
How to Bind Anonymous Credentials to Humans

Julia Hesse∗

IBM Research Europe - Zurich
jhs@zurich.ibm.com

Nitin Singh
IBM Research India - Bangalore
nitisin1@in.ibm.com

Alessandro Sorniotti
IBM Research Europe - Zurich
aso@zurich.ibm.com

Abstract
Digital and paper-based authentication are the two predomi-
nant mechanisms that have been deployed in the real world to
authenticate end-users. When verification of a digital creden-
tial is performed in person (e.g. the authentication that was
often required to access facilities at the peak of the COVID
global pandemic), the two mechanisms are often deployed
together: the verifier checks government-issued ID to match
the picture on the ID to the individual holding it, and then
checks the digital credential to see that the personal details on
it match those on the ID, and to discover additional attributes
of the holder. This pattern is extremely common and very
likely to remain in place for the foreseeable future. However
it poses an interesting problem: if the digital credential is
privacy-preserving (e.g. based on BBS+ on CL signatures),
but the holder is still forced to show an ID card or a passport
to verify that the presented credential was indeed issued to
the holder, what is the point of deploying privacy-preserving
digital credential? In this paper we address this problem by re-
defining what an ID card should show, and force a minimal but
mandatory involvement of the card in the digital interaction.
Our approach permits verifiers to successfully authenticate
holders and to determine that they are the rightful owners of
the digital credential. At the same time, optimal privacy guar-
antees are preserved. We design our scheme, formally define
and analyse its security in the Universal Composability (UC)
framework, and implement the card component, showing the
running time to be below 200ms irrespective of the number
of certified attributes.

1 Introduction

In the past decade, digital authentication has made consider-
able progress from academic proposal to real-world viability,
owing to several factors. A first factor is the cryptographic

∗The author was supported by the Swiss National Science Foundation
(SNSF) under the AMBIZIONE grant “Cryptographic Protocols for Human
Authentication and the IoT.

community, which has provided secure, efficient and privacy-
preserving tools for issuers to issue credentials to holders,
and let them prove their possession to verifiers. These tools,
predominantly under the umbrella of anonymous credentials,
offer guarantees such as untraceability, anonymity and data
minimisation which are ideally suited to provide adequate
privacy for holders.

A second factor is the blockchain revolution, which has pro-
vided a catalyst for taking those academic tools and bringing
them to fruition as fully-fledged Self-Sovereign Identity (SSI)
platforms. An example of such a platform is Hyperledger
Indy [41] which provides a full-stack SSI solution. Other
examples include Veramo [34] or Okapi [60].

Another factor is constituted by the COVID global pan-
demic, which in large parts of the globe required the introduc-
tion of digital passports that citizens had to show, in person,
to prove facts about their health status to human verifiers. The
latter could perform the verification aided by mobile phones
and verifier apps. This has sparked awareness in the public
about digital authentication, has fostered the creation of usable
wallets for digital credentials and somewhat normalised the
fact that citizens carry and present digital credentials to human
verifiers. The pandemic has also seen a drastic increase in the
level of public-sector investment in digital authentication [5].

In spite of all of these technological as well as behaviour
advancements, authentication based on government-issued
physical ID is still prevalent and shows no sign of giving
way to its digital counterpart. This is true because long-term
incumbent authentication paradigms tend to be favoured [13],
and also because government-issued physical ID is still to this
day the fail-safe way to address the following problem:

If a person verifies a digital credential, how can they be sure
that it was issued to the person who presents it?

This problem is typically addressed in one of two ways:
either by extending the digital credential with biometric infor-
mation (e.g. a picture of its rightful owner); or by requiring the
person presenting the digital credential to show government-
issued physical ID to the person verifying the digital cre-

1

dential (as mandated for instance for the verification of the
European Digital Green certificate [39]).

Both approaches however fall short when it comes to their
privacy guarantees. Indeed, the verification performed in per-
son between prover and verifier typically involves a physical
(e.g. looking at a face or inspecting a passport) and a digital
(e.g. receiving a credential or scanning a QR code) compo-
nent. While it is fair to assume transcripts of the physical
verification to be transient (e.g. the verifier will forget faces),
digital transcripts can be easily stored, shared, stolen and
abused. Consequently, we posit that whenever a solution cre-
ates digital traces that reveal “too much”, untraceability is lost
because whatever is revealed in digital form may be abused to
enable the construction of full user profiles, where attributes
disclosed over time by the holder can be accumulated by a set
of honest-but-curious or malicious verifiers.

In this work we address this problem and propose a scheme
where digital authentication enjoys ideal privacy guarantees,
and where human verifiers are able to securely establish a
match between the digital credential and the individual stand-
ing in front of them. We achieve this by relying on a new
authentication token embodied by a smartcard. The card is
issued to the holder, in person, by a trusted issuing authority.
The card must be physically presented to verifiers upon verifi-
cation of the digital credential to act as a binding between the
digital (credential) and physical (individual) world. The card
plays a similar role as the one played by government-issued
physical ID today, with two important distinctions: i) the card
only displays a picture of the holder to allow the verifier to
match the holder, together with the necessary security fea-
tures to determine the card’s authenticity: crucially, no other
information is present on the card, since any and all attributes
of the holder will be disclosed digitally; ii) the card must have
computation and transmission capabilities (typical of smart-
cards) to run a small yet mandatory part of the authentication
protocol to prevent mix-and-match attacks.

Our contributions include:

• The formalisation of the concept of Anonymous Creden-
tials with Visual Holder Authentication, a system that
solves the problem described above;

• The proposal of a card-based Anonymous Credential
(cbAC) scheme, a novel cryptographic primitive that
minimally and efficiently extends the BBS+ [22] signa-
ture suite widely used in the SSI community [42, 51]
and being currently standardised at the IETF [48]; our
scheme achieves several desirable properties: i) it forces
the involvement of the card in the authentication step;
ii) it respects the asymmetry of resources between card
and holder; iii) the card always runs the same program,
irrespective of who scans it.

• A formal security modeling and analysis of the primitives
in the UC framework;

• A proof-of-concept of the viability of our approach,
where we show that the slowest entity in our system
– the smartcard – can generate its contribution in the or-
der of hundreds of milliseconds on commodity hardware,
irrespective of the number of attributes that are certified
in the credential.

The rest of this paper is organised as follows: Section 1.1
discusses the related work. In Section 2 we describe the prob-
lem this work solves in more detail, outline our solution and
detail system and threat model. Section 3 gives preliminaries
on proof systems and BBS+ signatures. Section 4 describes
joint proofs of knowledge for BBS+ signatures, a core build-
ing block of our solution. In Section 5 we describe and define
the cryptographic primitive that we identify to be sufficient for
anonymous credentials with visual holder authentication. Sec-
tion 6 describes the formal security model. Section 7 presents
our construction and its security analysis. A performance
evaluation is given in Section 8. The Appendices contain ad-
ditional preliminaries on proofs in the ROM (Appendix A),
the full formal protocol description (Appendix B), and the
full proofs of our theorems (Appendix C).

1.1 Related Work
Biometric authentication One approach to bind digital cre-
dentials to the appearance of the holder is to integrate biomet-
ric authentication into the presentation of the credential. The
idea of fuzzy cryptography [46] is to derive a high-entropy
secret from fuzzy authentication data, such as biometric read-
ings. Such primitives are useful to integrate biometrics of
the credential holder into the holder’s authentication actions,
in order to bind these actions to their appearance. PrivBioM-
TAuth [43] combines fuzzy extractors [37] and authentication:
users can authenticate to remote services using their biomet-
rics sampled by their own mobile phones: a high-entropy
secret is generated using the fuzzy extractor, after successful
match of a picture of the holder against a pre-generated tem-
plate, and this secret is later used to produce a zero-knowledge
proof that achieves authentication.

Rila et al. [57] propose a system where cardholders au-
thenticate to cards using biometric data (and fingerprints in
particular). The authentication occurs between the smartcard
and the smartcard reader in adversarial setups, considering
for instance replay attacks and active adversaries. All these
biometric-based approaches have drawbacks that we aim to
avoid in this work. They either encourage digital hubs of bio-
metric information (targets for theft/leaks), or rely on holder
devices to perform biometric matching.

Anonymous Credentials Introduced by Chaum [31] and
Lysanskaya et al. [50], anonymous credentials (AC) have been
refined and augmented with privacy enhancements such as un-
linkability across multiple presentation, selective disclosure of

2

attributes (or predicates on them), and support for revocation.
The cryptographic primitives that underpin anonymous cre-
dentials include Camenisch-Lysanskaya signatures [24–26],
the U-Prove protocol suite [16] and BBS+ signatures [22].

Direct Anonymous Attestation (DAA) An immediate ap-
plication of the concepts that underpin anonymous creden-
tials is direct anonymous attestation (DAA). DAA allows a
platform consisting of a secure element (a Trusted Platform
Module (TPM) or Trusted Execution Environment (TEE))
and a host to create anonymous attestations and prove that
the attestation was generated using an authorized secure ele-
ment. DAA was initially proposed in [19] and further refined
in [17, 18, 22, 23]. The DAA scheme provides a join interface
through with an issuer binds a host and a secure element as
a platform, and certifies the platform by issuing a credential.
Later the platform can create valid signatures on messages us-
ing sign interface. A full featured DAA scheme (e.g. [23]) also
features a verify interface allowing parties to verify that signa-
tures are created by certified platform, and a link interface to
determine if two signatures were generated by the same plat-
form. While our definitions resemble the ones in [23], there
are several important differences. Most importantly, a DAA
protocol outputs an attestation object which can be stored,
transferred, and repeatedly (and locally) verified. The goal of
credential verification in this work is however not to output
such an object, but instead to convince the verifier of a certain
“ad hoc” statement (i.e., let them output a bit) with the help of
an interactive credential presentation procedure.

Anonymous Credentials on Smart Cards A straightfor-
ward approach to bind digital credentials to physical appear-
ance is to delegate the presentation of the credential to a
smartcard, which could also embed a tamper-resistant picture
of the credential holder. Recent efforts target the real-time
applicability of ACs on resource-constrained devices such
as smartphones and smart cards. [52, 53] present a smart-
card implementation of the U-Prove [54] AC system. Sim-
ilarly, Idemix AC system [28] on a smartcard is presented
in [9, 36, 61]. Batina et al. [4] propose a pairing-based AC
system to be implemented on Java cards. A promising line
of work [3, 21, 30] for smart card friendly anonymous creden-
tials is Keyed-Verification Anonymous Credentials (KVAC)
introduced by Chase et. al in [30], where the issuer is also the
verifier. Intuitively, the setting in KVAC allows one to replace
signatures with simpler message authentication codes.

Multi Device Anonymous Credentials A separate line of
work to combine smartcards with attribute-based credentials
does not attempt to run the entire protocol on the card: the
card is instead used in conjunction with a prover app so that
card and prover can jointly authenticate to a verifier. This
approach is motivated either by attempts to respect the asym-

metry of resources between user and card (e.g. by trying to
keep the card’s computational load independent of the number
of attributes), or to leverage the secure element that is present
in smartcards to prevent credential cloning or theft. U-prove’s
design [16] proposes to split the certified attributes between
card and holder to force the card’s involvement: our work
efficiently translates this approach to the BBS+ setting in a
provably secure manner while permitting multi-show creden-
tials, neither of which is supported by the original work. Lueks
et al. [49] propose to leverage a central server to assist a user
in anonymously presenting a BBS+ credential [12]. The idea
is to share the BBS+ signing key between the user device and
the server, and use a threshold version of BBS+ for presenta-
tion of a credential. Several other works on thresholdizing AC
systems exist, however, they put equal load on each proving
device [38], or require a majority of them to be honest [59].
Our system puts only minimal computation load on the card,
and tolerates corruption of even both card and holder. Closest
to our work is a system by Hanzlik and Slamanig [45], which
leverages smartphones in conjunction with smart cards, to
let both jointly present shared credentials. Their scheme is
shown to be efficient in practice, and in particular ensures
that the computational overhead of the core device is inde-
pendent of the number of attributes in the credential. Our
system achieves the same independency. However, their so-
lution involves fairly recent cryptographic primitives such as
signatures with flexible public keys (SFPK [2]) and signatures
on equivalence classes (SPS-EQ [33, 44, 47]), which need to
be coupled in a non-trivial manner: the message space of SPS-
EQ scheme should match with the key space of the SFPK
scheme. Additionally, the choice of the primitives makes it
non-trivial to augment the scheme in [45] to support blind
signing and predicates other than selective disclosure. Our
work is based on more established primitives such as BBS+
signature [12] and Schnorr proofs of knowledge; in particu-
lar, our credentials are BBS+ signatures and thus compatible
with existing wallet implementations. BBS+ is backed up by
mature implementations [42, 51] and is currently undergo-
ing standardization [48] by the Internet Research Task Force
(IRTF). For concrete exposition, we describe our solution
for the case of selective disclosure of attributes, though it
can be trivially extended to support predicates, which can
be efficiently verified using Schnorr proofs. Another notable
difference to our work is that [45] demand a weaker notion
of anonymity: in their system, cards only communicate with
smartphones, and hence they only consider the joint privacy
of card and smartphone facing potentially malicious third
parties. In our work, we allow more general communication
patterns and hence demand the anonymity of cards already
stand-alone, meaning that an adversary getting read access to
the card should not be able to detect whether he already talked
to the same card before. This stronger anonymity guarantee
allows the deployment of our scheme in crowded environ-
ments such as, e.g., airports, where users have no control over

3

which other devices are within, say, NFC connection range to
their card.

2 Problem statement

Our work focuses on scenarios where an individual is required
to authenticate, in person, to another individual. We will refer
to the former as the holder (of a credential) and to the latter as
the verifier (of that credential). Further, we focus on scenarios
where this authentication uses digital means: the credential is
thus not a physical artefact but a digital one. Digital creden-
tials are flexible and convenient; furthermore, in contrast with
their physical counterparts, digital credentials lend themselves
well to the creation of advanced authentication schemes that
preserve the anonymity and unlinkability of the holder, and
minimise the amount of information a holder has to disclose.
For example, it is possible to build a scheme where the owner
of a liquor store only learns the value of the boolean asso-
ciated to the “purchaser is above 18 years of age” predicate
when performing the age checks required by law.

Whenever this scenario occurs, the verifier faces a prob-
lem, namely, that of determining whether the credential they
verify was issued to the person presenting it, as opposed to
someone else – a colluding malicious entity or the perpetrator
of identity theft. The problem is often resolved by requiring
the holder to also produce a physical piece of identification
(e.g. an ID card): matching the personal details on the digital
credentials with those on the ID card, and visually verifying
that the picture on the ID card matches the individual provides
the missing link in the verification chain.

This however all but thwarts any privacy ambition, since it
forces the release of a full digital fingerprint (and not just the
boolean value from the example above), defeating anonymity,
unlinkability and data minimisation.

Design principle 1: Matching digital credentials to
humans by requiring traditional physical identifica-
tion means (e.g. passport, ID card) violates the privacy
of the holder.

One way to avoid this unwanted release of personal infor-
mation would be to embed the picture of the holder as part
of the digital credential. In the above example, the merchant
would seemingly just learn the necessary boolean together
with a digital picture needed to match the individual. This
strategy poses two challenges: the first is that if the digital
picture is sent to the verifier, anonymity, unlinkability and
data minimisation are violated as before. This is true since the
digital picture acts as a unique identifier for the user (violating
anonymity), permits the linking of different presentations to a
specific holder (breaking unlinkability) and creates the basis
for tracing and profiling, since verifiers may decide to pool
information learned about a specific holder from numerous

interactions.

Design principle 2: It is not desirable from a privacy
standpoint to send digital visual information about
the holder to the verifier.

The shortcomings of this approach may be avoided by
not sending the digital version of the picture to any verifier-
controlled device. This leaves keeping it on holder-controlled
devices or sending it to third-party devices. In the former case,
the system must ensure the integrity of the displayed picture,
to protect against attempts by a malicious holder to authenti-
cate with somebody else’s credentials whilst displaying their
own picture. This problem might be solvable by resorting to
TEEs1 but does not seem to have easy solutions otherwise,
since the holder might create a rogue presentation app that
displays any picture of their choice. Even if the picture is
cryptographically protected as part of the credential, a rogue
holder app will just skip any verification.

Design principle 3: Holder devices should not be
trusted to correctly display and/or verify visual infor-
mation of the holder.

The problem has an easy solution if we assume the exis-
tence of a trusted third party that has rolled out trusted devices
to which the holder can send visual information, alongside
any authentication/integrity information that is appropriately
used to determine its correctness. Aside from the fact that this
assumption might not be very realistic in several settings, we
also contend that it is a bad design from a privacy perspec-
tive since its design accepts a collection point for personal
identifiable information (PII) that may either be exploited by
adversaries, leading to serious privacy breaches, or that may
later suffer from benign or malicious function creep.

Design principle 4: Involving third parties to handle
digital visual information is not desirable.

