note that the factors of a single group
order can arranged in more than one way, and thus appear in more
than one bucket.

From ®(A, p) we obtain the number of keys for which message
recovery is possible with a given effort with respect to a given en-
crypting library. For example, we know that for moduli of 2048 bits
gerypt has y < 234 (see Appendix A): limiting both the Lambda
and the Rho efforts to roughly 24° modular multiplications, a com-
putation well within reach of a casual attacker, we find that there are
at least ®(344 — 80, 80) = 15 vulnerable keys. Even more concerning
is the case of Crypto++, which samples exponents in [1 .. 22%¢]: in
this case the number of weak keys goes up to ®(226 — 80, 80) > 231.
It is plausible that a state-level attacker could target as much as
d(344 — 140,140) > 83 (gcrypt) and $(226 — 140, 140) > 895
(Crypto++) keys.

To confirm the vulnerability we used GPG to encrypt a message
to the only key contributing to ®(344—-56, 59), expecting to complete
the attack using roughly 23° modular multiplications. We were able
to recover the plaintext in less than 2.5 hours on a single Intel
E5-2640 core clocked at 2.40GHz.



5 ATTACKS ENABLED BY SIDE-CHANNELS

The attack conditions exploited in Section 4 emerged from different
implementers coming up with different conceptual interpretations
of ElGamal encryption. In particular, the attacks did not depend on
implementation details. The current section specifically considers
issues connected with implementation weaknesses. While a couple
of our findings can quickly be recognized and comprehended as
negatively affecting security, for others it remains unclear, at first,
how they can be practically exploited. This is where, again, the
different interpretations of ElGamal encryption come into play.

A crucial component of an ElGamal implementation is the mod-
ular exponentiation routine. In this section we study the details
of the exponentiation routines of Go, Crypto++, and gcrypt, and
we find all three vulnerable to side-channel attacks. The attack
conditions in Go and Crypto++ are immediately identified when in-
specting (our pseudo-code versions of) the algorithms, and they can
be exploited with standard side-channel exploitation techniques
like cache timing analysis. The existence of the attack in Go is not
surprising, as comments in the code indicate that the authors are
aware of the weaknesses.

Attacking the gcrypt implementation is significantly more in-
volved as the authors of that code took explicit measures to prevent
side-channel leakage. By exploiting a condition that the authors
allegedly overlooked we present a key recovery attack that signifi-
cantly reduces the security margin of gcrypt. The attack is only
practically exploitable against gcrypt-generated keys with moduli
up to 1024 bits. However we show that the vulnerability is more
worrisome in an interoperability context where gcrypt decryp-
tion is used in combination with a Crypto++ key: in this case we
experimentally confirm a practical key recovery attack against a
non-negligible fraction of Crypto++ keys with 2048 bits modulus.

5.1 Exponentiation Algorithms

The task of an exponentiation algorithm (EA) is to compute R = B¥
given B and x, where base B is an element of a cyclic group and ex-
ponent x is a non-negative integer. As any two EAs implement pre-
cisely the same function (just possibly in a different way), the spe-
cific exponentiation method relied upon in a cryptographic library
can be freely chosen by the implementer. Many different EAs are
known and common, where fixed-window, comb-based, and sliding-
window exponentiation represent some classic options. These can
be seen as derived from the basic Square-and-Multiply algorithm
with the goal of improving its efficiency by intelligently grouping
together the bits of the exponent, precomputing small sets of fre-
quently used values, or similar. Some but not all details of the three
algorithms are relevant for our attacks. Thus, while referring to [22,
Sect. 14.6-7] for a systematic treatment, in this section we repro-
duce the algorithms’ inner mechanics only up to a suitable level
of abstraction. We start with formalizing two notions related to
exponent recoding. Both are defined with respect to a parameter w
(for ‘width’ or ‘window length’) that is typically instantiated such
that2 <w < 5.

An odd-digit representation (ODR) of a non-negative integer x
with respect to a parameter w is a sequence I = (y;, . . ., yo) such
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that

1
x = Zijj and Vj:yje{ou{1,3,...,2" -1} .
j=0

Independently of ODRs, a radix representation (RR) of a non-
negative integer x with respect to a parameter w is a sequence
T =(y,-..,Yyo) such that

1
x = Zzwjyj and Vj:yje{o,...,2¥ -1} .
j=0

The fixed-window, comb-based, and sliding-window methods
have in common that they consist of three phases: (1) an initializa-
tion phase in which some data that does not depend on the exponent
is (pre-)computed and tabulated; (2) an exponent encoding phase
in which an ODR or RR of the exponent is encoded into some data
structure;* and (3) a computation-intensive online phase in which
the results of (1) and (2) are combined. Exploiting that phases (1)
and (2) are independent of each other and thus concurrent, practi-
cal implementations in fact do not cleanly separate the phases but
interleave them for efficiency. The reproductions provided in this
article, however, separate the phases for readability.’

The three libraries analyzed and attacked in this article—Go,
Crypto++, and gcrypt—implement AE via the fixed-window, comb-
based, and sliding-window method, respectively. We dedicate the
Sections 5.2, 5.3, and 5.4 to individual treatments of their security.

5.2 Fixed-window Exponentiation

Exponentiations R < B¥ in Go® are computed, given a parame-
ter w, using a fixed-window algorithm by (1) precomputing and
tabulating a set of values that depend solely on w and base ele-
ment B;’ (2) encoding an RRT = (y, . . ., yo) of the exponent x into
a sequence (e, .. ., er) (the latter merely consists of relabelling the
coefficients); and (3) combining the results of (1) and (2) in an online
phase.

We provide a pseudo-code version of the crucial parts of Go’s
EA in Figure 2 (left), where lines 1-2 implement phase (1), lines 3-4
implement phase (2), and lines 5-14 implement phase (3). Note that
we outsource the derivation of the exponent encoding (ey, .. .,er),
i.e., the conversion of the exponent to the RR and the encoding of
the latter, to the function f,, invoked in line 4. The only properties
of this function that are relevant for our description and attack are
that the exponent x can be uniquely recovered from (e, . . ., er) and
that for all e; we have 0 < e; < 2". (For reference, we reproduce
the details of function f, in lines 45-51 of Figure 7 (top left), in
Appendix B.)