2.1 Solution overview
This paper focuses on the design, analysis and implementa-
tion of a system for anonymous credentials with visual holder
authentication. The design will respect the principles estab-
lished in this section, introducing visual holder authentication
to the well-known authentication paradigm of anonymous
credentials without compromising on any privacy objective.

Given the discussion in the previous section, we require the
visual authentication of the holder to solely relay on physical
means, and to be conducted personally by the verifier. We

1We have not investigated this research direction which we leave as future
work.

4

Figure 1: Overview of our anonymous credential system that
binds digital proving (3) to visual authentication of the phone
holder (2), with the help of picture-showing smartcards that
are bound to phones by credential issueing authorities (1).

however know that – as per design principle 1 – we must not
relay on existing physical identification artefacts, since they
force the (digital) disclosure of additional information about
the holder, and in so doing violate anonymity and unlinkabil-
ity.

We therefore propose a solution where a picture of the
holder is displayed on a new physical medium which we
shall henceforth refer to as card or smartcard interchangeably.
The card is issued by a trusted card issuer, which could be a
government or an authority of similar standing. An overview
of the entities and flows of our solution is depicted in Figure
1.

Similarly to other physical identification artefacts, this card
must be hard to forge and must embed security features and
markings that help credential issuing authorities to reliably as-
certain its authenticity, however, we do not demand the same
capability of the verifiers who may face adversarially pro-
grammed cards. Contrary to existing physical authentication
artefacts such as identity cards or passports, we require that
cards do not contain any information other than the picture
of the holder: in particular, no personal data such as name,
date of birth etc. must be displayed on the card. This way
we achieve data minimisation: digitally, the holder is able to
disclose a minimum subset of attributes (using the selective
disclosure property of attribute-based credentials); physically,
the card only discloses a picture of the holder, whom the
verifier anyway sees in person.

Helped by the card, our system enables two types of veri-
fication: i) an in-person, physical verification carried out by
the verifier to check that the holder and their on-card pic-
ture match; ii) a digital verification of the credential. Note
that the card must also take part in the latter verification in
order to prevent mix-and-match attacks, where a malicious
holder presents somebody else’s credential and their own card.
The card is thus required to possess an embedded electronic
microprocessor and contactless smart card technology.

The card must additionally not be required to behave differ-
ently with different parties (e.g. reveal secrets only if it talks
to the holder). Aside from the additional complexity, such
a design would also require the deployment of system-wide
access control which may be exploited to violate the privacy
of users.

2.2 High-level scheme design
An anonymous credentials with visual holder authentication
system has the following actors: the card, the holder, the
verifier, the card issuer and the credential issuer. The system
can be comprised of arbitrarily many issuers, cards, holders,
and verifiers. There are three types of interactions between
the entities. First, a holder receives a card from a card issuer.
Second, a card and a holder can jointly obtain an attribute-
based credential from a credential issuer. We refer to this as
the “join phase”, during which the credential issuer verifies
in person that the card matches its holder and is not a forgery,
to then issue the credential. Third, a holder and a card can
jointly convince any verifier of the possession of a credential
over specific attributes. We call this the “presentation phase”.
We describe these three interactions here at a high-level:

• at first the holder authenticates, in person, to the card
issuer and – upon success – obtains a smartcard from the
latter; the card displays a picture of the holder, and other
necessary markings to determine the card’s authenticity.
The card’s digital infrastructure is equipped with a secret
identifier uid (and other secret values) that will enable
the minimal but mandatory contribution of the card in
the digital authentication protocol; note that the identifier
uid is not known by the holder.

• as in the previous phase, the holder is required to authen-
ticate, in person, to a credential issuer, and produce a
genuine card whose picture matches their visual traits.
Then the holder obtains a digital credential from a cre-
dential issuer, wherein the credential issuer certifies a set
of attributes of the holder. One of the attributes that is
(blindly) certified is the card’s identifier (uid). This re-
quires the participation of the card: the credential issuer
scans the card, obtaining the blind signature request com-
ponent for the uid, which the credential issuer proceeds
to sign, alongside the other attributes in the credential.

• the holder presents a digital credentials to a verifier. Dur-
ing a presentation the holder may choose to disclose cer-
tain attributes while keeping others secret (still proving
their knowledge). This step is analogous to the tradi-
tional presentation step of anonymous credentials, but
for one crucial difference: given that the uid is not known
by the holder, it can neither be disclosed to the verifier,
nor can its knowledge be proven by the holder. As a
consequence, the card must be present during the au-
thentication protocol, playing the following dual role:

5

i) serve as reference for the visual authentication of the
holder performed in person by the verifier; ii) be scanned
by the verifier and contribute to the cryptographic au-
thentication protocol with the proof of knowledge of the
undisclosed attribute uid.

2.3 Threat model

We describe here the threat model and objectives of the sys-
tem.

2.3.1 Issuers

Card issuers are assumed to be honest and thus not corrupt-
ible by the adversary: i) individuals receive from them only
cards with matching pictures (which also implies in-person
verification and issuance); ii) uid values and other secrets are
unique per card and are not shared with anyone else; iii) card
issuers do not collude with any other entity in the system to
violate, e.g., the privacy of holders or the anonymity of cards.

Credential issuers on the other hand need not be trusted.
Formally, we allow credential issuers to be maliciously cor-
rupted. The effect of such corruption is that the adversary
fully controls the credential issuer. We note that, although a
credential system with such a corrupt credential issuer cannot
ensure unforgeability of credentials anymore, our modeling
of issuers allows to still evaluate whether, e.g., anonymity
or privacy of holders is still guaranteed in the worst case of
leaked issueing keys.

2.3.2 Holders and verifiers

Both holders and verifiers can arbitrarily deviate from the pro-
tocol. For example, corrupt holders could collude with each
other to combine their credentials. Corrupt verifiers could for
example enter the system with the sole purpose of learning
holder’s attributes, or of stealing their credentials: they will
collude with other verifiers in order to trace holders across
multiple interactions and build holder profiles. Formally, this
means we allow for static malicious corruptions of holders
and verifiers. Contrary to credential issuers, we do not assume
verifiers to be capable of detecting counterfeit cards. This
means that verifiers could be presented with cards which the
adversary programmed arbitrarily.

As discussed in the previous subsection, verifiers perform
two verifications, a physical one to match holders and their
picture, and a digital one to establish integrity and prove-
nance of the credential. Our scheme guarantees anonymity
and unlinkability of holders for the digital verification. Con-
cerning the physical verification, a malicious verifier could
try to remember the facial features of a holder they see often
and generate an offline attribute profile based on that. They
could also surreptitiously take pictures of holders and create
a database where pictures (acting as primary keys) are linked

to attributes. We consider these threats outside of the scope
of our work: we will restrict our guarantees to the digital
interactions, where biometric information is not digitally ex-
changed/recorded as part of routine processing, and where
any and all transcripts of the physical verification are tran-
sient (humans forget, pictures are not taken, cctv tapes are
eventually destroyed etc.). Our work also supports honest
verifiers who want to avoid handling biometrics to prevent
leaks/theft/liabilities. This is in contrast to protocols that rely
on machine verifiers, where biometric data must be sent to the
verifier digitally to perform the authentication successfully.

2.3.3 Smartcards

Smartcards are assumed to have computing/storage facility
and NFC capabilities. Smartcards’ local storage is expected to
be tamper-resistant: secrets stored on the card are inaccessible
to all actors. Smartcards are also assumed to guarantee the
integrity of the processing logic: cards cannot be forced or
tricked into deviating from the original program, and cannot
be reprogrammed. These assumptions are consistent with
current smartcard technology.

We assume that credential issuers are capable of detecting
counterfeit cards, i.e., cards that have not been issued by the
card issuer. On the other hand, verifiers are not necessarily
required to be able to detect counterfeit cards: this means that
verifiers could be presented with cards which the adversary
programmed arbitrarily. Summarizing, we disallow corrupt
cards to enter the join phase, but we allow malicious cards to
enter the presentation phase. Crucially, such card corruptions
are static, which means that the adversary cannot reprogram
any smartcard issued by the card issuer, and it also does not
get access to the internal values of any such card. We also
assume that cards cannot (and must not) verify the identity
of credential issuers or holders, and hence the adversary is
allowed to interact with cards during all protocol phases.

We envision our system to be used in settings where a
holder presents a smartcard to the issuer and to verifiers in
person, i.e., we can assume them to be in physical proximity.
Due to the physical proximity, we can rule out the presence
of network attackers, and hence we formally assume the avail-
ability of secure channels between all entities, in all three
phases. We must also assume that relay/man-in-the-middle
attacks can be prevented by the local proximity scanning set-
tings, to ensure that the card being visually inspected is also
generating the protocol messages: it should therefore be im-
possible for malicious holders to collude in order to show a
counterfeit card and have it relay messages that are forwarded
to and from the genuine card of another holder.

6

3 Preliminaries and Notation

3.1 Bilinear groups
An asymmetric bilinear type-3 group generator is a PPT algo-
rithm BGen that takes as input the security parameter λ and
outputs a tuple BG := (G1,G2,GT ,g1,g2,gT ,e, p), where

• G1,G2,GT are cyclic groups of order p, where p is an
λ-bit prime.

• G1 = ⟨g1⟩,G2 = ⟨g2⟩,GT = ⟨gT ⟩.
• e : G1 ×G2 → GT is an efficiently computable non-

degenerate bilinear map.
• There is no efficiently computable isomorphism from
G2 to G1.

3.2 Signature of Knowledge
We define signatures of knowledge, and later use their instan-
tiations for discrete-log like relations in the random oracle
model [7, 40].

Definition 3.1 (Signature of Knowledge). Let Uλ denote the
set of functions from {0,1}∗ to {0,1}λ. A pair of PPT algo-
rithms SoK= (Prove,Verify) are called a signature of knowl-
edge for NP relation R if all of the following hold, where
AX means that algorithm A has oracle access to function or
algorithm X.

- Completeness: For all (x,w) ∈ R , m ∈ {0,1}∗,
H ∈ Uλ, and π ← SoK.ProveH(x,m,w) we have
SoK.VerifyH(x,m,π) = 1.

- Zero-Knowledge [8]: There exists a PPT simulator
SoK.Sim which emulates a random-oracle SoK.Sim.H
such that the below holds for all PPT adversaries A =
(A1,A2).

Pr

 AHb
2 (state,πb) = b ∧

R (x,w) = 1

(x,m,w,state)← A1(1λ)

π0← SoK.ProveH(x,m,w)
π1← SoK.Sim(x,m)

b←{0,1}

is negligible in λ, where H0() = H() for H ← Uλ and
H1() = SoK.Sim.H().

- Argument-of-Knowledge: There exists a PPT extrac-
tor SoK.E such that for any PPT adversary A the fol-
lowing holds with overwhelming probability (over ran-
dom choices of PPT algorithms and random oracle H):
(x,m,π) ← AH, w ← SoK.EA ,H(x,m,π), (x,w) ∈ R ∨
¬SoK.VerifyH(x,m,π). Here the notation SoK.EA ,H de-
notes that SoK.E can access queries (and answers) made
by A to H as well as query H itself. Additionally SoK.E
has access to copies of initial state of A to which it can
simulate its own random oracle.

More details on above notions in the random oracle setting
appear in Appendix A and references therein.

3.2.1 Signatures of Knowledge for discrete log

In this paper, relations of interest to us are over cyclic groups
of prime order. Let G be a cyclic group of prime order p.
For integers s,k,n≥ 1, we consider relations Rs,k,n consisting
of pairs (x,w) with x = (y1, . . . ,ys,g1, . . . ,gk) ∈ Gs+k, w =
(α1, . . . ,αn) ∈ Zn

p such that:

(x,w) ∈ Rs,k,n⇔
s∧

i=1

Li(x,w) (1)

where each Li(x,w) is of the form ∏
ti
j=1 g

αi j
i j = yi

with {gi1, . . . ,giti} ⊆ {g1, . . . ,gk} and {αi1, . . . ,αiti} ⊆
{α1, . . . ,αn}. We call the elements (y1, . . . ,yℓ) in the state-
ment x as “commitments”, while (g1, . . . ,gk) are referred to
as “generators”. Constructions of signatures of knowledge for
relations Rs,k,n as defined above are presented in [27] and we
recap it below.

Lemma 3.1 ([27]). Let s,k,n ∈ N and G denote a
cyclic group. There exist a signature of knowledge SDL =
(Prove,Verify) for relation Rs,k,n in the random oracle model,
assuming the hardness of computing discrete logarithms in
G.

These signatures SDL are also proven to be existentially
unforgeable [56] under the same assumptions. Following the
notation introduced in [27], we use

π← SDL{(α1, . . . ,αn) :
s∧

i=1

Li(x,w)}(m)

to denote the output of SDL.ProveH(x,m,w) where (x,w) ∈
Rs,k,n and m∈ {0,1}∗. When m is the empty string⊥, we omit
(m) in the above notation, and call π a proof of knowledge.
Notation: All constructions of signatures of knowledge as
defined in Definition 3.1 use a concrete hash function H ,
which models the access to random-oracle H in the definition.
Thus, notation for algorithms SDL.Prove, SDL.Verify will
not specify oracle access.

3.3 BBS+ Signature Scheme
BBS+ signatures were introduced in [1], building upon the
BBS signatures introduced by [12]. Subsequently, the con-
struction in [1] was adapted to asymmetric bilinear groups by
Camenisch et al. [22].

Definition 3.2 (BBS+ Signatures [22]). Let BG :=
(G1,G2,GT ,g1,g2,gT ,e, p)← BGen(1λ) denote a bilinear
group and ℓ ∈ N. Then the BBS+ signature scheme over BG
with dimension ℓ is described by the algorithms BBS+ :=
(KeyGen,Sign,Verify) as below:

7

– KeyGen: Sample h0, . . . ,hℓ ← Gℓ+1
1 , x ← Zp,

w ← gx
2, ḡ1 ← G1, ḡ2 ← ḡx

1. Set sk = x and
vk = (w, ḡ1, ḡ2,h0, . . . ,hL).

– Sign: On input message m = (m1, . . . ,mℓ) ∈ Zℓ
p and se-

cret key x, sample e ← Zp\{x}, s ← Zp, compute A =(
g1hs

0 ∏
ℓ
i=1 hmi

i
)1/(e+x). Output (A,e,s) as the signature on

m.

– Verify: On input a public key (w,h0, . . . ,hℓ), message
m = (m1, . . . ,mℓ) and signature σ = (A,e,s), output

e(A,wge
2)

?
= e(g1hs

0 ∏
ℓ
i=1 hmi

i ,g2).

The above signature scheme is proven to be existentially
unforgeable under chosen message attack (EUF-CMA) un-
der the q-Strong Diffie-Hellman Assumption (qSDH) in BG
[11], which demands that no efficient adversary given the
q+3 tuple (g1,gx

1,g
x2

1 , . . . ,gxq

1 ,g2,gx
2) ∈ Gq+1

1 ×G2
2 can out-

put (c,g1/(x+c)
1) ∈ Zp \ {−x} ×G1, except with negligible

probability.

3.4 Proof of Knowledge for BBS+ Signatures
We describe the proof of knowledge of BBS+ signature as pre-
sented in [22]. The prover in possession of a BBS+ signature
(A,e,s) on attributes (m1, . . . ,mℓ), selectively discloses the at-
tributes aV = {(i,mi) : i ∈V} to a verifier V as follows: The
prover chooses r1 ← Z∗p, r2 ← Zp and computes r3 = 1/r1.
Next it computes A′ = Ar1 , b = g1hs

0 ∏
ℓ
i=1 hmi

i , A = A′−ebr1 ,
d = br1h−r2

0 . Finally, the prover computes proof π as:

π←SDL{(e,s,r2,r3,{mi}i∈H) :

A′−ehr2
0 = A/d ∧ d−r3 hs

0 ∏
i∈H

hmi
i = g−1

1 ∏
i∈V

h−mi
i }

In the above, the set H = L\V corresponds to undisclosed
attributes aH = {(i,mi) : i∈H}. The prover sends (A′,A,d,π)
to the verifier, who checks e(A′,w) = e(A,g2) and verifies
the proof π against the statement computed from A′,A,d,V .
For proof of completeness, zero knowledge and argument-of-
knowledge we refer the reader to Section 4 in [22].

3.5 Signatures over committed messages
The BBS+ signature scheme outlined above allows an issuer
to sign attributes while only knowing a commitment over
them. This feature of the BBS+ signature scheme is used in
constructions (Section B.3) for realising the version of our
scheme featuring blind issuance property (Section 6). The
protocol below due to Au et al. [1] allows a holder to obtain
signature over message vector (m1, . . . ,mℓ) where {mi : i ∈
H} are hidden from the issuer for some publicly known sets
H,L with H ⊆ L.

• Holder computes commitment C = hs′
0 ∏i∈H hmi

i and the
proof π ← SDL{(s′,{mi}i∈H) : hs′

0 ∏i∈H hmi
i = C}. It

sends (C,π) to the issuer.

• The issuer verifies b ← SDL.Verify((C,{hi}i∈H),π).
The issuer aborts if the verification fails. Otherwise,
it computes the signature as: e ← Z∗p\{x}, s ← Zp,
A = (g1hs

0 ·C ·∏i∈L\H hmi
i)1/(e+x). It sends aI ,(A,e,s) to

the holder.
• The holder sets σ = (A,e,s+ s′) as the signature over

the message vector (m1, . . . ,mℓ).
Signatures over committed messages have applications in

scenarios where users must get their cryptographic secrets
(such as signing keys) certified by an issuer without revealing
the secrets to the issuer.

4 Joint Proof of Knowledge for BBS+

In this section, we present a novel proof of knowledge scheme
for BBS+ signatures that requires two parties to contribute.
This new primitive is necessary to construct our scheme since
we require credential presentations that require the joint par-
ticipation of holder and card. In our design we strive to remain
as compatible as possible to BBS+ signatures in order to pre-
serve as much of the existing ecosystem (components, code,
formats, standards) as possible.

The main idea is as follows. Instead of storing all attributes
(m1, . . . ,mℓ) on the holder, we “shave off" the attribute m1
from the holder storage, and instead store m1 on a smart card
C . Next, we modify the protocol for proving knowledge of
a valid BBS+ message-signature pair in Section 3.4 to en-
able the holder and the card to construct this proof jointly
with minimal but crucial involvement of the card. Specifi-
cally, we decompose the prover algorithm P for the BBS+
proof of knowledge from Section 3.4, into two PPT algo-
rithms (ProveH (τ, ·),ProveC (τ, ·)) which share the state τ.
Here ProveC is lightweight and executed by the smart-card
C while ProveH is executed by the holder device H . We pro-
vide details of the decomposition in Figure 2 and the overall
protocol in Figure 3. The decomposition roughly works as
follows: proving knowledge of BBS+ signature involves show-
ing knowledge of exponents (s,m1, . . . ,mℓ) over generators
h0, . . . ,hℓ which satisfies hs

0hm1
1 · · ·h

mℓ
ℓ =P for publicly known

P. In the above decomposition, card and holder generate
shared randomness r using the PRF key K and then the card
proves hm1

1 hr
0 =B and the holder proves hs′

0 hm2
2 · · ·h

mℓ
ℓ =PB−1

using s′= s−r, which convinces the verifier that they together
know the entire vector. The shared state τ consists of a PRF
key K and a non-hiding commitment Q = hm1

1 to message m1
contributed by the card. All algorithms implicitly have public
parameters as input. We state the security of our scheme in
the following theorem and provide a full proof in Appendix
C.

Theorem 4.1. Let q,k,n ∈ N and BBS+ :=
(KeyGen,Sign,Verify) denote the BBS+ signature scheme
with dimension ℓ over bilinear groups. If computation of
discrete logarithms in G1 is hard, SDL is a signature of

8

ProveC (K,m1,n1,n): // Executed by card

1. r = PRFK(n).

2. B = hm1
1 hr

0. // h0,h1 from public params

3. π← SDL{(α,β) : hα
1 hβ

0 = B}(n1).

4. return (B,π).

ProveH (K,Q,(m2, . . . ,mℓ),(A,e,s),aV ,n,B,n2): // Exe-
cuted by holder. All generators come from public parame-
ters

1. Parse aV = {(i,vi) : i ∈ V}. Output ⊥ if mi ̸= vi for
some i ∈V .

2. Set r = PRFK(n). Output ⊥ if Qhr
0 ̸= B.

3. Set H = {2, . . . , ℓ}\V .

4. r1← Z∗p, r2← Zp, r3 = r−1
1 , s′ = s− r2r3− r.

5. A′ = Ar1 , b = g1hs
0Q∏

ℓ
i=2 hmi

i , Ā = A′−ebr1 , d =

br1h−r2
0 .

6. π′ ← SDL{(e,s′,r2,r3,{mi}i∈H) : A′−ehr2
0 = Ā/d ∧

d−r3hs′
0 ∏i∈H hmi

i = g−1
1 B−1

∏i∈V h−mi
i }(n1).

7. return (A′, Ā,d,π′)

Figure 2: Splitting a BBS+ proof of knowledge between card
and holder

knowledge for relation Rq,k,n (1), and PRF is a pseudoran-
dom function, the protocol presented in Figure 3 satisfies
completeness, soundness and zero-knowledge as defined
below with respect to semi-honest verifier corruption and
malicious card and holder corruption in the random-oracle
model.

• Completeness: the verifier V outputs 1 in
the honest execution of the protocol whenever
BBS+.Verify(vk,(m1, . . . ,mℓ),(A,e,s)) = 1 .

• Soundness: There exists an efficient extractor E such that
whenever a colluding card C and holder H succeed against
an honest verifier V (V outputs 1), EA(aV) outputs (m,σ)
where σ is a verifying signature on m ∈ Zℓ

p with respect to
public key w. Here A denotes the adversary corrupting H
and C .

• Zero Knowledge: There exists a simulator S which simu-
lates the view of a semi-honest verifier V in the protocol
with honest C and H .

Remark: We only prove the above theorem assuming V is
semi-honest, as it is sufficient for proving the security of our
overall solution later in Sections 7 and 7.1. In the full protocol
in Section B.4, malicious behavior of V can be detected by
the honest holder, which then outputs a “dummy" proof ⊥.

• Setup: Generate a bilinear group BG =
(G1,G2,GT ,g1,g2,gT ,ep) and obtain (sk,vk) :=
(x,(w, ḡ1, ḡ2,h0, . . . ,hℓ)) ← BBS+.KeyGen. Sample a
PRF key K←K . Everything except x,K constitutes public
parameters, denoted by pp.

• Card’s Inputs: 0 ̸= m1 ∈ Zp, PRF key K.

• Holder’s Inputs: PRF key K, Q = hm1
1 , mes-

sage m2, . . . ,mℓ ∈ Zp, BBS+ signature (A,e,s) ←
BBS+.Sign((m1,m2, . . . ,mℓ),x).

• Verifier’s Inputs: Attributes aV = {(i,vi) : i ∈V}, where
V denotes the indices of attributes to be disclosed and vi
being the corresponding target values. We assume 1 ̸∈V .

• Protocol: We denote card, holder and verifier by C , H and
V respectively.

- H → V : Nonce nH ←{0,1}λ.
- V → C : (nH ,nV) where nV ←{0,1}λ.
- C → V : nC ,B,π where nC ← {0,1}λ, (B,π) ←
ProveC (K,m1,nV ,nC ||nH) (See Figure 2).

- V →H : nC ,nV ,aV ,B.
- H : proof←ProveH (K,Q,(mi)

ℓ
i=2,(A,e,s),aV ,n,B,nV)

for n = nC ||nH (an instantiation of ProveH is described
in Figure 2).

- H → V : proof.
- V : If proof = ⊥ output 0, else parse proof as
(A′, Ā,d,π′).

- V : Checks (i) e(Ā,g2) = e(A′,w) (ii) Proofs π and π′ are
valid. It outputs 1 if all the checks pass, and outputs 0
otherwise.

Figure 3: An interactive protocol for a card-based proof of
BBS+ signature

5 A Model for Secure card-based Anonymous
Credentials

We now present the core cryptographic building block of
our anonymous credential scheme with visual holder authen-
tication, which we call card-based anonymous credentials
(cbAC). cbAC formally defines the interactions between hold-
ers, verifiers and credential issuers introduced in Section 2.2.
We choose not to include card issuers as part of cbAC since vi-
sual verification and pictures of holders are no cryptographic
procedures or objects.

Before proceeding, we introduce some notation regarding
attribute formats. Throughout the paper, we assume attributes
to sort into ℓ “categories” (e.g., birthdate, citizenship, or hair
color). We denote by L := {1, . . . , ℓ} the full set of indices, and
call any set V ⊆ L an index set. Attributes from the category
with index i, i ∈ L, can take values in universe Ui. We often
use shorthand notation aV := {(i,mi) : i ∈V} for some mi ∈

9

Ui for each i ∈V , in contexts where the concrete values of mi
are not relevant. We denote the “merge” of two attribute sets
by {(i,mi) : i ∈ V}⊕ {(j,m j) : j ∈ H} := {(i,mi) : i ∈ L}
which is only well-defined if the index sets V and H are
disjoint, i.e., if the original attribute sets do not both contain
attributes from the same category.

We start by giving an algorithmic description for cbAC. We
use notation Alg(A : x,B : y)→ (B : z) to denote a (potentially
interactive) procedure Alg where party A has input x, party B
has input y, and party B outputs z.

Definition 5.1. Let ℓ ∈ N, L := {0, . . . , ℓ} and Ui denote at-
tribute universes for all i ∈ L. A card-based anonymous cre-
dential (cbAC) system for (Ui)i∈L is a set of three interactive
procedures (Setup,Join,Present), executed between an is-
suer I , and arbitrary cards C , holders H and verifiers V as
follows.

Setup(I : λ)→ pp: The setup algorithm is executed by
the credential issuer and results in public parameters pp
which are made available to all entities in the system.

Join(H : aH ,C : ⊥,I : aI)→ (H : b): The join proce-
dure is executed between one holder, one card, and the
credential issuer, where both the holder and the creden-
tial issuer contribute attributes aH ∈ (Ui)i∈H for H ⊆ L,
aI ∈ (Ui)i∈I for I ⊆ L. The output of the procedure is a
bit b signaling either success or failure to the holder, and
we require b = 0 if L\H ̸= I, i.e., ambiguity in attributes
is not allowed.

Present(H : ⊥,C : ⊥,V : aV)→ (V : f): A presenta-
tion is executed between one verifier, one card, and one
holder. Card and holder receive no input in this phase,
but the verifier provides a set of attributes aV ∈ (Ui)i∈V
for some V ⊆ L. The result of the procedure is that the
verifier outputs a bit f .

We expect the following properties from a cbAC scheme.

Correctness/Completeness with selective disclosure Let
aH ,aI denote two sets of attributes wrt. “index sets” H, I with
L\H = I. We say that a cbAC scheme satisfies correctness
with selective disclosure if the following holds. Assume

Join(H : aH ,C :⊥,I : aI) = 1

for some holder H , some card C , and some attribute set aH ∈
(Ui)i∈H ,aI ∈ (Ui)i∈I . Then it holds that for any aV ⊆ (aH ⊕
aI)

Present(H :⊥,C :⊥,V : aV) = 1

Unforgeability We next demand unforgeability of creden-
tials, namely that it be computationally infeasible for a holder
H ′ and card C to convince any verifier of the possession of
attributes that were not jointly issued to them.

More formally, assume Present(H ′ :⊥,C :⊥,V : aV) = 1
for aV ∈ (Ui)i∈V for some V ⊆ L, some holder H ′, and some
card C . Then we say that the cbAC scheme is unforgeable if
there exists a holder H with inputs aH ∈ (Ui)i∈H for some
H ⊆ L who participated in a join procedure with C resulting
in Join(H : aH ,C ′ : ⊥,I : aI) = 1, where H = H ′ or both
H ,H ′ are corrupt, and aV ⊆ aI⊕aH .

Anonymity From anonymity we understand the inability
to recognize the repeated participation of an entity in the
digital part of the protocol. We consider anonymity of both
cards and holders, while previous works consider only joint
anonymity [45], and we consider them from both the per-
spective of honest-but-curious credential issuers and from the
perspective of malicious verifiers. However, as common in
the AC literature (e.g., [4, 45, 54]), we only guarantee such
anonymity for cards and holders that were joined by the same
credential issuer. This restriction is natural since credentials
are not expected to hide the public key of the credential issuer.
Naturally, anonymity can only be guaranteed provided that the
set of disclosed attributes does not trivially deanonymize their
holder, i.e. the set of disclosed attributes must be identical.

More detailed, we require cards and holders that were
joined by the same credential issuer to remain anonymous
during a presentation, i.e., a potentially malicious verifier can-
not detect which card or holder participated. These guarantees
must even hold if the verifier has access to the issuance tran-
scripts, and the internal state of the issuer, e.g., its signing
keys.

More formally, we call a cbAC scheme anonymous during
presentation if the following holds. Consider executions of

Join(H 0 : a0
H ,C 0 :⊥,I : a0

I) = 1 and

Join(H 1 : a1
H ,C 1 :⊥,I : a1

I) = 1

for inputs (a0
H ,a

1
H ,a0

I ,a
1
I ,C 0,C 1,H 0,H 1)← V provided by

any PPT adversary V I , who has access to the internal state
and incoming/outgoing messages of the semi-honest issuer I .
Let b denote a random bit. Then V I participating in

Present(H b :⊥,C b :⊥,V I : aV)

where aV ⊆ ((a0
H⊕a0

I)∩(a1
H⊕a1

I)) outputs b with advantage
negligibly close to 1/2.

Holder privacy during presentation We next demand
strong privacy properties for the holder when presenting at-
tributes. Namely, even a malicious verifier does not learn
more information about the attributes of the holder than what
is revealed by the outcome of the presentation.

More formally, consider a PPT adversary V outputting
a0

L,a
1
L,aV such that aV ⊆ a0

L and aV ⊆ a1
L, and the identity

of some honest C . Let b denote a randomly chosen bit upon
which we execute procedures

Join(H : ab
L,C :⊥,I :⊥) = 1

10

and
Present(H :⊥,C :⊥,V : aV) = 1.

We say that a cbAC scheme has holder privacy if the advan-
tage of any such PPT V outputting b is negligibly close to
1/2 over the random coins of all the involved entities in the
execution.

Unlinkability of presentations Unlinkability of presenta-
tions demands that a malicious verifier cannot link two pre-
sentations, i.e., tell whether the same card or the same holder
was involved in them. Unlinkability implies anonymity and
we can hence define it by strengthening the adversary in the
anonymity definition above.

More formally, unlinkability is defined as anonymity but
where the adversary V additionally gets take part in arbitrarily
many executions of

Present(H i :⊥,C i :⊥,V : aV)

for i ∈ {0,1} before being challenged and making his deci-
sion.

Blind issuance of attributes We finally define a property
that we consider optional for cbAC in general but useful for
some applications. Blind issuance of attributes demands that
the holder be able to contribute attributes to the credential
that are not seen by the credential issuer.

More formally, let C ,H ,H, I ⊆ L with L \ I = H and
a0

H ,a
1
H ,aI all be given by any PPT adversary A . Let b de-

note a uniformly sampled bit. Consider a run of

Join(H : ab
H ,C :⊥,I : aI) = 1

where A can observe the internal state of I and sees all mes-
sages that I receives. We say that a cbAC scheme supports
blind issuance of attributes if the advantage of any such PPT
A outputting b is negligibly close to 1/2.

Use cases for blind issuance include issuance of sensitive
attributes such as gender, or protection against credential leak-
age (e.g., holder’s device stores attribute sk in secure storage,
such that without knowledge of sk a captured credential is
rendered useless).

Interpreting the formal properties for the real-world system.
As explained in the beginning of this Section, our formal
cbAC model captures the guarantees of the cryptographic
part of our card-based credential system. Visual verification
of pictures on smartcards, and entities such as holders and
verifiers being humans who meet in person, are not part of
the cryptographic protocol. Consequently, e.g., the anonymity
guarantees described above only capture that cards leave no
digital traces of their identity during a run of the protocol.
That said, a verifier can always attempt to somehow remember
a picture on a smartcard, to deanonymize that card in future

presentations. The same obviously holds for employees work-
ing at an issueing authority, who can attempt to remember
faces of the smartphone owners. Such threats need to be taken
into account when deploying the actual system, for example
verifiers should perform verification in front of the user, to
ensure that no pictures of the smartcard are taken.

Further, care needs to be taken when translating the above
guarantees into practice. For example, anonymity only holds
for card-holder pairs that were joined by the same credential
issuer, such that the anonymity set corresponds to all “cus-
tomers” of a credential issuer. Consequently, our cbAC system
does not provide any meaningful anonymity guarantees in
settings where each card-holder pair receives their credential
from a different credential issuer. It is an interesting avenue
for future work whether techniques to hide the identity of the
credential issuer [10, 15, 20] could be applied to our work.

6 Ideal functionality for cbAC

We give a formal definition of card-based anonymous creden-
tials cbAC in terms of an ideal functionality in the Universal
Composability [29] framework in Figure 4. The functionality
supports three sets interfaces; Setup for initialization, Join
to allow a pair consisting of a card and a holder (Ci,H j) to
be jointly issued a set of attributes, and finally Presentation
to allow a pair (Ci,H j) to present specific attributes towards
a verifier V . We start with an honest walk-through of how
FcbAC is used to join a card and a holder who subsequently
present attributes to a verifier. We then detail which attacks
it admits2. Along the way, we argue how FcbAC ensures the
security properties of cbAC described above.