Given the above description, the computation steps indicated
in Figure 2 (left) should be self-explanatory. Note that lines 8-10

4If an ODR encoding is used, the values tabulated in Phase 1 are usually
Bl, B3, e, Bzw_l; if an RR encoding is used, the values tabulated in Phase 1 are
usually B, ..., B2"1,

5 At a high level, our attacks work independently of whether the phases are separated
or interleaved. Looking a bit closer reveals that the attacks actually work better if the
phases are interleaved, as it is the case in all practical implementations we are aware
of, as side-channel sensors can then be placed with higher precision.

®The code is available at https://github.com/golang/go/blob/e491c6ee/src/math/big/
nat.go#L1386-L1477

7In the Go implementation, the width parameter is hard-coded as w = 4.
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Go

Exponentiation R < BX
Parameterized by: w
Registers: T[0], ..., T[2¥ - 1], W

1 // Initialize TJ. . .]
2 For 0 < i < 2Y: T[i] « B!

Crypto++

Parameterized by: w
Registers: T[1], T[3],. ..

15 / Initialize T7. . .]

3 // Encode the exponent 17 // Encode the exponent

4 (e1,...,er) «— fu(x) 18 (e1,...,er) < fw(x)
5 // Main loop 19 / Main loop

6 Re—1 20 H— B

7 Fori« 1toL: 21 Fori <« 1to L:

8  // Square w times 22 Ife; #0:

9 Ifi#1,forje 1tow: 23 Tlei] « Tle;]-H
10 R«—R-R 24 He«H-H

11 // Multiply with Te;]
12 W« Tlei]

25 // Accumulate results

26 Re—1
13 ReR-W 27 Forodd 0 < i < 2V:
14 Return R 28 R« R-TJ[i]!
29 Return R

Exponentiation R < BX

T2 -11.H

16 Forodd 0 <i < 2Y:T[i] « 1

gerypt

Exponentiation R < B*
Parameterized by: w
Registers: T[1], T[3], . ..

30 / Initialize TJ...]
31 Forodd 0 < i < 2%: T[i] « B!

JT2Y -1 W

32 / Encode the exponent

33 (eg, c1, €15 - -, €L, €L, CL+1) < fuw(x)

34 // Main loop

35 R « B/ implicitly process ey = 1

36 Fori < 1toL:

37 // Square c; times, then multiply with T[e;]
38 Forje1toc;+1:

39 Securely W «— [ j <c¢; ?R : Tlei] ]

40 R—R-W

41 // Square cp 41 times
42 For j «— 1tocpy1:
43 R« R-R

44 Return R

Figure 2: Exponentiation routines of Go and Crypto++ and gcrypt. For the corresponding exponent encoders fy, (), see Figure 7. For

pointers to the original source code, see Footnotes 6 and 9 and 11.

compute R « R*", with the i # 1 condition in line 9 arranging
for a little speed-up in the very first iteration (in which R = 1 by
line 6).

The attack condition in Go’s EA is clearly visible in the pseudo-
code: If we assume that in each iteration of line 12 the table index e;
leaks to the adversary, then the latter can readily recover the ex-
ponent x. In Section 6.3 we show how to do this in practice. The
attack condition can be removed by implementing line 12 specif-
ically such that index e; is not leaked.® Notationally, in a secure
implementation we would specify line 12 as ‘Securely W « T[e;]’.

5.3 Comb-based Exponentiation

Exponentiations R < B* in Crypto++’ are computed, given a
parameter w, using a comb-based algorithm by (1) tabulating a set
of initial values that depend solely on w; (2) encoding an ODRT =
(v - - -, yo) of the exponent x into a sequence (eq, . . ., er.) (the latter
merely consists of relabelling the coefficients); and (3) combining
the results of (1) and (2) in an online phase.

We provide a pseudo-code version of the crucial parts of
Crypto++’s EA in Figure 2 (center), where lines 15-16 implement
phase (1), lines 17-18 implement phase (2), and lines 19-29 im-
plement phase (3). Note that we outsource the derivation of the
exponent encoding (ey, ..., er), i.e., the conversion of the expo-
nent to the ODR and the encoding of the latter, to the function f,,
invoked in line 18. The only properties of this function that are
relevant for our description and attack are that the exponent x

81f just this countermeasure is applied, the length of the encoding, which might convey
non-trivial information about the exponent, would still leak.

9The code is available at https://github.com/weidail1/cryptopp/blob/45de5c6c/algebra.
cpp#L.255-1314

can be uniquely recovered from (e, . .., er ) and that for all e; we

have e; € {0} U {1,3,...,2" — 1}. (For reference, we reproduce
the details of function f,, in lines 52-61 of Figure 7 (top right), in
Appendix B.)

Given the above description, the computation steps indicated in
Figure 2 (center) should be self-explanatory. (For further details on
the mechanics of comb-based exponentiation, see [22, Sect. 14].)

The attack condition in Crypto++’s EA is clearly visible in the
pseudo-code: If we assume that each execution of line 22 leaks to
the adversary whether the condition is fulfilled, and further each
execution of line 23 leaks the table index e; to the adversary, then
the latter can readily recover the exponent x. In Section 6 we expose
how to do this in practice.

Note that eliminating the attack condition is less immediate
than in Section 5.2. One promising option would be to introduce
an auxiliary (dummy) register T[0] (initialized in line 16 together
with the other registers), and to replace lines 22,23 by the single
instruction ‘Securely T[e;] < T[e;] - H’ that implements the table
accesses (read and write) and the multiplication without leaking
the index e;.1°

5.4 Sliding Window Exponentiation

Exponentiations R < B* in gcrypt!! are computed, given a pa-
rameter w, using a sliding-window algorithm by (1) precomputing
and tabulating a set of values that depend solely on w and base ele-
ment B; (2) encoding an ODRT = (yy, .. ., yo) of the exponent x into

107f just this countermeasure is applied, the length of the encoding, which might convey
non-trivial information about the exponent, would still leak.

"The code is available at https://github.com/gpg/libgerypt/blob/ccfa9f2c/mpi/mpi-
pow.c#L.393-1772
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https://github.com/gpg/libgcrypt/blob/ccfa9f2c/mpi/mpi-pow.c#L393-L772

a sequence (eg, c1, €1, €2, €2, . .., CL, €L, CcL+1); and (3) combining the
results of (1) and (2) in an online phase. The encoding in step (2)
requires that y; = 1 be the leading coefficient of I'? and is such
that the sub-sequence (e, €1, . . ., er) coincides with the support
()/j)j:yj;to of T (i.e., the set of non-zero elements; note here we have
eo = y; = 1, and for all e; we have ¢; € {1,3,...,2" — 1}), and the
values c1, ca, . . ., cp+1 correspond with the lengths of the vanish-
ing subsequences of T (i.e., the contiguous runs of zero elements).
Precisely, the encoding is such that

L
x = Z 2%e; where Vi:¢ =ciz1+...+cre1 - (1)
i=0

We provide a pseudo-code version of the crucial parts of gcrypt’s
EA in Figure 2 (right), where lines 30-31 implement phase (1),
lines 32-33 implement phase (2), and lines 34-44 implement phase (3).
The function f,, in line 33 computes the exponent encoding
(eg,c1,€1,C2,€2,...,¢1,er,cr+1) as follows: it sets g = 1 then
loops between: (a) advancing through the bit sequence of x (from
most to least significant bit) until it encounters a bit set to 1, and
(b) greedily outputting the largest possible pair (c;, e;) subject to
e; € {1,3,...,2"—1}. Wereproduce the pseudocode of function f,,
in lines 62-74 of Figure 7 (bottom), in Appendix B.

Given the above description, the code in Figure 2 (right) should
be mostly self-explanatory, with the exception of lines 37-40 which
require further explanation: The code is functionally equivalent
with ‘For j « 1to ¢;: R < R R’ (similarly to lines 41-43) followed
by ‘R « R - T[e;]’, but the implementation reduces side-channel
leakage by hiding for each multiplication whether the factor W is R
or T|e;], and, in the latter case, which index e; is used for the table
look-up.13 That is, in contrast with the cases of Go and Crypto++,
the EA of gcrypt is specifically designed to offer side-channel
resilience.

Despite its built-in protection measures, we identify a side-channel
condition in gcrypt’s EA that can lead to full exponent recovery.
(In Section 6.2 we demonstrate that the attack is indeed practi-
cally exploitable.) The root of the problem is that the algorithm
implements the sliding-window exponentiation method. Intuitively,
this method covers the digits of the bit-representation of the ex-
ponent x with a sequence of w-wide non-overlapping windows
such that every 1-bit of the exponent is covered by a window and
conditioned on this the number of windows is minimized. In Equa-
tion (1), value L corresponds with the number of windows used
for this, any coefficient ¢; corresponds with the position of the i-th
window, and any coeflicient e; encodes the w exponent bits that
the i-th window covers. In the EA implementation, processing a
window corresponds with a multiplication R < R - T[e;] while
bridging a gap between two windows corresponds with a sequence
of squaring operations R <— R - R. These operations are jointly
implemented in lines 39,40, and each iteration of the loop of line 36
processes one gap-window pair.

The approach of our side-channel attack is to closely monitor the
execution of line 36: The number of iterations of the loop during

2Every integer x > 1 has at least one, but often multiple, ODRs with leading coeffi-
cient 1. The gcrypt implementation cannot handle the x = 0 case.

13Precisely, line 39 implements the instruction “If j < ¢; then W <« R; else, if
j = ¢; + 1, then W « TJ[e;]” but ensures that it neither leaks which if-branch is
taken nor what the value of e; is.
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one exponentiation immediately reveals the encoding length L, and
the time taken for the i-th iteration is, by line 38, linear in ¢; + 1 and
thus leaks, one by one, the coefficients cq, . . ., et Finally, we can
recover coefficient cr.41 by similarly monitoring the loop of line 42.
That is, if (ep, c1,€1,...,cL,er,cr+1) = fw(x) is the encoding of
exponent x then our measurements reveal all the ¢; components
while, for now, the e; components remain hidden.

Before moving on to assessing the options for amplifying the
extracted information towards recovering the full exponent, let us
make a final observation on gcrypt’s EA. Recall that line 39 tries to
hide not only the table index e; but also whether the multiplication
in line 40 is with T[e;] or R. However, as our method recovers the
coefficients c¢; straightaway, and exclusively the last iteration of the
loop of line 38 will perform a multiplication with W = T[e;] (rather
than with W = R), line 39 de facto just hides the e; coefficients.
Thus, replacing lines 38-40 by the instructions ‘For j « 1 to ¢;:
R « R - R followed by ‘Securely R « R - T[e;]’ would result in
code that is equivalent from a security perspective yet simpler and
more efficient.> We thus conclude that the authors of gcrypt were

likely not aware of the fact that the coefficients cy, .. .,cp+1 leak
so easily.
Now that we retrieve copies of the coefficients ¢y, ..., cr+1, the

next subsections are dedicated to assessing the value of this infor-
mation towards an attack that recovers the full exponent.

5.4.1 Modelling the leakage. As a warm up, observe that when
w = 1 the coeflicients c¢; leak the whole exponent, indeed all e; are
necessarily equal to 1 in this case. For larger values of w, however,
a search over the possible values of e; is necessary. Our goal here
is to quantify this partial leakage.