Figure 4 presents two functionalities, namely functionality
FcbAC where the credential issuer determines which attributes
a holder gets issued, and F blind

cbAC where the holder is allowed
to contribute “blind” attributes to the credential (i.e., which
are not seen by the issuer). The functionalities only differ
in their join phases, where F blind

cbAC collects holder attributes
aH that combine to a “full” ℓ-fold attribute sets together with
the credential issuer’s attributes aI , while FcbAC expects the
issuer attributes aI to already contain all ℓ attributes.

The Setup phase. The SETUP interface is called by a creden-
tial issuer I , whose identity is encoded in the session identifier
of FcbAC. This modeling enforces that the identity of the is-
suer is publicly known and nobody can impersonate this entity
(e.g., the digital signature verification key of the issuer is re-
liably known to any other entity in the system). While our
modeling assumes only one such issuing party S.1,S2 , in
practice the task performed by I can be distributed over many
physical institutions who, e.g., all sign under their own keys.

2While it is desirable to not allow any attacks from a security perspective,
practically-efficient schemes are usually only in reach if we enter tradeoffs
and relax the security (e.g., allow for DoS attacks on the scheme). The
adversarial interface of FcbAC precisely describes these relaxations.

11

FcbAC is instantiated with session identifier sid = (I ,sid′) for some sid′, which we omit from all interfaces. FcbAC maintains join session
records JR(jid) = (C,H, attH ,attI) and presentation session records SR(vid) = (C,H,attV). These records are initialized with all values
set to ⊥ when accessed for the first time. Let creds denote an initially empty list. Interfaces of Join and Show can only be called after Setup
was completed. We assume FcbAC to ignore malformed inputs. FcbAC is parametrized by ℓ ∈ N and we denote L := {1, . . . , ℓ}.

Setup Phase: Initialize the functionality instance.
On input (SETUP) from a party I

• S.1 Ignore if this is not the first SETUP query
• S.2 From now on, use I to denote the unique party that is allowed to call interface JOINISSUE.
• S.3 Send (SETUP) to S and a delayed output (SETUPDONE,sid) to I .

Join Phase: Holder inputs attributes aH = {(i,mi) : i ∈ H}, issuer inputs attributes aI = {(i,mi) : i ∈ I} where I = L\H I = L . The
card-holder pair is coupled to the attribute vector m = (m1, . . . ,mℓ) contained in aH and aI .

Holder Requests: On input (JOIN, jid,C , aH) from H
• J-H.1 Drop the query if ⊥ ̸= JR(jid).C ̸= C or if JR(jid).H ̸= ⊥. Otherwise set JR(jid).H ← H ,JR.(jid).C ← C ,

and JR(jid).attH← aH .

• J-H.2 Output (JOIN, jid,H,H) to S . // No anonymity for holder in join phase.
Card joins: On input (JOINID, jid) from C

• J-C.1 Drop the query if ⊥ ̸= JR(jid).C ̸= C . Otherwise set JR.(jid).C← C .
• J-C.2 Output (JOINID, jid,C) to S . // No anonymity for card in the join phase.

Issuer Agrees: On input (JOINISSUE, jid,aI) from I
• J-I.1 Drop the query if the index set I of aI is not equal to L .

• J-I.2 Create record JR(jid) with C←⊥, H←⊥, attH←⊥ , attI← aI if no such record exists. Otherwise, set JR(jid).attI← aI if
JR(jid).attI=⊥. // Add attributes contributed by issuer to the record.

• J-I.3 Send (JOINISSUE, jid) to S and send a delayed output (JOINISSUE, jid,aI) to H .
Finalize the join: On input (JOINCOMPLETE, jid) from S

• J.1 Ignore if there is no record JR(jid), or any of its variables is ⊥.
• J.2 Parse JR(jid).attH as {(i, pi) : i ∈ H}, JR(jid).attI as {(i,qi) : i ∈ I} for some H, I ⊆ L and drop the query if H ̸= L\ I.

• J.3 Construct m = (m1, . . . ,mℓ) as follows: Set mi = qi for i ∈ I, mi = pi for i ∈ H.

• J.4 Add (JR(jid).H,JR(jid).C,m) to creds. // Credential installed: H and C can from now on show m.
• J.5 Delete record JR(jid) and send a delayed output (JOINED, jid) to H .

Presentation Phase: During a presentation phase, the card-holder pair authenticates against a set of attributes aV = {(i,mi) : i ∈V} specified
by the verifier V . They succeed if they have been previously coupled to vector m ∈ Zℓ

p such that mi = m[i] for i ∈V .

Set Attributes: On input (SETATTRS,vid,aV) from V
• P-V.1 Create record SR(vid) = (⊥,⊥,aV) if no such record exists. Otherwise, set SR(vid).attV← aV if SR(vid).attV=⊥.
• P-V.2 Output (SETATTRS,vid,V ,aV) to S . // Verifier’s identity and attributes are public.

Set Card: On input (SETID,vid) from C
• P-C.1 Drop the query if C is honest and (∗,C ,∗) ̸∈ creds. // Uninitialized card.
• P-C.2 Create record SR(vid) with C← C , H←⊥, attV←⊥ if no such record exists. Otherwise, set SR(vid).C← C if SR(vid).C=⊥.
• P-C.3 If H is corrupt, and (H ′,C ,∗)∈ creds for corrupt H ′, output (SETID,vid,C) to S , else output (SETID,vid) to S . // Card remains

anonymous as long as holder is not corrupt and has already used that card during issuance.
Set Credential: On input (SETCRED,vid) from H

• P-H.1 Create record SR(vid) = (⊥,H ,⊥) if no such record exists. Otherwise, set SR(vid).H←H if SR(vid).H=⊥.
• P-H.2 Output (SETCRED,vid) to S . // Holder remains anonymous.

Verify: On input (VERIFYCOMPLETE,vid,b) from S
• V.1 Ignore if there is no record SR(vid), or any of its variables is ⊥. // Card or holder missing.
• V.2 Parse SR(vid).C as C , SR(vid).H as H , SR(vid).attV as {(i,mi) : i ∈V} for some V ⊆ L.
• V.3 Set f = 0. // Unforgeability: only change this to 1 below if there is a corresponding credential in creds.
• V.4 If H is honest and b = 1, set f = 1 if (H ,C ,m) ∈ creds such that m[i] = mi ∀ i ∈V . // Completeness
• V.5 If H is corrupt and b = 1, set f = 1 if (H ′,C ,m) ∈ creds such that m[i] = mi ∀ i ∈V and some corrupt party H ′. // Corrupt holders

can exchange their credentials.
• V.6 If H and I are both corrupt and b = 1, set f = 1. // No unforgeability if issuer and holder collude.
• V.7 Delete record SR(vid) and send a delayed output (VERIFIED,vid, f) to V .

Figure 4: Functionalities F blind
cbAC and FcbAC for card-based anonymous credentials. Instructions in boxes appear only in F blind

cbAC

which allows the holder to contribute (blind) attributes during join. Instructions in dashed boxes appear only in FcbAC where
holders do not contribute attributes during join.

12

The Join phase. The join phase involves three parties: the
issuer I , a holder H , and a card C . To initiate an attribute
issuance, all three parties need to call their corresponding in-
terfaces (JOIN for H , JOINID for C , JOINISSUE for I) with
the same session identifier jid, and FcbAC does not enforce any
order in which these calls happen J-H.1, J-C.1, J-I.2 . Our
modeling leaves the agreement on session identifiers jid to the
application, but we only put minimal requirements to these
identifiers: they are publicly known, and need not be unique
(FcbAC allows the reuse of jid identifiers after the completion
of join session jid J.5 . To proceed, FcbAC records the identi-
ties of the holder and the card J-H.1, J-C.1 in form of a JR
record for join session jid. In this record, which maintains the
state of a single join session, F blind

cbAC also collects attributes
from the holder J-H.1 (FcbAC skips this step) and the issuer
J-I.2 . While the holder learns the attributes that the issuer

suggests to issue J-I.3 , in F blind
cbAC the issuer is oblivious of

the attributes contributed by the holder (this can be seen from
the absence of any output towards the issuer), enabling blind
issuance of attributes. Finally, the issuance of the attributes
is completed by the adversary calling JOINCOMPLETE with
identifier jid indicating which join session to complete. FcbAC

now assembles the ordered attribute vector (m1, . . . ,mℓ) from
the attributes provided by holder and issuer in join session
jid (by retrieving them from the corresponding JR record),
and aborts if any attribute is missing, or both the holder and
the issuer gave an attribute mi for the same index i ∈ [ℓ]. Oth-
erwise, FcbAC adds a tuple (H ,C ,m) to a list called creds,
which keeps track of successful join requests. The holder then
receives a confirmation message.

The presentation phase. The presentation phase, which allows
for attribute-based authentication, involves a holder H , a card
C , and a verifier V . To initiate a presentation, all three par-
ties need to call the corresponding interfaces (SETATTRS
for V , SETID for C , and SETCRED for H) with the same
session identifier vid. FcbAC does not enforce any order in
which these interfaces must be called P-V.1, P-C.1, P-H.1 ,
and again vid can be public and reused after successful com-
pletion of the presentation V.7 . FcbAC records the identities
of all three participants in a record SR for presentation session
vid P-V.1, P-C.1, P-H.1 . FcbAC also adds to this record the

attributes aV that the verifier V contributed P-V.1 . aV may
contain less than ℓ attributes V.2 , which enables selective
disclosure of certain attributes. With this, the parameters of
the presentation session vid are complete, and the question
is now whether C and H are capable of presenting the at-
tributes aV or not. To resolve this question, FcbAC first waits
for the adversary to signal completion of the presentation ses-
sion by calling VERIFYCOMPLETE. Then, FcbAC outputs 1
to the verifier V if there is a record (H ,C ,m) in list creds
where aV ⊆m V.4,V.5 , or if V.6 holder and issuer collude
(are both corrupt) and can hence present any credential. Since

existence of this record means that H and C successfully com-
pleted a join session for an attribute set m which contains aV ,
completeness holds. If no such record is found, FcbAC gives
the verifier a 0 V.3,V.7 , ensuring unforgeability of presen-
tations for attributes that were not previously issued. The fact
that the verifier only learns one bit from each presentation
session implies that FcbAC guarantees holder privacy dur-
ing presentation and unlinkability of presentations. This
concludes the honest walk-through of FcbAC.

Showcasing formal implication of game-based properties.
In Section 5 we presented game-based properties of a cbAC
scheme. We showcase here how to formally verify that FcbAC

implies these properties, for the case of unforgeability. The
claim is that a protocol that UC-emulates FcbAC satisfies un-
forgeability as defined in Section 5. To prove this claim, we
assume that the protocol is not unforgeable, and construct a
distinguisher Z between a protocol realizing FcbAC and FcbAC

together with some simulator S . If the protocol is not unforge-
able, there is a presentation of attributes for which there exist
no corresponding (honest: same, corrupt: different) holder H
who got issued a credential for these attributes. In the real
protocol execution, the forgeability implies that the verifier
outputs 1. In the ideal world, however, the non-existence of
the appropriate inputs to the holder H imply that FcbAC does
not have a corresponding entry in the creds table, and hence
due to V.3 and the issuer I being honest, we have f = 0.
Hence, the real protocol run (verifier outputs 1) is distinguish-
able from the ideal run (f = 0) in case the protocol does not
satisfy unforgeability.

Adversarial leakage and influence. The adversary is allowed
to learn the identities of the card and the holder during the
issuing of attributes J-H.2 , J-C.2 as well as the identity of
the verifier during presentation P-V.2 , but remains oblivious
of the identities of the card and the holder in any presentation
phase P-C.3 , P-H.2 . This means FcbAC cannot be realized
by protocols where the presentation comprises the sending
of, e.g., signatures under a long-term public key held by the
card, or other identifying information. FcbAC hence guarantees
anonymity during presentation. However, FcbAC does leak
the identity of a card participating in a presentation session to
a corrupt holder in case the holder has already used this card
in a previous join session. The reason is that we cannot expect
this information to remain hidden from a corrupt holder, as
holders can always recognize “their” cards by running the
verification protocol with the card and all credentials that they
have been previously issued.

The adversary further has full control over when a
party receives outputs due to its ability to delay outputs
S.3, J-I.3, J.5, V.7 . The adversary can cause any join session
jid to fail by not calling (JOINCOMPLETE, jid). The adver-
sary can make any presentation session vid fail (i.e., cause the
verifier to output 0) by sending (VERIFYCOMPLETE,vid,0)

13

V.3-V.5 . These attacks correspond to Denial-of-Service at-
tacks due to, e.g., message tampering.

Functionality FcbAC does not have separate interfaces for
party corruption. Instead, we use the corruption mechanism
built within the UC framework [29], which lets the adversary
corrupt parties by sending them a special corruption message.
FcbAC is aware of such corruption, and can hence act upon
it. While corrupt cards or verifiers are not treated differently
from honest ones, FcbAC provides corrupt holders with more
freedom than honest holders. Namely, corrupt holders may
exchange their credentials among each other, and hence FcbAC

allows corrupt holders to “use” a credential list entry of any
other corrupt holder V.5 . Further, in case the credential issuer
and the holder are both corrupt, FcbAC does not guarantee
unforgeability anymore, which is reflected in V.6 where
arbitrary attributes can be presented if holders and credential
issuers team up.

7 Our card-based Anonymous Credential
scheme

In this section we describe how we realise the three interac-
tions described in Section 2.2: credentials received during
the join phase are BBS+ signature from the credential issuer
on a message vector m = (uid,m1, . . . ,mℓ), where uid is a
unique secret identifier of the card, and m1, . . . ,mℓ represent
the attributes of the holder. Issuing the credential in practice
amounts to generating a blind signature over a set of shown
and hidden messages. The set of hidden messages will contain
at least the term uid, and possibly, but not mandatorily, other
sensitive attributes that the holder does not want to reveal to
the credential issuer.

During the presentation phase the holder discloses a set of
certified attributes and proves knowledge of the complement
of that set. This phase instantiates the joint proof of knowledge
of a BBS+ signature of Figure 3, to let a holder who ignores
the term uid generate a valid proof of knowledge of a BBS+
signature that contains it. This is enabled by the presence of
some card C .

One feature of our protocol is that cards never need to
communicate with holders directly. This greatly simplifies
the card’s interface during a presentation session, and avoids
the deployment of expensive authentication mechanisms that
let cards distinguish between holders and verifiers.

We depict our protocol in Figures 5 (Join) and 6 (Presen-
tation), where card and holder call the joint BBS+ proving
algorithms from Figure 2. Note that Figure 6 is essentially
a visualization of Figure 3. These figures do not show the
setup phase and interaction with trusted parties, and they are
cleaned from any “cluttering” that is introduced by the UC
framework. We state the full formal protocol description as
executed in the UC framework (i.e., using the same interfaces
of functionality FcbAC, including UC artifacts such as session

identifiers) in the appendix, B.2 (Setup), B.3 (Join), and B.4
(Presentation).

7.1 Security
Theorem 7.1 (cbAC security without blind issuance). The
cbAC construction of Section 7 UC-emulates the functionality
FcbAC parametrized with ℓ ∈ N in the (Fcrs,FcardAuth)-hybrid
model under the following assumptions:

• The adversary does not corrupt any C that enters the join
phase. All other corruptions are static and malicious.

• Holder inputs are restricted to aH = /0 in JOIN.
• All channels are secure. Channels during presentation

are additionally holder- and card-anonymous.
• PRF is a pseudorandom function with key space {0,1}λ,

and SDL is a signature of knowledge for relation Rs,k,n
(see 3.2.1).

• Computation of discrete logarithms is hard in G1 and
the qSDH assumption holds in BG.

Our construction supports blind issuance of attributes un-
der a stronger assumption on the proof system SDL, namely
online extractability, which we describe in Appendix A.

Theorem 7.2 (cbAC security with blind issuance). Theorem
7.1 holds for F blind

cbAC if additionally SDL is online extractable,
and the restriction on holder inputs is dropped.

The full formal proof and simulator code are deferred to
Appendix C.2.

8 Evaluation

We implement the card-specific part of the scheme and test it
on real smartcards to establish the scheme’s practicality and
determine its performance. We also implement a simplified
verifier to determine whether the cards’ messages are properly
constructed and can be verified successfully3.

We choose to implement the card as a Javacard [35] applet.
Javacard is a Java framework for smartcards supporting a
subset of the Java runtime. The applet supports byte-level I/O
through smartcard application protocol data unit (APDUs).
APDUs can contain selectors for different functions, and the
applet is structured to handle the different functions. The
Javacard framework supports operations on elliptic curves.
Points on various elliptic curves might be built by selecting the
curve type (Fp or F2m) and specifying the relevant parameters.
We structure our applet with the 5 following functions (with
reference to Figure 2):

• a set of initialisation functions: SETUP, where the in-
voker sets the parameters of the curve. We choose to test

3We refrain from implementing issuer, holder and verifier since their
practicality and performance has already been established by prominent open
source projects such as Hyperledger Ursa [42]

14

Inputs:
- Card identifier uid // from FcardAuth

- PRF key K // from FcardAuth

Compute:
- On receiving message (1):

• nC ←{0,1}λ, r = PRFK(nC), B = huid1 hr
0.