Letting n + 1 = [log,(x + 1)] be the bit length of x, we start by
observing that n = }) ¢; and is thus fully known. The sequence
of ¢;’s indicates the position of each e; in the binary writing of
x, and from the description of f,, we know that e; is odd and
e; < min(2¥,2¢), leaving us with min(w, ¢;) — 1 unknown bits
in e;. Note that there is no ey, associated to ¢y .1, which indeed
leaks the number of trailing zeros of x. Thus, the total number of
unknown bits of x, which we shall call the entropy of x, is exactly

L
Hiy(x) = )" (min(ei, w) = 1). (2)
i=1

Given h, h* and the leakage for x, it the computational effort for
finding x grows exponentially with H,,(x). We will analyze this
cost precisely in Section 5.4.2. The value H,,(x) depends on x, on
the window size w, and on the algorithm f,, used for the encoding.
We are thus interested in estimating statistics on H,,(x) for secrets
x of n bits. To this end, we model the encoding function f,, as a
Markov process, and use standard theorems on Markov chains to
deduce statistics on H,,(x) as n — oo,

Model x as a continuous stream of independent and uniformly
distributed bits. For any fixed w, the leakage of the encoding f, is
described by a finite state machine outputting the per-coefficient

14This argument assumes that multiplications and squarings require uniform time.
This is the case for the gcrypt routines.

5The performance gain comes from the possibility of removing some of the decoy
code required for securely implementing line 39. For further details, see the source
code.
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Figure 3: Finite state machines describing f,, for w = 1 (left)
and w = 2 (right).

entropy min(w, ¢;) — 1 whenever it passes through a set of dis-
tinguished states. Figure 3 shows the machines for w = 1 and
w = 2. Circles represent ordinary states and squares represent
distinguished ones. Solid arrows represent a transition associated
to reading a bit of x, with the read bit indicated next to the arrow.
Dashed arrows represent transitions which happen without read-
ing any bit from x, so called e-transitions. The starting node is the
one on top, although that is irrelevant for the modeling. The state
machine moves from one state to another as it progresses through
the bits of x; when it encounters a distinguished state it outputs
the entropy value represented in the node, modeling the leakage of
a value c;. Both state machines in Figure 3 could be simplified, but
we prefer this larger presentation as it lends itself more easily to
generalization to any window size: a generalization of these state
machines to a value w has w2" states.

Before converting the state machine to a Markov chain, we first
need to get rid of the e-transitions, by replacing them with the
corresponding 0/1-transitions. This way, the number of states tra-
versed by the machine corresponds exactly to the bit length of the
input. We do not draw this replacement in Figure 3, as it would be
hardly readable.

Then, the state machine is converted to a Markov chain by forget-
ting the bit values and assigning probability 1/2 to each transition.
For w = 2, the transition matrix is

01100000
01000100
00011000
~101000100
2 01100000 |°
00000011
01000100
01100000

which has stationary distribution
(0 1/3 1/12 1/4 1/24 1/24 1/8 1/8).

Standard theorems on Markov chains [11] let us interpret the sta-
tionary distribution as the probability that the finite state machine
is found in each state at any given time, as n — oco. To compute the
average entropy H,,(x), it is thus sufficient to compute the inner
product of the stationary distribution and the vector H,, of the
entropy values output by the state machine, in this example

Hy=(0 0 0 0 1 0 1 1),

leading to a “per bit” average entropy of 7/24, i.e., Hy(x) = 7n/24
as n — oo, meaning that, given a uniformly sampled n + 1-bits
exponent and its leakage c1, . . ., cp+1, on average 7n/24 bits remain
to be found.

We can get even more precise information on the distribution of
H,,(x) using the Markov chain central limit theorem, which states
that given a sequence of random variables X1, X7, . .. representing

window width states U o?
2 8 7/24  0.058449
3 24 7/16  0.098632
4 64 341/640 0.126731
5 160  925/1536 0.145411

Table 1: Per bit statistics of the entropy H,,(x) as n — oo for
different values of the window width w.

the states of a Markov chain, assuming the distribution of X7, and
thus of any Xj, is the stationary distribution, and given a function
H assigning values to the states, the variable

L1
Hy = — ) H(X)
i=1

converges in distribution to a normal variate of mean p = H(X1)
and variance o2 /n, where

(o)

0% = var(H(X1)) + 2 ) | cov(H(X1). H(X141)).

i=1
as n — oo. This theorem thus approximates the distribution of
H(x)/n; put differently, it proves that as n — oo the entropy H(x)
tends to a normal variate of mean ny and variance no?.

The per bit variance cannot be computed exactly, but it is easily
estimated numerically: in the case w = 2 we get 6% = 0.058449.
Table 1 lists the values of ;1 and o2 for all weights between 2 and 5. Of
course, these asymptotic approximations only give a rough estimate
of the actual probability distribution of Hy,(x) for a given bit length
n; however they prove to be quite accurate in practice even for
small values of n, as the experiments in Figure 8 in appendix show.
Using these approximations, we will give rather precise estimates
of the computational effort needed to recover random secret keys
generated by gcrypt and other libraries.

5.4.2  Key recovery. To assess the practical impact of the leakage
of sliding window exponentiation exposed so far we need to look
into the exact parameters used by the various libraries. Recall that
gerypt uses short secret exponents, as detailed in Appendix A. The
window size used for exponentiation goes from 1 to 5, depending on
the bit size of the exponent.'® Table 2 summarizes the parameters
adopted by gcrypt for some common modulus sizes.

Based on gcrypt’s parameters, Table 2 also reports on the mean
leakage entropy H,,(x) as analyzed in Section 5.4.1. We can thus
compare the expected difficulty of recovering the secret exponent
via the leakage against the target difficulty of solving discrete loga-
rithms directly. gcrypt’s moduli are parameterized so that the best
algorithm for computing discrete logarithms is, indifferently, index
calculus in Zy, or Pollard’s Rho in the subgroup of largest prime
order gq. For simplicity, we use the cost of Pollard’s Rho, namely
\[7q/2, as our reference difficulty.!”

To exploit the leakage, we resort to vVOW parallel collision search
(see Section 3), which costs 7 - 23HW<X)/4_m/2_1HW(x) modular
multiplications, where 2™ is the amount of RAM available, counted

16See https://github.com/gpg/libgcrypt/blob/1a83df98/mpi/mpi-pow.c#L442-1451.
7Since in practice q is unknown to an attacker, this ignores the cost of factoring p — 1
first, but accounting for it would only make the side channel attack look better.
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lpl gl |x| w E(Hw(x)) Pollard vOW
1024 166 250 3 108.94 82.65 63.04
2048 226 340 4 180.62 113.15 114.77
4
4

3072 270 406 215.79  134.65 141.40

4096 306 460 244.56  152.65 163.16
Table 2: Group (|q|) and secret exponent (|x|) bit sizes, and
window size (w) used by gcrypt for each modulus size (|p|).
E(H,(x)) is the mean leakage entropy estimated using Ta-
ble 1. “Pollard” indicates the (base 2 log of the) expected run-
ning time of Pollard’s Rho algorithm in a group of size g, as
a number of modular multiplications. “vOW?” indicates the
expected running time of van Oorschot and Wiener’s algo-
rithm using a table of 2°° entries.

as a number of hash table entries (e.g., for [p| = 2048 an entry
occupies slightly more than 256 bytes). Both Pollard’s Rho and vOW
can be parallelized with a linear speed-up [37, §5.1-3], justifying
the comparison.

The last two columns of Table 2 report the base 2 logarithm
of the expected efforts of Pollard’s Rho, and of vOW assuming
a hash table with at most 2°° entries (note that even this “little”
memory is quite unrealistic). Comparing the columns, the leakage
of windowed exponentiation does not appear to be a serious threat
for the average gcrypt secret key. However this assessment is
deceiving on two accounts: (a) the standard deviation of H,,(x)
is rather large, and thus some keys will be much easier to break
than others; and (b) gcrypt is assumed to be secure even when it
operates on secret keys generated by a different library, as long as
these are valid OpenPGP keys. Some libraries, such as Crypto++,
generate secret exponents with as few as |g| bits, their keys are
thus easier targets.

Taking for reference the most commonly used modulus size
[p| = 2048, Crypto++ exponents are between 1 and 226 bits long,
and the window size used by gcrypt is at most w = 3, leading to an
average entropy of 98.0 bits. Worse still, more than one in 10, 000
keys is expected to have at most 80 bits of leakage entropy: for such
a small search space, vVOW is expected to only require 2°° modular
multiplications (roughly 235 Geycles in software) for a hash table of
2% entries (roughly 4 TiB). We thus conclude that attacking a non-
negligible proportion of Crypto++-generated public keys within
gcrypt’s decryption routine is well within reach of a moderately
resourceful adversary.'®

Proof of concept. To confirm the reality of the threat, without
going as far spending several thousands of dollars, we implement
a simple parallelized BSGS using GMP 6.1.2, and test it on a node
equipped with 20 Xeon E5-2640 cores clocked at 2.40GHz and 64GiB
of RAM. Due to memory contention the parallel speed-up is sublin-
ear, nevertheless we observe a speed-up slightly above 10X using
all 20 cores, thus justifying our preference for BSGS over the more
complex vOW algorithm which is marred by larger constants. Our
implementation uses hash table entries of 16 bytes, independently
of the modulus size; the node can thus accommodate for tables

18 At the time of writing, 8 Amazon EC2 rég.metal instances with 0.5 GiB of RAM
and 64 virtual CPUs each cost about 12,000$ per month.
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Figure 4: Running time of BSGS for increasing values of
the entropy Hy,(x), on our node equipped with 20 cores and
64GiB of RAM. The dashed line indicates extrapolated running
times. Also represented the cumulative distribution functions of
the normal distributions of parameters (225 - 7/16, 225 - 0.098632)
and (339 - 341/640, 339 - 0.126731), roughly corresponding to the
entropy distributions of Crypto++ and gcrypt for a modulus of
2048 bits.

with as many as 232 entries, ensuring the running time scales like
the square root of the entropy, up to 64 bits of entropy. Figure 4
plots the running time of BSGS for increasing values of Hyy(x),
and superimposes the cumulative distribution function of H,,(x)
for Crypto++ and gcrypt, indicating what percentage of keys is
broken in a given time. Since BSGS is deterministic, we use for
the benchmarks the exponent that is tested by BSGS last, thus the
expected running time for an average exponent of given entropy is
half the time reported in the figure.

As a final confirmation, we instrument the Crypto++ code to
generate random secret exponents in a tight loop, and output them
along with their leakage entropy. Over 2% samples, we obtained
a 226 bits exponent with 62 bits of leakage entropy. Our probing
strategy described in Section 6.2 produces the expected leakage
pattern, from which our BSGS code recovers the exponent in about
30 minutes using 20 cores.

6 PRACTICAL EXPLOITATION

In this section we prototype the attacks described in Section 5 to
show that practical exploitation is possible. The attacks are mounted
on a Core i7-8650U CPU with Ubuntu 18.04.5. We demonstrate how
FLUSH+RELOAD may be employed to extract leakage from the
sliding window modular exponentiation implementation of gcrypt
and use that to obtain full key recovery, as detailed in Section 5.4.
The exploitation of gcrypt presents interesting aspects for two
reasons: i) the library was patched to protect its modular exponenti-
ation routine against cache-based side channels attacks highlighted
by Yarom and Falkner [38] and by Liu et al. [21]; and ii) the attack
can be conducted on commodity hardware specifically owing to the
ElGamal interoperability issues highlighted in Section 2. We also
show how a PRIME+PROBE attack on data cache is able to reveal
the indices of the table accesses performed by the fixed window
modular exponentiation implementation of Go described in Sec-
tion 5.2. While the developers acknowledge that the implementation
is not safe, practical exploitation is still of interest as it reveals a few
caveats that we describe. Finally, we briefly discuss here the case of
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comb-based exponentiation seen in Crypto++ (see Section 5.3). The
algorithm presents a combination of the weaknesses that we exploit
for gcrypt and Go: with reference to Figure 2, secret-dependent
control flow at line 22 and secret-dependent table access at line 23.
Exploitation relies on the same techniques that we describe below.