• π← SDL{(α,β) : hα
1 hβ

0 = B}(nI).
• Send message (2).

Inputs:
- Holder contributes attributes: aH = {(i,mi) : i ∈ H}
- Card identity: (C ,Q,K). // from FcardAuth

Compute:
- On receiving message (3):

• s′← Zp, C = hs′
0 ∏i∈H hmi

i+1, r = PRFK(nC).

• π′← SDL{(s′,{mi}i∈H) : C = hs′
0 ∏i∈H hmi

i+1}(nI).
• Send message (4).

- On receiving message (5):
• Set m = aH ⊕aI = (m1, . . . ,mℓ).

• Abort if e(A,wge
2) ̸= e(g1,hs+s′+r

0 ·Q ·∏ℓ
i=1 hmi

i+1,g2).
• Store (C ,Q,K, σ = (A,e,s+ s′+ r), m).

Inputs:
- Issuer contributes attributes: aI = {(i,mi) : i ∈ I}
- Issuer long-term signing key: x // generated locally at protocol start

Compute:
- nI ←{0,1}λ. Send message (1).

- On receiving message (2), send message (3).

- On receiving message (4):
• Abort if H ̸= L\ I, else set x = (B,h0,h1,nI) and x′ = (C,{hi+1}i∈L\I ,nI).
• Abort if SDL.Verify(x,π) = 0 or SDL.Verify(x′,π′) = 0.

• e← Zp \{x}, s← Zp, A =
(
g1hs

0 ·B ·C ·∏i∈I hmi
i+1

)1/(e+x).
• Send message (5).

nI (1) nC ,B,π (2) nC ,nI (3) (C,H,π′) (4) (aI ,A,e,s) (5)

Card Holder

Credential Issuer

Figure 5: Outline of join protocol detailed in Section B.3. The protocol delivers a credential certifying attributes assembled from
holder input aH , issuer’s input aI for holder and the card identified by its uid.

on Fp256BN curve [32]4 and so the input APDU for the
setup contains the value of the a and b coefficients, the
value of field and order of the curve, and coordinates and
cofactor of the generator; SETBASE where the invoker
sets the public bases h0 and h1; SETUID where the in-
voker sets the secret value of m1; SETSEED where the
invoker sets the value of K, the PRF seed used by the
card. We use AES in ECB mode to instantiate a PRF
with domain and codomain of all 128-bit strings.

• a RUN function that executes ProveC (K,m1,n1,n); K
and m1 are already set by SETSEED and SETUID, re-
spectively, so the input of the invocation are the verifier
nonce n1 and the PRF input n.

We assume that the initialisation functions can be invoked
once before the card is issued. RUN can instead be invoked
arbitrarily many times by whoever is in proximity of the card.
RUN requires no access control and always responds in the

4We choose Fp256BN given the sundry available implementations, even
though this curve no longer offers 128 bits of security.

same way, irrespective of the identity of the invoker.
For the deployment, we choose NXP 1ID white plastic

cards with a Smart MX D600 chip (400KiB of available mem-
ory) running JCOP 4.5 OS with NXP’s JCOPx extensions at
version 1.1.45. Cards have a dual interface (6 PIN contact,
1ID inlay 56pf contactless on input CAP). We use the con-
tactless communication channel and rely on a uTrust 3700 F
as a PCSC reader to program the cards, communicate with
them and benchmark them. Alternative designs may employ
the native NFC capabilities available in most modern mobile
platforms.

We benchmark the RUN algorithm by executing it 100
times and determining average and standard deviation of all
samples. To determine the breakdown of the running time we
also benchmark a no-op version of the RUN algorithm where
only the I/O part is implemented.

The RUN function completes on average in 185.08ms with
a standard deviation of 4.06ms. This is an end-to-end mea-

5The extensions are needed to directly access the low-level API to perform
scalar point multiplication.

15

Inputs:
- Card identifier uid // from FcardAuth

- PRF key K // from FcardAuth

Compute:
- On receiving message (2):

• nC ←{0,1}λ, n← nC ||nH .
• (B,π)← ProveC (K,uid,n,nV)

• Send message (3).

Inputs:
- List L of records of the form (C ,Q,K,σ,m).

Compute:
- nH ←{0,1}λ. Send message (1).

- On receiving message (4):
• Set n = nC ||nH . Parse aV = {(i,mi) : i ∈V}.
• Determine (C ,Q,K,σ,m) in L such that: B = Q · hPRFK(n)

0 and m[i] = mi
for all i ∈V . If no record is found, send (⊥,⊥,⊥,⊥) as message (5).

• Otherwise, define m′i+1 = mi for i ∈ [ℓ] and thus aV = {(i,m′i+1) : i ∈ V}.
Parse σ as (A,e,s) and set m′ = (m′2, . . . ,m

′
ℓ+1).

• (A′, Ā,d,π′)← ProveH (K,m′,(A,e,s),aV ,n,B,nV).
• Send A′, Ā,d,π′ as message (5).

Inputs:
- Verifier specifies disclosure attributes aV = {(i,mi) : i ∈V}.

Compute:
- On receiving message (1): nV ←{0,1}λ, send message (2).

- On receiving message (3), send message (4).

- On receiving message (5):
• Set x = (B,h0,h1,nV), x′ = (A′, Ā,d,aV ,{hi+1}i∈L,nV).
• Set f ← SDL.Verify(x,π) ∧ SDL.Verify(x′,π′) ∧ (e(Ā,w) == e(A′,g2)).
• Output f .

nH ,nV (2) (1)nH(3)nC ,B,π nC ,nV ,aV ,B (4) A′, Ā,d,π′ (5)

Card Holder

Verifier

Figure 6: Outline of presentation protocol detailed in Section B.4. The algorithms ProveC and ProveH are as in Figure 2. In the
above protocol, verifier specifies presentation predicate as aV . The holder generates proof of possession of a credential issued
against the participating card.

surement that includes APDU I/O, parsing, crypto and receipt
of the response APDU. To determine a breakdown of the
running time we construct a no-op version of the RUN func-
tion which is identical to the original but for the fact that all
cryptographic processing is removed, thus resulting only in
the APDU I/O, parsing and producing a response message of
identical length to the original. The no-op version completes
on average in 24.53ms with a standard deviation of 4.3ms.

These result confirm that the performance of the scheme
is perfectly in line with that of other NFC-driven interactions
users engage in on a daily basis (e.g. contactless payments),
thus confirming the viability of our approach and its deploy-
ment readiness.

9 Conclusion

We present Anonymous Credentials with Visual Holder Au-
thentication, a system that permits secure and privacy preserv-
ing verification of digital credentials. This system enhances
digital anonymous credential system by permitting verifiers
to determine whether the holder presenting the credential is

its legitimate owner. This determination can be performed
without any deterioration of the privacy guarantees offered by
the underlying anonymous credential system. The key idea is
to introduce plastic cards from a trusted issuer (e.g. a govern-
ment), playing role in both the physical (verifier inspects the
picture on the card) and digital (verification requires contribu-
tions from both card and holder) side of the authentication.

To realise this system we present a primitive for joint proof
of knowledge for BBS+ signatures, which is both central
for our construction and of independent interest. We then
formally define card-based Anonymous Credentials, our cryp-
tographic building block, and analyse its security in the Uni-
versal Composability (UC) framework. We further implement
the performance-sensitive aspects of our system, namely all
interactions of the card, to determine real-world viability.

Our system achieves several desirable properties: i) it is
compatible with BBS+ public keys and signatures, so that
implementers are able to leverage the vast body of open-
source projects handling those artefacts; ii) it keeps the design
of the card simple and minimalistic, avoiding complex access
control on the card; iii) it maintains the familiar pattern of

16

authentication with phone and physical ID; iv) it achieves
ideal privacy by not forcing the disclosure of unnecessary
holder attributes to determine a match with physical ID.

Acknowledgements

The authors would like to thank: the anonymous reviewers
for the helpful and constructive comments; Ilie Circiumaru,
Jim Coon, Todd Nuzum and Nick Nurse for their help in
setting up the evaluation environment. Alessandro wishes to
say “arrivederci, mio meraviglioso papà, e grazie per tutto”.

References

[1] M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic
k-TAA. In R. D. Prisco and M. Yung, editors, SCN
06: 5th International Conference on Security in Com-
munication Networks, volume 4116 of Lecture Notes in
Computer Science, pages 111–125, Maiori, Italy, Sept. 6–
8, 2006. Springer, Heidelberg, Germany.

[2] M. Backes, L. Hanzlik, K. Kluczniak, and J. Schnei-
der. Signatures with flexible public key: Introducing
equivalence classes for public keys. In T. Peyrin and
S. Galbraith, editors, Advances in Cryptology – ASI-
ACRYPT 2018, Part II, volume 11273 of Lecture Notes
in Computer Science, pages 405–434, Brisbane, Queens-
land, Australia, Dec. 2–6, 2018. Springer, Heidelberg,
Germany.

[3] A. Barki, S. Brunet, N. Desmoulins, S. Gambs,
S. Gharout, and J. Traoré. Private eCash in practice
(short paper). In J. Grossklags and B. Preneel, editors,
FC 2016: 20th International Conference on Financial
Cryptography and Data Security, volume 9603 of Lec-
ture Notes in Computer Science, pages 99–109, Christ
Church, Barbados, Feb. 22–26, 2016. Springer, Heidel-
berg, Germany.

[4] L. Batina, J. Hoepman, B. Jacobs, W. Mostowski, and
P. Vullers. Developing efficient blinded attribute cer-
tificates on smart cards via pairings. In D. Gollmann,
J. Lanet, and J. Iguchi-Cartigny, editors, Smart Card Re-
search and Advanced Application, 9th IFIP WG 8.8/11.2
International Conference, CARDIS 2010, Passau, Ger-
many, April 14-16, 2010. Proceedings, volume 6035
of Lecture Notes in Computer Science, pages 209–222.
Springer, 2010.

[5] A. Beduschi. Rethinking digital identity for post-covid-
19 societies: Data privacy and human rights considera-
tions. Data & Policy, 3, 2021.

[6] M. Bellare and G. Neven. Multi-signatures in the plain
public-key model and a general forking lemma. In

A. Juels, R. N. Wright, and S. De Capitani di Vimercati,
editors, ACM CCS 2006: 13th Conference on Computer
and Communications Security, pages 390–399, Alexan-
dria, Virginia, USA, Oct. 30 – Nov. 3, 2006. ACM Press.

[7] M. Bellare and P. Rogaway. Random oracles are prac-
tical: A paradigm for designing efficient protocols. In
D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and
V. Ashby, editors, ACM CCS 93: 1st Conference on
Computer and Communications Security, pages 62–73,
Fairfax, Virginia, USA, Nov. 3–5, 1993. ACM Press.

[8] D. Bernhard, M. Fischlin, and B. Warinschi. Adaptive
proofs of knowledge in the random oracle model. In
J. Katz, editor, PKC 2015: 18th International Confer-
ence on Theory and Practice of Public Key Cryptog-
raphy, volume 9020 of Lecture Notes in Computer Sci-
ence, pages 629–649, Gaithersburg, MD, USA, Mar. 30 –
Apr. 1, 2015. Springer, Heidelberg, Germany.

[9] P. Bichsel, J. Camenisch, T. Groß, and V. Shoup. Anony-
mous credentials on a standard java card. In E. Al-Shaer,
S. Jha, and A. D. Keromytis, editors, ACM CCS 2009:
16th Conference on Computer and Communications Se-
curity, pages 600–610, Chicago, Illinois, USA, Nov. 9–
13, 2009. ACM Press.

[10] J. Bobolz, F. Eidens, S. Krenn, S. Ramacher, and
K. Samelin. Issuer-hiding attribute-based credentials.
IACR Cryptol. ePrint Arch., page 213, 2022.

[11] D. Boneh and X. Boyen. Short signatures without ran-
dom oracles and the SDH assumption in bilinear groups.
Journal of Cryptology, 21(2):149–177, Apr. 2008.

[12] D. Boneh, X. Boyen, and H. Shacham. Short group sig-
natures. In M. Franklin, editor, Advances in Cryptology
– CRYPTO 2004, volume 3152 of Lecture Notes in Com-
puter Science, pages 41–55, Santa Barbara, CA, USA,
Aug. 15–19, 2004. Springer, Heidelberg, Germany.

[13] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano.
The quest to replace passwords: A framework for com-
parative evaluation of web authentication schemes. In
2012 IEEE Symposium on Security and Privacy, pages
553–567, San Francisco, CA, USA, May 21–23, 2012.
IEEE Computer Society Press.

[14] D. Bosk, D. Frey, M. Gestin, and G. Piolle. Hidden
issuer anonymous credential. Proc. Priv. Enhancing
Technol., 2022(4):571–607, 2022.

[15] D. Bosk, D. Frey, M. Gestin, and G. Piolle. Hidden
issuer anonymous credential. Proc. Priv. Enhancing
Technol., 2022(4):571–607, 2022.

[16] S. A. Brands. Rethinking Public Key Infrastructures and
Digital Certificates: Building in Privacy. MIT Press,
Cambridge, MA, USA, 2000.

17

[17] E. Brickell, L. Chen, and J. Li. Simplified security no-
tions of direct anonymous attestation and a concrete
scheme from pairings. Cryptology ePrint Archive, Re-
port 2008/104, 2008. https://eprint.iacr.org/
2008/104.

[18] E. Brickell and J. Li. Enhanced privacy ID: A direct
anonymous attestation scheme with enhanced revoca-
tion capabilities. Cryptology ePrint Archive, Report
2007/194, 2007. https://eprint.iacr.org/2007/
194.

[19] E. F. Brickell, J. Camenisch, and L. Chen. Direct anony-
mous attestation. In V. Atluri, B. Pfitzmann, and P. Mc-
Daniel, editors, ACM CCS 2004: 11th Conference on
Computer and Communications Security, pages 132–
145, Washington, DC, USA, Oct. 25–29, 2004. ACM
Press.

[20] J. Camenisch, M. Drijvers, and M. Dubovitskaya. Practi-
cal uc-secure delegatable credentials with attributes and
their application to blockchain. In B. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, editors, Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 683–699. ACM,
2017.

[21] J. Camenisch, M. Drijvers, P. Dzurenda, and J. Hajny.
Fast keyed-verification anonymous credentials on stan-
dard smart cards. Cryptology ePrint Archive, Report
2019/460, 2019. https://eprint.iacr.org/2019/
460.

[22] J. Camenisch, M. Drijvers, and A. Lehmann. Anony-
mous attestation using the strong Diffie Hellman as-
sumption revisited. Cryptology ePrint Archive, Report
2016/663, 2016. https://eprint.iacr.org/2016/
663.

[23] J. Camenisch, M. Drijvers, and A. Lehmann. Univer-
sally composable direct anonymous attestation. In
C.-M. Cheng, K.-M. Chung, G. Persiano, and B.-Y.
Yang, editors, PKC 2016: 19th International Confer-
ence on Theory and Practice of Public Key Cryptogra-
phy, Part II, volume 9615 of Lecture Notes in Computer
Science, pages 234–264, Taipei, Taiwan, Mar. 6–9, 2016.
Springer, Heidelberg, Germany.

[24] J. Camenisch and A. Lysyanskaya. An efficient sys-
tem for non-transferable anonymous credentials with
optional anonymity revocation. In B. Pfitzmann, edi-
tor, Advances in Cryptology – EUROCRYPT 2001, vol-
ume 2045 of Lecture Notes in Computer Science, pages
93–118, Innsbruck, Austria, May 6–10, 2001. Springer,
Heidelberg, Germany.

[25] J. Camenisch and A. Lysyanskaya. A signature scheme
with efficient protocols. In S. Cimato, C. Galdi, and
G. Persiano, editors, SCN 02: 3rd International Confer-
ence on Security in Communication Networks, volume
2576 of Lecture Notes in Computer Science, pages 268–
289, Amalfi, Italy, Sept. 12–13, 2003. Springer, Heidel-
berg, Germany.

[26] J. Camenisch and A. Lysyanskaya. Signature
schemes and anonymous credentials from bilinear
maps. In M. Franklin, editor, Advances in Cryptology –
CRYPTO 2004, volume 3152 of Lecture Notes in Com-
puter Science, pages 56–72, Santa Barbara, CA, USA,
Aug. 15–19, 2004. Springer, Heidelberg, Germany.

[27] J. Camenisch and M. Stadler. Efficient group sig-
nature schemes for large groups (extended abstract).
In B. S. Kaliski Jr., editor, Advances in Cryptology –
CRYPTO’97, volume 1294 of Lecture Notes in Com-
puter Science, pages 410–424, Santa Barbara, CA, USA,
Aug. 17–21, 1997. Springer, Heidelberg, Germany.