6.1 Threat Model

We consider a victim process that uses a private key to decrypt
ElGamal ciphertexts. We assume that the attacker has knowledge of
the victim program and of the specific decryption algorithm that is
used. We also assume that the attacker may cause the victim process
to execute, for example because the victim uses a PGP-enabled
mail client which automatically decrypts emails upon reception.
Consequently, we assume that the attacker is able to synchronise
side channel measurements with the victim execution. No physical
access is required to perform the attacks. Given that we target cache
side channels, the attacker may either be local, or it may be running
on a different, co-located, VM. The former may target any cache
level, the latter may only target LLC (unless the VM is hyperthread-
colocated). The attack in Section 6.3 targets a Go binary, where
ASLR is disabled by default. As to the attack in Section 6.2, we make
use of FLUSH+RELOAD on shared (physical) data pages and so
ASLR has no impact. Wlog we conduct the exploitation against the
L1 cache: as shown by Liu et al. [21], the same exploitation may be
achieved against higher cache levels.

6.2 Sliding window: the case of gcrypt

Environment. We target the function _gcry_mpi_powm of the lat-
est version gcrypt shipped by Ubuntu 18.04.5 LTS. The function
implements the approach described in Figure 2. The implemen-
tation takes a few precautions against the attacker described in
Section 6.1 to avoid leaking sensitive data and instruction cache
accesses. In particular, it hides i) whether the operation at line 40
is a modular multiplication or squaring; and ii) whether, at line 39,
W is initialised with R or with an entry from table T (and in that
case, it also hides which position e; of the table is loaded). This
is accomplished by way of a conditional memcpy-like operations
(mpi_set_cond) that — depending on whether a flag argument is one
or zero — copies a source operand into a destination operand, or
leaves the destination operand unchanged. Masking is employed to
ensure that an attacker cannot learn the nature of the operation by
observing the control flow or changes to data or instruction cache.
Furthermore, the flag is set using branchless operations.

Despite these precautions, considerable leakage can still be ob-
tained by an attacker who can observe control flow dependent
cache perturbations: in particular, the full set of values ¢y, ...,cp
can be recovered by counting the number of iterations of the for
loop at line 38 for each of the iterations of the loop at line 36. The
attacker may obtain this information by monitoring the state of the
instruction cache line that contains code that is executed as part of
an iteration of the outer loop and not of the inner loop. In practice,
this can be achieved with the FLUSH+RELOAD side channel applied
on a line of the instruction cache that is executed once per outer
loop before the start of the inner one. The probe reveals when such
a cache line is executed, and the time between two probes would
depend on the execution time of the inner for loop. Crucially, the

latter depends on the set of values cy, . . ., cr, which would thus be
leaked. This strategy is applicable to the _gcry_mpi_powm function:
the implementation inlines the logic to determine the c¢; values
between the start of the first and the start of the second loop and
so it fills more than one cache line; the invocation of the multipli-
cation in the inner loop makes one iteration sufficiently long and
constant-time so that inter-probe timings measurably encode the
number of iterations of the inner loop.
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Figure 5: FLUSH+RELOAD attack using 10,000 decryption
operations with gcrypt’s modular exponentiation function.
a): number of samples with an icache hit on the target cache line
across all runs. b): histogram of the running times (tsc count) for
the operation. c) as a) but only considering samples whose total
running time lies in the [2.25 - 10°,2.31 - 10°] interval. d) as a)
but only considering samples whose total running time lies in the
[2.2-10°,2.25 - 10°] interval.

Evaluation. To validate that the assumptions are correct, we pro-
totype an end-to-end attack in the SMT-colocated threat model. The
prototype uses two SMT-colocated processes, attacker and victim.
The victim process may be triggered by the attacker to perform
ElGamal decryption. We use Crypto++ to generate a 2048-bit E1Ga-
mal instance as detailed in Section 5.4.2. The attacker process uses
L1i FLUSH+RELOAD on the virtual address of the memory-mapped
libgecrypt.so shared object that contains code that is executed by
the outer loop before the inner loop begins. To collect side channel
data, the attacker partitions time into N slots using the rdtsc in-
struction: at the beginning of each slot, the target line is loaded into
the cache and the access time measured; after that, the cache line
is flushed and finally the remaining (if any) time of the slot is spent
in a busy loop. As we shall discuss later, we do not have to change
any of the settings that might influence the running time of the
operation (e.g. c/p states or Turbo Boost). The attacker thus collects
N timing samples for load instructions from the target cache line.



We establish a threshold for the target system to determine whether
the load is likely to have been served from cache (cache hit). We
then collect 10,000 measurements by repeatedly triggering the vic-
tim. We keep track of each slot across all runs with a set of per-slot
counters, all initialised to zero. For each run, whenever the sample
of a slot indicates a hit based on the threshold, we increment the
value of the corresponding counter.

Figure 5a plots the value of the counter of each slot for all runs.
While patterns are discernible, the leakage cannot be obtained
yet without further data processing. We employ a clustering strat-
egy based on execution time, under the hypothesis that Figure 5a
contains samples that are generated at different clock frequencies.
Influencing factors are likely to include p-states, c-states, frequency
scaling and the power state of certain execution units. Figure 5b
confirms the hypothesis: it plots a histogram of the running times
for the operation. The distribution of running times has a long tail,
but most of the mass is concentrated in the three peaks. We use this
information to cluster samples and show the results of the cluster-
ing in Figure 5c and Figure 5d, showing probes whose running time
falls in the interval covered by the highest, and second highest peak,
respectively. The peak intervals in the two latter figures accurately
encode the c; leakage for the key used in the exponentiation. The
two figures are identical modulo a scaling factor which depends
on the difference in running time. With the leakage thus obtained,
we refer back to Section 5.4.2 for a detailed description of how the
secret exponent is fully recovered.

6.3 Fixed window: the case of Go

Environment. We target the function expNNMontgomery in Go 1.15.
The function implements the approach of Figure 2, with w = 4. The
algorithm performs a secret-dependent table access: in particular, in
line 13, the accumulator R is multiplied by the variable W, which is
the results of a lookup into table T performed in line 12. The index
e; used for the lookup is the integer representation of the i-th four
bits of the secret exponent. The table lookup leaves a cache-level
side effect which leaks the value of all e;.

Iteration
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Figure 6: PRIME+PROBE attack using 10,000 decryption op-
erations with Go’s modular exponentiation function. Each
row represents one iteration of the loop at line 7 of Figure 2;
each column represents an L1 cache set. Lighter represents
a higher probe time.
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Evaluation. We prototype an end-to-end attack in the SMT colo-
cated threat model against a 2048-bit modulus. Attacker and victim
run on two separate, SMT-colocated processes. The victim pro-
cess loads the private key, performs ElGamal decryption using the
golang.org/x/crypto/openpgp/elgamal package and returns the re-
sulting cleartext data. The code internally calls the expNNMontgomery.
The attacker process uses PRIME+PROBE on L1d to observe the
cache side-effects left by the table lookup and recover the secret
index e;. Ideally, this could be achieved by conducting the priming
phase right after the start of each loop iteration (line 7 of Figure 2)
and the probing phase right before the end of each loop iteration
(line 13 of Figure 2). Achieving this in practice from a separate
(though colocated) attacker process poses a set of challenges which
we analyse here. The first challenge is how to synchronise the
probes. Clearly it is impossible to practically achieve the ideal prob-
ing scenario described above, if anything because the victim cannot
be made to wait until the priming and probing loops of the attacker
complete. It is possible however to space them out - by busy wait
and invocations of rdtsc — so that the priming begins as closely as
possible to the start of the victim loop and the probing completes
as closely as possible to the end of the victim loop. According to
the assumptions of the threat model, the attacker can trigger the
victim and so it is able to synchronise the first probe. The correct
inter-probe delays to achieve the desired scheduling can be deter-
mined by profiling the execution of the victim. Running times in
modern CPUs however are not only affected by scheduling but
also by microarchitectural considerations such as temperature and
load. Consequently, the attacker must build not one but a set of
probing schedules, where each schedule has an associated victim
running time. The attacker then chooses one to perform the attack
and determines whether it is the appropriate one by comparing the
running time of the victim with the running time associated with
the chosen probing schedule. Whenever the schedule is not appro-
priate, the gathered sample has to be discarded, and the choice of
probing schedule must be corrected. The first loop must be treated
differently since the code is optimised to avoid the first w squarings.
This means that the priming phase for the first operation must be
conducted ahead of the start of the loop.

Another issue stems from the fact that the running time of the
probe is roughly comparable to that of the multiplication operation
of line 13. This causes a noisy signal from the side channel since
not every probe is guaranteed to observe the instructions that load
the table entry. This issue is addressed by probing only half of the
cache sets, thus ensuring that load operations (which take place
close to the beginning of the multiplication) are always observed.
The set of excluded cache sets may be varied across runs to obtain
data for the missing ones.

We then collect 10,000 sample sets by repeatedly triggering the
victim. The attacker collects PRIME+PROBE data for the 64 iter-
ations of the loop. Priming and probing phases make use of the
pointer chasing and doubly-linked list to permit bi-directional tra-
versal described in by Tromer et al. [33] to minimise the effect of
prefetching. Figure 6 shows the results of the attack. The pixel array
has one row per loop iteration and one column per monitored cache
set (odd cache sets were excluded). Each cell displays the result of
the probe during the row’s iteration and the column’s cache set.
Lighter shades of grey mean a longer probing time for the cache set,
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implying that it was accessed by the victim. The value of each row
is obtained by subtracting, from each sample, the average timing of
the cache set and then averaging the results. As we can see, patterns
are visible and we were able to verify that they correspond to the
indices e; for the considered exponent. At this point, if the attacker
knows the virtual addresses of the table entries, the value of the
secret exponent is leaked in full. Otherwise, the attacker knows
the pairwise equality of all four-bit sequences of the exponent (e.g.
with reference to Figure 6, that the four-bit sequence at position 59
is equal to that at position 61). This knowledge restricts the search
space for the exponent to the set of permutations of 16 symbols,
which has size 16! ~ 2% and can be fully explored by a trivial
to parallelize exhaustive search easily done on commodity hard-
ware. Note that this complexity is independent from the size of the
modulus or the length of the secret exponent.

In our experiment we assume a short-lived victim process that
terminates after decrypting. We verify that for short-lived processes,
the absence of ASLR in Go coupled with the deterministic nature
of the allocator ensures that virtual addresses (and hence cache
sets) hosting the table T are constant across runs. If the victim
application is long-lived however, the actual cache sets hosting
table entries may vary across runs since the table is allocated in the
course of each decryption. While this is clearly outside of the scope
of this work, we highlight here two strategies for the attacker: the
first one is to force the allocator into a specific state so that the table
is allocated on the same cache sets. We verify that this is not hard
to achieve since the attacker is afforded a high degree of control
over garbage collector triggers (time and heap consumption) and
allocation triggers caused by interacting with the victim. The other
strategy is to collect all samples and cluster them according to the
cache set layout of the table during the run.

7 CONCLUSIONS

We analyse one of the oldest, best understood and most historically
used asymmetric encryption schemes, ElGamal [14]. We reveal that
despite its popularity and longevity, when we speak about ElGamal
we are referring to several different flavours of it, with key choices
being left at the discretion of vendors and implementers. We show
how some of these choices create interoperability challenges that
lead to insecurity. We propose two “cross-configuration” attacks
that are attributable to different, and - from a security standpoint
- incompatible, configurations that operate together in the inter-
connected OpenPGP ecosystem. We believe our work can improve
the security of the OpenPGP community and influence the new
revision of the standard that is being drafted at the time of writing.

ACKNOWLEDGEMENTS

The authors would like to thank Werner Koch, Anil Kurmus, Yutaka
Niibe and Filippo Valsorda for the discussions and feedback, and
the CCS’21 reviewers for their comments that helped us improve
the paper.