[28] J. Camenisch and E. Van Herreweghen. Design and
implementation of the idemix anonymous credential
system. In V. Atluri, editor, ACM CCS 2002: 9th Confer-
ence on Computer and Communications Security, pages
21–30, Washington, DC, USA, Nov. 18–22, 2002. ACM
Press.

[29] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd Annual
Symposium on Foundations of Computer Science, pages
136–145, Las Vegas, NV, USA, Oct. 14–17, 2001. IEEE
Computer Society Press.

[30] M. Chase, S. Meiklejohn, and G. Zaverucha. Algebraic
MACs and keyed-verification anonymous credentials.
In G.-J. Ahn, M. Yung, and N. Li, editors, ACM CCS
2014: 21st Conference on Computer and Communica-
tions Security, pages 1205–1216, Scottsdale, AZ, USA,
Nov. 3–7, 2014. ACM Press.

[31] D. Chaum. Security without identification: Transaction
systems to make big brother obsolete. 28(10), 1985.

[32] I. J. S. . T. Committee. ISO/IEC 15946-5:2022: Cryp-
tographic techniques based on elliptic curves. https:
//www.iso.org/standard/80241.html, 2022.

[33] A. Connolly, P. Lafourcade, and O. P. Kempner. Im-
proved constructions of anonymous credentials from
structure-preserving signatures on equivalence classes.
Cryptology ePrint Archive, Report 2021/1680, 2021.
https://eprint.iacr.org/2021/1680.

[34] V. core development. Veramo. https://github.com/
uport-project/veramo, 2023.

18

https://eprint.iacr.org/2008/104
https://eprint.iacr.org/2008/104
https://eprint.iacr.org/2007/194
https://eprint.iacr.org/2007/194
https://eprint.iacr.org/2019/460
https://eprint.iacr.org/2019/460
https://eprint.iacr.org/2016/663
https://eprint.iacr.org/2016/663
https://www.iso.org/standard/80241.html
https://www.iso.org/standard/80241.html
https://eprint.iacr.org/2021/1680
https://github.com/uport-project/veramo
https://github.com/uport-project/veramo

[35] O. Corporation. Oracle java card technology. 2023.

[36] A. de la Piedra, J. Hoepman, and P. Vullers. Towards a
full-featured implementation of attribute based creden-
tials on smart cards. volume 8813 of Lecture Notes in
Computer Science, pages 270–289. Springer, 2014.

[37] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other
noisy data. In C. Cachin and J. Camenisch, editors,
Advances in Cryptology – EUROCRYPT 2004, volume
3027 of Lecture Notes in Computer Science, pages 523–
540, Interlaken, Switzerland, May 2–6, 2004. Springer,
Heidelberg, Germany.

[38] J. Doerner, Y. Kondi, E. Lee, abhi shelat, and L. Tyner.
Threshold bbs+ signatures for distributed anonymous
credential issuance. Cryptology ePrint Archive, Paper
2023/602, 2023. https://eprint.iacr.org/2023/
602.

[39] eHealth Network. Interoperability of health certificates:
Trust framework. 2021.

[40] M. Fischlin. Communication-efficient non-interactive
proofs of knowledge with online extractors. In V. Shoup,
editor, Advances in Cryptology – CRYPTO 2005, vol-
ume 3621 of Lecture Notes in Computer Science, pages
152–168, Santa Barbara, CA, USA, Aug. 14–18, 2005.
Springer, Heidelberg, Germany.

[41] H. Foundation. Hyperledger indy. https://github.
com/hyperledger/indy-node, 2023.

[42] H. Foundation. Hyperledger ursa. https://github.
com/hyperledger/ursa, 2023.

[43] H. Gunasinghe and E. Bertino. Privbiomtauth: Privacy
preserving biometrics-based and user centric protocol
for user authentication from mobile phones. IEEE Trans.
Inf. Forensics Secur., 13(4):1042–1057, 2018.

[44] C. Hanser and D. Slamanig. Structure-preserving sig-
natures on equivalence classes and their application to
anonymous credentials. In P. Sarkar and T. Iwata, edi-
tors, Advances in Cryptology – ASIACRYPT 2014, Part I,
volume 8873 of Lecture Notes in Computer Science,
pages 491–511, Kaoshiung, Taiwan, R.O.C., Dec. 7–11,
2014. Springer, Heidelberg, Germany.

[45] L. Hanzlik and D. Slamanig. With a little help from my
friends: Constructing practical anonymous credentials.
In G. Vigna and E. Shi, editors, ACM CCS 2021: 28th
Conference on Computer and Communications Secu-
rity, pages 2004–2023, Virtual Event, Republic of Korea,
Nov. 15–19, 2021. ACM Press.

[46] A. Juels and M. Wattenberg. A fuzzy commitment
scheme. In J. Motiwalla and G. Tsudik, editors, ACM
CCS 99: 6th Conference on Computer and Communica-
tions Security, pages 28–36, Singapore, Nov. 1–4, 1999.
ACM Press.

[47] M. Khalili, D. Slamanig, and M. Dakhilalian. Structure-
preserving signatures on equivalence classes from stan-
dard assumptions. Cryptology ePrint Archive, Report
2019/1120, 2019. https://eprint.iacr.org/2019/
1120.

[48] T. Looker, V. Kalos, A. Whitehead, and M. Lodder. The
BBS Signature Scheme. Internet-Draft draft-irtf-cfrg-
bbs-signatures-01, Internet Engineering Task Force, Oct.
2022. Work in Progress.

[49] W. Lueks, B. Hampiholi, G. Alpár, and C. Troncoso.
Tandem: Securing keys by using a central server while
preserving privacy. Proc. Priv. Enhancing Technol.,
2020(3):327–355, 2020.

[50] A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf.
Pseudonym systems. In H. M. Heys and C. M. Adams,
editors, SAC 1999: 6th Annual International Workshop
on Selected Areas in Cryptography, volume 1758 of
Lecture Notes in Computer Science, pages 184–199,
Kingston, Ontario, Canada, Aug. 9–10, 1999. Springer,
Heidelberg, Germany.

[51] MATTR. bbs-signatures. GitHub repository, 2023.

[52] W. Mostowski and P. Vullers. Efficient u-prove imple-
mentation for anonymous credentials on smart cards. In
M. Rajarajan, F. Piper, H. Wang, and G. Kesidis, editors,
Security and Privacy in Communication Networks - 7th
International ICST Conference, SecureComm 2011, Lon-
don, UK, September 7-9, 2011, Revised Selected Papers,
volume 96 of Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications
Engineering, pages 243–260. Springer, 2011.

[53] W. Mostowski and P. Vullers. Efficient u-prove imple-
mentation for anonymous credentials on smart cards.
In Security and Privacy in Communication Networks,
pages 243–260. Springer Berlin Heidelberg, 2012.

[54] C. Paquin and G. Zaverucha. U-prove cryptographic
specification v1.1 (revision 3), December 2013.

[55] R. Pass. On deniability in the common reference string
and random oracle model. In D. Boneh, editor, Advances
in Cryptology – CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 316–337, Santa Bar-
bara, CA, USA, Aug. 17–21, 2003. Springer, Heidelberg,
Germany.

19

https://eprint.iacr.org/2023/602
https://eprint.iacr.org/2023/602
https://github.com/hyperledger/indy-node
https://github.com/hyperledger/indy-node
https://github.com/hyperledger/ursa
https://github.com/hyperledger/ursa
https://eprint.iacr.org/2019/1120
https://eprint.iacr.org/2019/1120

[56] D. Pointcheval and J. Stern. Security arguments for
digital signatures and blind signatures. Journal of Cryp-
tology, 13(3):361–396, June 2000.

[57] L. Rila and C. J. Mitchell. Security protocols for
biometrics-based cardholder authentication in smart-
cards. In J. Zhou, M. Yung, and Y. Han, editors, ACNS
03: 1st International Conference on Applied Cryptog-
raphy and Network Security, volume 2846 of Lecture
Notes in Computer Science, pages 254–264, Kunming,
China, Oct. 16–19, 2003. Springer, Heidelberg, Ger-
many.

[58] V. Shoup and R. Gennaro. Securing threshold cryptosys-
tems against chosen ciphertext attack. In K. Nyberg,
editor, Advances in Cryptology – EUROCRYPT’98, vol-
ume 1403 of Lecture Notes in Computer Science, pages
1–16, Espoo, Finland, May 31 – June 4, 1998. Springer,
Heidelberg, Germany.

[59] A. Sonnino, M. Al-Bassam, S. Bano, S. Meiklejohn,
and G. Danezis. Coconut: Threshold issuance selective
disclosure credentials with applications to distributed
ledgers. In 26th Annual Network and Distributed System
Security Symposium, NDSS 2019, San Diego, California,
USA, February 24-27, 2019.

[60] Trinsic. Okapi. https://github.com/trinsic-id/
okapi, 2023.

[61] P. Vullers and G. Alpár. Efficient selective disclosure
on smart cards using idemix. In S. Fischer-Hübner,
E. de Leeuw, and C. J. Mitchell, editors, Policies and
Research in Identity Management - Third IFIP WG 11.6
Working Conference, IDMAN 2013, London, UK, April
8-9, 2013. Proceedings, volume 396 of IFIP Advances
in Information and Communication Technology, pages
53–67. Springer, 2013.

A Non Interactive Random Oracle Arguments

In this section we formally define non-interactive zero-
knowledge proofs of knowledge in the random oracle model.
Our game based definition of the primitive is taken from [8].
For security parameter λ, a random oracle H provides “oracle"
access to a random function {0,1}∗→{0,1}λ. Alternatively,
a random oracle H when queried on previously unqueried in-
put x returns H(x) as a uniformly sampled value from {0,1}λ,
and returns the same value when x is queried subsequently.

Definition A.1. A pair (P ,V) of PPT algorithms, where V
is deterministic is called a non-interactive zero-knowledge
proof of knowledge for NP relation R in the random oracle
model if it satisfies completeness, zero-knowledge and proof-
of-knowledge as defined below.

We view R as ∪λ∈NRλ where Rλ consists of (x,w) ∈ R
such that |x| ≤ λ and thus, |w| ≤ p(λ) for some polynomial p.
We now define the properties mentioned in Definition A.1.

- Completeness: We say that the scheme (P ,V) defined
above is complete if for all (x,w) ∈ Rλ, π ← PH(x,w),
Pr

[
V H(x,π) = 1

]
≥ 1−negl(λ) where H is a random or-

acle. Here the probability is taken over the choices of H
and P ’s randomness. Both P and V can query the random
oracle H.

- Zero-Knowledge: We say that the scheme (P ,V) defined
above is zero-knowledge if there exists a simulator S such
that any PPT adversary A has negligible advantage in dis-
tinguishing between Games G1 and G2 as defined below:

Pr

 AHb
2 (state,πb) = b ∧

R (x,w) = 1

(x,w,state)← A1(1λ)
π0← PH(x,w)

π1← S(x)
b←{0,1}

is negligible in λ, where H0() = H() for H ← Uλ and
H1() = S .H().

- Proof-of-Knowledge (Online): We say that the scheme
(P ,V) is an online proof of knowledge if there exists an
extractor K such that for any prover P̂ the game Gonline

involving K and P̂ as described below outputs 1 with over-
whelming probability.

Pr

 w←K H,Oq ∧
R (x,w) = 1 ∧
V H(x,π) = 1

(x,π))← P̂H(1λ)

is overwhelming in λ, where H←Uλ and Oq replies with
a list of H replies given already to P̂ .

- Proof-of-Knowledge (Rewinding): We say that the scheme
(P ,V) is a rewinding proof of knowledge if there is an effi-
cient extractor K such that the Game Gonline as defined for
online proof of knowledge outputs 1 with overwhelming
probability for every efficient prover P̂ . Here, the extractor
K is additionally provided “rewound copies” P̂ ′ of P̂ ini-
tialized with the same random tape, as the P̂ in the game
Gonline. This allows K implement “rewinding” technique
to extract witness by answering the random oracle queries
of rewound provers.

A.0.1 Random Oracle Proofs of Knowledge of Discrete
Log

Let ℓ∈N be fixed. For security parameter λ, let Gλ be a group
whose order is a λ-bit prime. Define Rλ to be the relation
consisting of pairs (x,w) where x=(x,g0, . . . ,gℓ)∈Gℓ+1

λ
and

w = (w0, . . . ,wℓ) ∈ Zℓ+1 satisfying x = ∏
ℓ
i=0 gw0

0 , which we
henceforth abbreviate simply as x= gw where g=(g0, . . . ,gℓ).
Let R denote the relation

⋃
λ Rλ.

20

https://github.com/trinsic-id/okapi
https://github.com/trinsic-id/okapi

Rewinding Proofs of Knowledge: The protocol (P ,V)
given below is folklore rewinding proof of knowledge proto-
col for the relation R in the random oracle model:

- P ’s Inputs: (x,w) ∈ R , where x = (x,g) as above.

- V ’s Inputs: x.

- Additionally, both P and V can query random oracle H.

- Proof Generation: P computes r← Zℓ+1, a = gr, c =
H(x,a), z = cw+ r and outputs π = (x,a,c,z).

- Verification: V verifies π = (x,a,c,z) as (i) check c =
H(x,a) and (ii) gz = xc ·a.

The proof of knowledge (via rewinding) follows from the
fact that underlying sigma protocol is 2-special sound (i.e,
witness can be computed from two valid transcripts with the
same first message, and different challenges), and Forking
Lemma ([6, 56]) which guarantees that two such transcripts
can be efficiently found for a prover that succeeds with non-
negligible probability.

Online Proofs of Knowledge: Transformations of three
message sigma protocols, to non-interactive proofs in the
random oracle model with online extractors were presented
in [40, 55]. While the transformation of [55] applies to any
three message sigma protocol, it incurs O(λ2) multiplicative
overhead in the proof size. The overhead is avoided using Fis-
chlin’s transformation [40], however the transformation only
applies to sigma protocols with quasi-unique responses (i.e,
an efficient adversary produces valid transcripts of the form
(x,a,c,z) and (x,a,c,z′) with z ̸= z′ with negligible probabil-
ity).

B Full protocol description

B.1 Public parameters and writing conven-
tions

We assume all parties have access to an ideal functionality
Fcrs, which can be queried to obtain the public parameters for
the protocol. For security parameter λ, Fcrs generates public
parameters consisting of:

• BG := (G1,G2,GT ,g1,g2,gT ,e, p)← BGen(1λ)
• Generators g1←G1, h0, . . . ,hℓ+1←G1 for ℓ= poly(λ),

g2←G2. Set L := {1, . . . , ℓ}.
• Session identifier sid′.

We additionally assume that parties have access to a trusted
card issuer FcardAuth which, on input jid from a card C and
(jid,C) from a holder H , does the following:

• Replies to both parties with ⊥ if C has previously re-
ceived values uid,K

• Replies to both parties with ⊥ if card and holder do not
belong to each other (e.g., by verifying physical appear-
ance against a picture)

• Samples uid← Zp, K← {0,1}λ and sends (jid,uid,K)
to C and (jid,huid1 ,K,C) to the holder.

To simplify the protocol presentation, we assume parties to
ignore inputs that do not correspond to the format specified
by FcbAC. We also assume that parties drop repeated mes-
sages for the same jid,vid, e.g., an issuer I drops a message
(sid, jid,C′,π′2) from a holder H ′ in case he already received a
(sid, jid,C,π2) from another holder H . In practise, accidential
or adversarial repetition of jid and vid can often be avoided
by proximity requirements, e.g., a card and a holder’s phone
receive vid while being placed on a verification terminal’s
sensor.

We use the sets H,V, I ⊆ L to denote the indices of at-
tributes specified by the holder, verifier, and issuer.

B.2 Setup
The issuer I generates a BBS+ keypair and shares the verifi-
cation key and other public parameters with all participants
during setup phase.

1. On input (SETUP,sid) the issuer I proceeds as follows:

- Check that sid= (I ,sid′).
- Choose x← Zp, ḡ1←G1. Compute w← gx

2.

- Set vk := (ḡ1, ḡx
1,w).

- Output (SETUPDONE,sid).

B.3 Join
The join protocol is between a card C , a holder H and issuer
I and proceeds as (see also Figure 5 for an overview of the
protocol flow):

1. On input (JOINISSUE,sid, jid,aI) the issuer I :

- Samples nI ←{0,1}λ and sends (sid, jid,nI) to a
card.

- Create a record ⟨sid, jid,aI ,nI ⟩

2. On input (JOINID,sid, jid) the card C :

- Retrieve tuple (uid,K). If there is no such tuple stored
yet, then send jid to FcardAuth, abort if the reply is ⊥,
otherwise recieve back (jid,uid,K) and store the two
latter values.

- Samples nC ←{0,1}λ and computes r = PRFK(nC).

- Computes B = huid
1 hr

0.

- On receiving (sid, jid,nI) from I , C computes signa-
ture proof π← SDL{(α,β) : hα

1 hβ

0 = B}(nI).

21

- Sends (sid, jid,(nC ,B,π)) to I .