DISCLOSURE

We reached out to the OpenPGP users whose keys produce weak
ciphertexts to encourage revoking the affected subkey. The iden-
tities of the vulnerable users (which are known since most users

register OpenPGP keys associated to an email address) have been
kept on a server to which only the authors have access. Physical
access to that server is restricted. We have also informed the two
vendors (gcrypt and Go) about the side-channel attack. As a con-
sequence, gcrypt was patched (commit 632d80ef3) to forbid the
usage of short encryption randomness. CVE-2021-33560 was also
issued.
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A MAPPING FINITE FIELD SIZES TO
PARAMETER SIZES

Matching an ElGamal key to a security level is more complex than
just choosing a bit size for the modulus p. In configurations where
p is not a safe prime, it is necessary to set a minimum size for one
prime factor g|(p — 1), or all prime factors other than 2 in the case
of Lim-Lee primes. Moreover, some libraries sample exponents x
and y from short intervals, whose size must also be a function of
the security level.

Table 3 indicates how different implementations and interna-
tional standards map field sizes (a.k.a. modulus sizes) to the different
parameters. The first group of columns describes gcrypt’s some-
what baroque parameters: a hard-coded table, which the source

De Feo, Poettering, Sorniotti

Table 3: Bit-size of modulus and bit-size of exponents accord-
ing to gcrypt, Crypto++ and various standards.

gerypt Crypto++ NIST RFC BSI
Ip| Ioxl yl lxl, 1yl lgl gl gl
512 119 181 184 120
768 145 220 224 144
1024 165 250 248 164 160 135 140
1536 198 298 304 198 168
2048 225 340 344 226 224 190 200
3072 269 406 408 268 256 224 256
4096 305 460 464 304 280
7680 | 1160 1741 1744 398 384 380 384
15360 | 2120 3181 3184 530 512 480 512

code attributes to Wiener!?, determines an integer [ as a function
of p. From [, gcrypt gets the next multiple of 2:

m=2[(+1)/2],

then generates a Lim-Lee modulus such that all the odd prime
factors q|(p—1) are larger than 2. Secret exponents x are uniformly
sampled from the interval [1, 23m/2+1 _ 1] the factor 3/2 providing
a “large safety margin”.?’ Ephemeral exponents y are sampled from
the similarly sized interval: first gcrypt increments 3//2 to the next
multiple of 8, i.e.,
r=81(3l+14)/],

then samples y from [1,2" — 1], rejecting if ged(y, p — 1) # 1.2

Crypto++ uses safe primes in key generation, it does thus not
need to apply a correspondence for the size of the prime order
subgroup. It does however sample the exponents x and y for the

short interval
[1 92 [2.4\‘/nln(n)2—5J]

using a formula attributed to Odlyzko [26].?> We tabulate the expo-
nent of the upper bound in Table 3.

For reference, we also include in Table 3 the group size recom-
mendations of standardization bodies NIST?3, REC2* and BSI?°.

B EXPONENT ENCODERS

In Section 5 and Figure 2 we presented a selection of exponentiation
algorithms but didn’t specify all their details. These details can be
found in Figure 7. In the figure, we write int2str for the function
that converts a non-negative integer into its Big-Endian binary
representation, we write str2int for the function that converts a
(Big-Endian) binary string into the non-negative integer that it
represents. We denote string concatenation with i, the length func-
tion for strings with len, the string prefix relation with <, and the
Hamming Weight function with HW.

19See comment “Michael Wiener’s table” at https://github.com/gpg/libgcrypt/blob/
1a83df98/cipher/elgamal.c#L105-L109

2See comment at https:/github.com/gpg/libgerypt/blob/1a83df98/cipher/elgamal.c#
L312-L315.

ZSee https://github.com/gpg/libgerypt/blob/1a83df98/cipher/elgamal.c/#L190-1196,
the function gen_k is always called with small_k = 1 in ElGamal.
Zhttps://github.com/weidail1/cryptopp/blob/434e3189/nbtheory.cpp#L1045-L1050.
ZTable 2 of https://doi.org/10.6028/NIST.SP.800-57pt1r5

2Sec. 5 of https://www.ietf.org/rfc/rfc3766.html

ZTable 3.2 of https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/
TechGuidelines/TG02102/BSI-TR-02102-1.pdf
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Exponent encoder f,,(x) Exponent encoder f,,(x) Exponent encoder f,,(x)

45 t «— int2str(x) 52 L« 0 62 Assertx > 0

46 While w t len(t): t « @ u t 53 While x > 0: 63 t « int2str(x)

47 L « len(t)/w 54 Find0 <D < 2% sit. 64 Let1nt <t / Remove prefix 1 from ¢

48 Fori « 1to L: 55 x =D (mod 2") 65 €0 «— 1; L« 0

49  Letxjnt<«tw/len(x;)=w 56 IfD¢{1,3,..,2" —1}: 66 While HW(¢) > 0:

50 ej < str2int(x;) 57 D«o0 67 Find longest prefix y < t s.t.

51 Return (e, ..., er) 58  x « (x—D)/2 68 y=0...0 yg_1...yo with
59 LeL+1 69 1<k<wAyr_1=1Ayo =1
60 e «— D 70 Letynt«t / Remove prefix y from ¢
61 Return (eq,...,er) 71 LeL+1

72 cp <« len(y); ef, « str2int(y)
73 cr41 < len(t)
74 Return (eg, c1,€1,...,CL,€L,CL+1)

Figure 7: Exponent encoders of Go and Crypto++ and gcrypt. For the corresponding exponentiation algorithms, see Figure 2. For an
explanation of the symbols, see Appendix B. For pointers to the original source code, see Footnotes 6 and 9 and 11.
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Figure 8: Predicted vs actual distribution of the gcrypt leakage entropy H,,(x) for different window sizes w and bit lengths n.
The plots show a histogram of measured entropies over 2'* random (n+1)-bits samples, and the gaussian of mean ; and variance
o? predicted in Table 1. The differences i — jig (and ¢ — d) between predicted and observed mean (and standard deviation) are
reported together with observed skewness and Fischer’s kurtosis.
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