3. On receiving message (sid, jid,(nC ,B,π)), the issuer I :

- Retrieves record ⟨sid, jid,aI ,nI ⟩ and appends nC ,B,π
to it.

- Sends (sid, jid,nC ,nI) to a holder.

4. On input (JOIN,sid, jid,C ,aH) the holder H :

- Retrieve record (C ,Q,K). If there is no such tuple,
send jid to FcardAuth. Upon receiving back ⊥, the
holder drops the query. Otherwise, upon receipt of
(jid,Q,K,C), the holder stores record (C ,Q,K).

- Parses aH as {(i,mi) : i ∈ H}
- On receiving (sid, jid,nC ,nI) from I , H computes:

– Samples s′← Zp.

– Computes C = hs′
0 ∏i∈H hmi

i+1.
– Computes signature proof π′ ←

SDL{(s′,{mi}i∈H) : C = hs′
0 ∏i∈H hmi

i+1}(nI).
– Creates record ⟨sid, jid,aH ,s′,nC ,nV ,C,H,π′⟩.
– Sends (sid, jid,(C,H,π′)) to I .

5. On receiving message (sid, jid,(C,H,π′)) from H , the
issuer I :

• Retrieves record ⟨sid, jid,aI ,C ,H ,nI ,nC ,B,π⟩ and
appends C,H,π′ to it.

• Parses aI as {(i,mi) : i ∈ I}
• Abort if H ̸= L\ I.

• Verifies π′ as SDL.Verify(x′,π′) ̸= 0 for x′ =
(C,{hi+1}i∈H ,nI). Abort if the proof fails.

• Sample e← Zp \{x}, s← Zp.

• Compute A =
(
g1hs

0 ·B ·C ·∏i∈I hmi
i+1

)1/(e+x).

• Send (sid, jid,(aI ,A,e,s)) to H .

6. On receiving message (sid, jid,(aI ,A,e,s)) from issuer
I , the holder H :

- Retrieves record ⟨sid, jid,aH ,s′,nC ,nI ,C,H,π′⟩
- Set r = PRFK(nC).

- Sets σ = (A,e,s+ s′+ r).

- Sets m to be the message vector contained in
aH ,aI .

- Continue below only if the received credential veri-
fies, i.e., if e(A,wge

2) = e(g1,hs+s′+r
0 ∏

ℓ
i=1 hmi

i ,g2).

- Stores (C ,Q,K,m,σ).

- Outputs (JOINED,sid, jid).

B.4 Presentation
The presentation phase involves a card C , a holder H and
verifier V . The verifier specifies attributes to be disclosed
aV as {(i,mi) : i ∈ V}. The protocol involves H showing
possession of attributes (undisclosed) aH = {(i,mi) : i ∈ H}
for H = L \V , such that the complete message vector m =
(m1, . . . ,mℓ) was used to pair H and C . We now describe the
detailed protocol (See also Figure 6 for an overview of the
protocol flow).

1. On input (SETATTRS,sid,vid,aV), the verifier V :

- Samples nV ← {0,1}λ and creates record
⟨sid,vid,aV ,nV ⟩.

- On receiving (sid,vid,nH) from holder H , add nH to
the record and send (sid,vid,nH ,nV) to a card.

2. On input (SETID,sid,vid), the card C :

- Retrieves record (uid,K) and aborts if it contains
(⊥,⊥).

- On receiving message (sid,vid,nH ,nV) from V , the
card C :

– Samples nC ←{0,1}λ. Sets n = nC ||nH .
– Computes r = PRFK(n).
– Computes B = huid1 hr

0.
– Computes signature proof: π ← SDL{(α,β) :

hα
1 hβ

0 = B}(nV).
– Anonymously sends (sid,vid,(nC ,B,π)) to V .

3. On receiving (sid,vid,(nC ,B,π)) from some card, the
verifier V :

- Retrieves record ⟨sid,vid,aV ,nV ,nH ⟩ and appends
nC ,B,π to it.

- Sends (sid,vid,nC ,nV ,aV ,B) to a holder.

4. On input (SETCRED,sid,vid), the holder H :

- Samples nH ←{0,1}λ and sends (sid,vid,nH) to V .

- Upon receiving (sid,vid,nC ,nV ,aV ,B) from V , H
parses aV as {(i,mi) : i ∈V} and sets n = nC ||nH .

- Retrieves record (Q,K,m,σ) such that B = Q ·
hPRFK(n)

0 and m[i] = mi for all i ∈V . If no such record
is found send (sid,vid,⊥,⊥,⊥,⊥) to V . The ⊥ val-
ues here indicate that the holder does not have required
attributes with any paired card.

- Define m′i+1 = m[i] for i = 1, . . . , ℓ. Parse σ as (A,e,s).

- Computes (A′, Ā,d,π′) ← ProveH (K,Q,
(m′2, . . . ,m

′
ℓ+1),(A,e,s),aV ,n,B,nV).

- Sends (sid,vid,(A′, Ā,d,π′)) to V .

22

5. On receiving (sid,vid,A′, Ā,d,π′) from some holder, the
verifier V :

- Retrieves record ⟨sid,vid,aV ,nV ,nC ,B,π⟩
- Sets x = (B,h0,h1,nV), x′ =
(A′, Ā,d,aV ,{hi+1}i∈L,nV).

- If π′ =⊥, outputs (VERIFIED,sid,vid,0).

- If SDL.Verify(x′,π′) = 0∨SDL.Verify(x,π) = 0 out-
puts (VERIFIED,sid,vid,0).

- Sets f = 1 if e(Ā,g2) = e(A′,w) else sets f = 0.

- Outputs (VERIFIED,sid,vid, f).

C Full proofs

C.1 Proof of Theorem 4.1
Proof. Since we are analysing security in the random-oracle
model, we assume that parties have access to a random or-
acle H. We will skip completeness, as it follows from di-
rect calculation, and the completeness of signature proofs
of knowledge. For soundness, we consider the case when
adversary A corrupts C and H and describe the extrac-
tor EA . Since V outputs 1, we have SDL.Verify(x,π) =
1 and SDL.Verify(x′,π′) = 1 for x = (B,h0,h1,nV) and
x′ = (A′, Ā,d,{mi}i∈V ,{hi}ℓi=0,nV) respectively. From the
argument-of-knowledge property of signature proofs (Lemma
3.1), with overwhelming probability we extract (α,β) ←
SDL.EA(x,π) and (e,s′,r2,r3,{mi}i∈H) ← SDL.EA(x′,π′)
satisfying the equations:

hα
1 hβ

0 = B, A′−ehr2
0 = Ā/d,

d′−r3hs′
0 ∏

i∈H
hmi

i = g−1
1 B−1

∏
i∈V

h−mi
i

Assuming the extractor outputs a non-trivial discrete log rela-
tion amongst the generators in pp with negligible probability,
above equations imply r3 ̸= 0. From the success of the pairing
check e(Ā,g2) = e(A′,w) we conclude that Ā = (A′)x. From
above equations we get:

A′e+x
= dhr2

0 =
(
g1hs′

0 hα
1 hβ

0

ℓ

∏
i=2

hmi
i
)1/r3hr2

0

⇒ (A′r3)e+x = g1hs′+β+r2r3
0 hα

1

ℓ

∏
i=2

hmi
i .

which implies that (A′r3 ,e,s′+β+ r2r3) is a valid signature
on (α,m2, . . . ,mℓ). The extractor EA outputs the extracted
message-signature pair.

To prove zero knowledge, we describe the simulator S
which proceeds as follows: S simulates a random oracle H′

where it responds to query x by uniformly choosing H′(x)
from {0,1}λ if x has not been queried before, otherwise it

responds with previously chosen value of H′(x). The sim-
ulator S simulates nH ← {0,1}λ as the first message from
the holder to V . When V sends the message nH ,nV to C ,
S simulates (nC ,B,π) towards V by picking nC ← {0,1}λ,
B← G1 and π← SDL.Sim(x) for x = (B,h0,h1,nV). Later
when V sends the message (nC ,nV ,aV ,B) to H , S simulates
the message (A′, Ā,d,π′) towards V by choosing ρ← Zp,
A′← ḡρ

1 , Ā← ḡρ

2 , d←G1 and π′← SDL.Sim′(x′) where x′ =
(A′, Ā,d,{mi}i∈V ,{hi}ℓi=0,nV). Here SDL.Sim and SDL.Sim′

denote the simulators for relations R and R ′ proved by C and
H respectively. We remark that both simulators SDL.Sim and
SDL.Sim′ output simulated proofs using H′ as their (shared)
random-oracle, i.e SDL.Sim.H= SDL.Sim′.H=H′ as in Def-
inition 3.1.

We argue indistinguishability of simulator S ’s output from
verifier’s veiw in the protocol via following games

Game G0: (Real Protocol): This game runs the real proto-
col described in Figure 3, with honest C and H with correct
inputs.

Game G1: (C and H query PRF): We re-structure the
above game as follows: We no longer provide the PRF key
K as input to C and H . Instead we introduce a challenger
B which runs the PRF functionality. The challenger B sam-
ples K← K when instantiated, and returns PRFK(n) when
queried with input n. Accordingly, we modify C and H to
obtain r = PRFK(n) by querying B . As this change is only
sytanctical, it is indistinguishable to V .

Game G2: (C and H query random function): This game
is identical to previous game except that B when queried on
an input n, returns uniformly sampled r← Z∗p if n has not
been queried before. For subsequent queries to n, the same
value is returned. Thus B simulates a random function. This
change is indistinguishable to V , as a distinguishing V can
be used to construct a distinguisher D between outputs of
PRF and random function as follows: Let B be a challenger
in the PRF game, i.e., B samples b← {0,1} and emulates
the challenger in G1 when b = 0, and emulates the challenger
in G2 when b = 1. The distinguisher D runs the re-structured
game querying B on input n to obtain r1. When b = 0, the
game is identical to G1 while for b = 1 it is identical to G2.
The distinguisher invokes V to distinguish between the two.

Game G3: (S runs random-oracle): In this game, we re-
place random oracle H by the random-oracle H′ which is
simulated by S . This game is clearly indistinguishable from
the previous game.

Game G4: (C simulates proofs): In this game, instead of
generating proof π in ProveC using the algorithm SDL.Prove,
C generates it using zero-knowledge simulator SDL.Sim, i.e.
π← SDL.Sim(x) , where x is the statement for the proof
as defined earlier. Here, SDL.Sim uses the random oracle
H′ simulated by S as introduced in the previous game. We

23

prove that G4 is indistinguishable from G3. We show that a
distinguisher D between G4 and G3 can be used to construct
an adversary B =(B1,B2) which has a non-negligible success
probability in the game describing zero-knowledge property
in Definition 3.1.

We construct a challenger C as follows: The challenger runs
a random oracle H′. Initially it waits to receive (x,w) from B .
Subsequently it samples b←{0,1} uniformly and waits for
further queries from B . On receiving a random oracle query x
from B , the challenger C returns H′(x). On receiving a query
prove(x,w) from B , C computes π← SDL.ProveH

′
(x,w) if

b = 0 and π← SDL.Sim(x) if b = 1, where SDL.Sim.H() =
H′().

We now describe the adversary B . The adversary B runs the
game G3 with following re-structuring: It forwards all queries
to the random oracle to C , which answers them using its
own simulated random-oracle as described above. Similarly,
proof π is obtained by querying the challenger C using query
prove(x,w) instead of computing π ← SDL.Prove(x,w).
Here w denote the witness used to generate proof for the
statement x. When b = 0, the re-structured game is identical
to G3, while for b = 1 it is identical G4. Thus B can use
the distinguisher D to succeed against C with non-negligible
probability, contradicting the zero-knowledge property of sig-
nature proofs in Definition 3.1.

Game G5: (H simulates proofs): This game is same as pre-
vious game, except we also generate the proof π′ by the holder
as π′← SDL.Sim′(x′) where SDL.Sim′ also uses the random
oracle H′ run by S . Additionally, we abort if SDL.Sim′ at-
tempts to program a query x′ in H′ which has been previously
queried or programmed. This happens with negligible prob-
ability because x′ is distributed uniformly over a set of size
Ω(2λ). This game can be shown to be indistinguishable from
the previous game using zero-knowledge property of signa-
ture proofs as earlier. Moreover, when the game does not
abort, its output is identical to the output of S , as the proofs π

and π′ are distributed indentically to the case when SDL.Sim
and SDL.Sim′ use a shared random oracle H′ as used by the
simulator.

Game G6: (Simulate statements for card and holder
proofs): Finally, we simulate the statements for card and
holder proofs by choosing nH ,nC ,B,A′, Ā,d as nH ←{0,1}λ,
nC ← {0,1}λ, B← G1, ρ← Zp, A′ ← ḡρ

1 , Ā = ḡρ

2 (= A′x),
d←G1, which is identical to their distribution output by the
simulator S . The distribution corresponds to uniformly and in-
dependently sampling randomness r inside algorithms ProveC
and ProveH , instead of querying the random function as in G5.
Since all the queries to the random function are distinct with
overwhelming probability, this change is indistinguishable.
This completes the proof of zero-knowledge.

C.2 Proof of Theorems 7.1 and 7.2
Proof Sketch for both above Theorems. We show the con-
struction of simulator S such that no PPT environment E
can distinguish between the interaction of real world adver-
sary A with the real-world protocol πcbAA and that of the
ideal-world adversary S interacting with ideal functionality
FcbAC. We can further assume (without loss of generality) that
A is a dummy adversary that relays messages between E and
real protocol/simulator.

The proof strategy is to start with the game where environ-
ment E interacts with the real protocol, and via a sequence of
games which are indistinguishable, arrive at a game where E
interacts with the functionality FcbAC and a simulator S . The
challenge for S is hence to produce a view indistinguishable
from the real protocol run, but without knowing the informa-
tion that is kept secret by FcbAC, which is:

• Attribute sets aH ,aI in the join phase.
• Party identifiers C and H in the presentation phase.
We describe the sequence of games below and start with a

sketch.

• The real protocol: In this game, we have an empty func-
tionality F and a simulator S which runs all the honest
parties according to the real-world protocol. To enable this,
the functionality F simply passes all the inputs from the
environment to S . The outputs of honest parties in S are
sent back to E , again via the functionality F . Clearly, this
game is simply a restructuring of the real-world protocol.

• Add setup to F : In this game, we add setup interface of
FcbAC to F , but otherwise continue to forward inputs from
E to S . After the simulated issuer completes the setup,
S indicates the same the to F , which also runs the setup
interface of FcbAC. These changes being internal to F and
S are indistinguishable to E .

• Add join phase to F : We beef up the functionality F
further by incorporating the code of join interface of FcbAC,
with a slight difference of still forwarding inputs from the
environment to S . This allows simulator S to continue sim-
ulating the real world protocol as in previous games, but
in parallel we start populating attributes in F also. Specifi-
cally, whenever the issuer in simulated real world protocol
with C and H outputs a credential (A,e,s) for attribute
vector m, the simulator adds the corresponding pair and at-
tributes (C ,H ,m) in F using JOINCOMPLETE interface.
In case of corrupt H , the part of vector m not specified by
the issuer is “extracted" from the commitment and proof
(C,π′) sent by the holder. In nutshell, the game ensures that
corresponding to each issued credential (A,e,s) in the real
protocol, the functionality adds a record (C ,H ,m). Finally,
we notice that the messages (2) and (4) to the corrupt is-
suer can be simulated by uniformly choosing outputs of the
PRF and using the simulators for zero-knowledge proofs
to simulate proofs on the resulting (simulated) statements.

24

• Add presentation phase to F : We now replicate presen-
tation phase of FcbAC in F . This means that F hides in-
formation which it gets from E from S . In particular, it
hides identities of honest C and H from S (as required by
anonymity). Thus, S can no longer run the real-world pro-
tocol, but must deliver identical output in the VERIFIED
interface while simulating messages to the adversary as
in the real protocol. The most non-trivial simulation is
that of messages to the verifier in the real protocol since
they depend on the secrets maintained within the card (uid)
and the holder (attributes m, signature (A,e,s)). For sim-
ulating these messages we primarily lean on the simula-
tion in Theorem 4.1. The consistency of VERIFIED output
between the two games relies on the fact that for each
credential issued against a holder and a card for certain at-
tributes in the real protocol, there is a corresponding record
within F , which can be used to determine the output of
VERIFIED by calling VERIFYCOMPLETE. In all honest
case, the consistency of outputs is obvious: Honest C and
H are granted credentials (A,e,s) in the real-world join
protocol for attributes m, if and only if the corresponding
record (C ,H ,m) is also present in F . Moreover, honest
holder only generates proofs if has the credential for speci-
fied attributes and card (which it recognizes by checking
B = Q ·hPRFK(n)

0 against its list of (Q,K) pairs), otherwise
it outputs a dummy proof ⊥ which is invalid by conven-
tion. By completeness of the protocol in Theorem 4.1, the
real protocol to determine the VERIFIED output can be re-
placed by looking for the appropriate record in F , which is
accomplished by querying VERIFYCOMPLETE interface
of F . If the real world-protocol succeeds for corrupt parties,
we can extract valid uid for card, attributes m and signa-
ture (A,e,s) which if not present in F would constitute a
forgery of the issuer’s signature. More details of this reduc-
tion appear in the detailed proof that follows this overview.
This ensures consistency of outputs even in presence of
corrupt parties.

• Stop passing inputs to simulator in join: To make F
identical to FcbAC, we need to “undo" the extravagance of
passing inputs from E to S in the join interface. Since the
presentation phase now no longer depends on the proto-
col execution in the join phase, and only on the records
(C ,H ,m) present in F , we no longer need to run the real-
world protocol in join phase, as long as we still add records
in F as in the previous games. The JOINCOMPLETE in-
terface is sufficient to add the records, as long as we know
that the real protocol issues a credential. For the all honest
case this is always true. For corrupt holders, the simulator
can make checks identical to those made by the issuer in
the real protocol before issuing the credential. It can also
provide “extracted" attributes to F on behalf of the corrupt
holder as earlier. We also change the simulator to explic-
itly maintain the state of simulated parties, as it no longer

needs to execute them. The simulation of messages to the
adversary (holder) is trivial as simulator has access to the
required inputs aI (leaked to S in this case) and state of
honest parties (e.g uid for cards, signing key x for issuer)
to generate the messages.

The above completes the bird’s eye view of the full proof
that follows.

We give an overview of the most important cases to simu-
late in Figure 7 (corrupt card in presentation phase), Figure
8 (corrupt holder), and Figure 9 (corrupt verifier). The full
indistinguishability argument follows.

Game G0: The real protocol execution. In this game, we
consider a dummy functionality F and a simulator S . The
simulator S runs all the honest parties, according to the real-
world protocol described in Section 7. For discreteness, we
use “P ” to denote the simulated copy of P run by the simu-
lator. As S runs all the honest parties, it also receives all the
messages sent by the adversary A on behalf of the corrupt par-
ties to honest parties. The simulator S also relays the outputs
of honest parties back to F . The functionality F in this game
acts as a relay between the environment E and the real world
protocol run by S . Specifically, F accepts inputs from E for
the honest party P according to the interface specified by
FcbAC, and relays the same to S which uses them as inputs to
the corresponding simulated party “P ”. In the other direction,
on receiving an output for a simulated party “P ” from S , F
outputs the same to P . By construction, this game is identical
to E interacting with the real world protocol.

Game G1: F incorporates Setup interface. In this game
F additionally incorporates the code of the SETUP inter-
face of FcbAC. We modify F from the previous game as:
On receiving (SETUPDONE,sid) from S as output of “I ”,
it executes the SETUP interface of FcbAC (which outputs
(SETUPDONE,sid) to E). Clearly, this change is indistin-
guishable for E , as additional messsages are internal to F
and S .

For corrupt issuer we change S as follows: When A delivers
the same message (sid,vk) to all honest parties, the simula-
tor calls (SETUP,sid) on F , and subsequently on receiving
(SETUP,sid) from F it calls (SETUPDONE,sid) on F . Oth-
erwise S aborts.

Game G2: F incorporates Join interface but forwards
inputs. In this game F additionally incorporates the join
interface of FcbAC with following differences:

- In step (J-H.2) output (JOIN, jid,H ,aH) to S .

- In step (J-I.2) output (JOINISSUE, jid,aI) to S .

Accordingly we change S for join related queries as:

25

Join Phase S simulates an honest interaction between C ,H
and I over secret channels, meaning that no message contents
will be revealed to A but A will learn that a message was sent.
For brevity we use the message numbering from Figures 5
and 6 in the below. S initializes records JR(x) with attributes
(C←⊥,H←⊥) in case they do not exist when updated.

On message (JOINID,vid,C) from FcbAC:
• If there is no tuple (C ,∗,∗) stored yet, choose uid← Zp,

K←{0,1}λ and store (C ,uid,K).
• S updates JR(jid).C← C .

On message (JOIN, jid,H) from FcbAC:
• S updates JR(jid).H←H .

On message (JOINISSUE, jid) from FcbAC:
• S signals the sending of consecutive messages (1)-(5)

between issuer I , card JR(jid).C and holder JR(jid).H of
the join phase to A , where message (2) is only signaled
if JR(jid).C ̸= ⊥, and message (4) is only signaled if
JR(jid).H ̸=⊥.

• If A delivered all messages unchanged, S sends
(JOINCOMPLETE, jid) to FcbAC.

Presentation Phase Let C ∗ denote the identifier of a corrupt
card who is interacting with the verifier.

On message (SETATTRS,vid,V ,aV) from FcbAC:
• Sample nH ,nV ← {0,1}λ and send nH ,nV to the cor-

rupt C ∗ after message (1) has been signalled.

On message (B,π) from the corrupt C ∗:
• Signal the sending of message (4) on the channel to the

holder.
• Let C ∗ denote any corrupt card. Send (SETID,vid) to

FcbAC as input from C ∗.

On message (SETCRED,vid) from FcbAC:
• Signal sending of message (1) to verifier, if it has not

been signalled.
• If message (4) has already been signaled, signal now the

sending of message (5) on the channel between verifier
and holder.

• Send (VERIFYCOMPLETE,vid,0) to FcbAC. // Presen-
tations with corrupt cards always fail.

Figure 7: Simulator for an honest join phase, and a presenta-
tion phase with a corrupt card.

Join Phase

On message (JOINISSUE, jid,aI) from FcbAC:
• Signal the sending of messages (1) on the channel to the

card

On message (JOINID, jid,C) from FcbAC:
• If message (1) has already been signaled, signal sending

of message (2) by C .
• If there is no tuple (C ,∗,∗) stored yet, choose uid← Zp,

K←{0,1}λ and store (C ,uid,K).
• Choose nC ,nI ← {0,1}λ, r ← PRFK(nC). Set B ←

huid1 hr
0 and π← SDL{(α,β) : hα

1 hβ

0 = B}(nI).
• Send nC ,nI to the corrupt holder.

On message (C,π′) from A to the issuer:
• [Thm. 7.2: {mi}i∈H ← EA((C,{hi+1}i∈H),π

′)]
• Send (JOIN,vid, [Thm. 7.2: {(i,mi) : i ∈ H}]) to FcbAC.
• Run the issuer’s code to produce (A,e,s) and send
(aI ,A,e,s) to the corrupt holder.

• Send (JOINCOMPLETE,vid) to FcbAC.

Presentation Phase

On message (SETATTRS,vid,V ,aV) from FcbAC:
• S signals the sending of message (2) to the card after

receiving (SETCRED,vid) from FcbAC.

On message (SETID,vid, [C ′]) from FcbAC:
• Signal the sending of message (3) from the card to the

verifier, but only after message (2) was signaled.
• If the message does not have a card identifier, choose a

fresh pair uid← Zp, K←{0,1}λ

• If the message contains a card identifier C ′, retrieve
(C ′,uid,K).

• Run the card and the verifier protocol with these values
on input aV , to obtain nC ,nV ,B. Send (nC ,nV ,B,aV) to
A .

On message nH from A to the verifier:
• Send input (SETCRED,vid) to FcbAC on behalf of any

corrupt holder.

On message (A′, Â,d′,π′) from A to the issuer:
• Run the verifier code on the message and let b denote its

output.
• Send (VERIFYCOMPLETE,vid,b) to FcbAC.

Figure 8: Simulator for a corrupt holder.

26

Presentation Phase

On message (SETCRED,vid) from FcbAC:
• Choose nH ←{0,1}λ and send nH to A .

On message (SETID,vid, [C ′]) from FcbAC:

On message (SETID,vid) from FcbAC and n′H ,nV from A :
• Invoke the ZK S of Thm. 4.1 on n′H ,nV to produce

nC ,B,π. Send (nC ,B,π) to A .

On messages (n′C ,n
′
V ,B′,aV) from A and (SETCRED,vid)

from FcbAC:
• If nC ,nV ,B ̸= n′C ,n

′
V ,B′ then send (⊥,⊥,⊥,⊥) to A .

• Send (SETATTRS,vid,aV) to FcbAC on behalf of the
corrupt V , send (VERIFYCOMPLETE,vid,1) to FcbAC

and wait to receive back (VERIFIED,vid, f).
• If f = 0, then send message (⊥,⊥,⊥,⊥) to A .
• If f = 1, invoke again the ZK S (Thm. 4.1) on the veri-

fier’s messages to create message (A′, Ā,d,π′) and send
it to A .

Figure 9: Simulator for a corrupt verifier appearing only in
the presentation phase.

Join Phase

On message (JOIN, jid,H ,H ′) from FcbAC:
• Set JR(jid).setH← H ′, JR(jid).H←H .

On message (JOINID, jid,C) from FcbAC and nI from A :
• If no record (C ,∗,∗) exists, sample uid← Zp, K← K

and store (C ,uid,K); otherwise fetch uid,K from the
record (C ,uid,K).

• Simulate message (nC ,B,π) to the adversary by choos-
ing nC ←{0,1}λ, r← PRFK(nC), B← huid

1 hr
0 and π←

SDL.Sim(B,h0,h1,nI).

On message (nC ,nI) from A :
• Simulate message (C,H,π′) by choosing C←G1, H =
JR(jid).setH and π′ ← SDL.Sim(C,{hi+1}i∈H ,nI) but
only after receiving (JOIN, jid,∗) from FcbAC.

On message (aI ,A,e,s) from A :
• Abort if e(A,wge

2) ̸= e(g1hs
0 ·B ·C ·∏i∈I hmi

i+1,g2)
• Send (JOINISSUE, jid,aI) to FcbAC and on immediate

output (JOINISSUE, jid) send (JOINCOMPLETE, jid)
to FcbAC.

Presentation Phase: Same as that for corrupt verifier in Fig
9.

Figure 10: Simulation for corrupt issuer appearing in the join
phase, and as a verifier in the presentation phase

• Honest H : We first consider the case when issuer
is honest. On receiving messages (JOIN, jid,H ,aH),
(JOINID, jid,C) and (JOINISSUE, jid,aI) from F , S runs
the corresponding simulated parties “H ”, “C” and “I ” with
the respective inputs. When simulated holder “H ” outputs
(JOINED, jid), S calls (JOINCOMPLETE, jid) interface
of F . When the issuer is corrupt, the simulator S calls
(JOINISSUE, jid,aI) interface of F after receiving mes-
sages (jid,nI), (jid,n′C ,n

′
I) and (jid,aI ,A,e,s) from the ad-

versary. The simulator then calls (JOINCOMPLETE, jid)
when simulated holder outputs (JOINED, jid).

• Corrupt H : When issuer is honest, we proceed
as: When adversary A delivers the message
(jid,C,H,π′) to “I ” on behalf of a corrupt H , and
SDL.Verify((C,{hi+1}i∈H ,n2),π) = 1, S extracts holder
attributes {mi}i∈H ← SDL.EA((C,{hi+1}i∈H),nI ,π

′).
Here nI is the nonce sent by issuer to the corrupt holder.
As we remark later while proving indistinguishability of
this game to the previous game, the proof π′ here needs
to be online-extractable (see Appendix A and references
therein for details). If the proof π′ does not verify for
the statement (C,{hi+1}i∈H ,nI), S chooses mi : i ∈ H
arbitrarily. In this case they will never be delivered to F via
JOINCOMPLETE. Finally S sets aH = {(i,mi) : i ∈ H}
and calls (JOIN, jid,aH) interface of F on behalf of some
corrupt holder H ′. Later, when “I ” produces final message
(jid,aI ,A,e,s) (which happens only if holder proof verifies)
S calls the (JOINCOMPLETE, jid) interface of F to
install the attributes in F . When the issuer is also corrupt,
S simply runs the real-wolrd protocol for the honest card
C .

We argue that the changes are indistinguishable to E . Since
F always delivers inputs from E to the corresponding sim-
ulated parties in S , honest parties run with identical inputs
between this and the previous game. As a consequence, all
the messages to the adversary are distributed identically in
the two games. It only remains to argue that both the games
deliver the output (JOINED, jid) to E identically. Since S in
current game calls JOINCOMPLETE to deliver the output,
only if the real-world protocol outputs the same, output in
G2 implies output in G1. In the other direction, the only addi-
tional check made in JOINCOMPLETE interface of F is the
check H = L\ I (J2). This must hold for real-world protocol
to output as well and thus does not prevent G2 from deliver-
ing the output. Hence we conclude that G2 outputs whenever
G1 outputs. This completes the proof of indistinguishability
between the two games.

Game G3: F replicates the presentation phase of FcbAC.
In this game, we modify the presentation phase of F to be
identical to that of FcbAC. We note that F is still not identical
to FcbAC as the join interface in F still forwards E’s inputs
to honest parties to S . We modify S from the previous game
as follows:

27

Join Phase: Same as in Game G2.

Presentation Phase: We change the presentation phase to de-
liver the output to honest verifier using VERIFYCOMPLETE
instead of forwarding the output of simulated verifier “V ”
like in previous game.

• All honest: This case does not require S to simulate
any protocol messages. It just delivers the output using
VERIFYCOMPLETE after all required interfaces of F
have been called.

– Call (VERIFYCOMPLETE,vid,1) interface of F to de-
liver the output to E after receiving (SETATTRS,vid,∗),
(SETID,vid) and (SETCRED,∗) from F .

• Corrupt C : In this case, S simulates the second message
in Figure 6 from issuer to the card, and calls the SETID
interface of F on behalf of C using an arbitrary corrupt
card C ′.
– On input (SETATTRS,vid,V ,aV) from F : sample

nH ,nV ← {0,1}λ and send (vid,nH ,nV) to A after re-
ceiving (SETCRED,vid) from F .

– On message (vid,nC ,B,π) from A :

* Call (SETID,vid) interface of F using a corrupt
card C ′ and on immediate message (SETID,vid)
from F , call (VERIFYCOMPLETE,vid,0) inter-
face to deliver the output to E .

• Corrupt H : In this case S needs to simulate the fourth
message (vid,nC ,nV ,B,aV) in Figure 6 in addition to de-
livering the VERIFIED output. On receiving the message
(vid,nH) from A , the simulator chooses nC ,nV ←{0,1}λ

uniformly at random, while distribution of B depends
on whether the card C was previously joined to a cor-
rupt holder or not. Moreover, the simulator can determine
whether the presentation would succeed or fail: In case
C is not paired to a corrupt holder, it will always fail.
If the card was previously paired, S learns the card, and
can check its credentials issued against the card, to deter-
mine if one of them satisfies the presentation predicate
and that the corrupt holder is using such a credential. The
latter is essentially accomplished by verifying the mes-
sages from the adversary like an honest verifier would. The
simulator appropriately sets b = 0,1 to indicate whether
VERIFYCOMPLETE should deliver success or failure. We
provide the details below:

– On input (SETATTRS,vid,V ,aV) from F : create a
record (vid,V ,aV) to pull up aV later.

– On input (SETID,vid) from F : This is the case when
card was not previously joined with any corrupt H ′.
* Sample nC ,nV ← {0,1}λ, B ← G1 and simulate

message (vid,nC ,nV ,B,aV) towards A , but only af-
ter (SETATTRS,vid,V ,aV) is received from F and
(vid,nH) is delivered by the adversary. Note that we
pick B which depends on PRF output uniformly and

independently at random, as with overwhleming prob-
ability, the adversary sees messages corresponding to
PRF outputs on distinct queries.

– On input (SETID,vid,C) from F : This is the case when
card was previously joined with some corrupt H ′.
* Fetch Q,K corresponding to simulated card “C”.

* Sample nC ,nV ← {0,1}λ, set n = nC ||nH , B = Q ·
hPRFK(n)

0 and simulate message (vid,nC ,nV ,aV ,B) to-
wards A , but only after (SETATTRS,vid,V ,aV) is
received from F and (vid,nH) is delivered by the
adversary.

– On message (vid,A′, Ā,d,π′) from A :

* Parse aV = {(i,vi) : i ∈V}.
* Set x′ = (A′, Ā,d,aV ,{hi+1}i∈L\V ,nV).

* If SDL.Verify(x′,π′) = 1 ∧ e(Ā,g2) = e(A′,w) set
b← 1, otherwise set b← 0.

* Call (SETCRED,vid) interface of F on be-
half of some corrupt holder H ′ and then call
(VERIFYCOMPLETE,vid,b) interface to deliver
the output.

• Corrupt C ,H : On input (SETATTRS,vid,V ,aV) from F ,
simulate the message (vid,nH ,nV) with n1← {0,1}λ to-
wards the adversary A but only after it delivers (vid,nH).
Thereafter simulate (vid,nC ,nV ,B,aV) towards the adver-
sary with after it delivers the message (vid,nC ,B,π). On re-
ceiving (vid,A′, Ā,d,π′) from A , S calls (SETCRED,vid)
and on subsequent immediate message (SETCRED,vid)
from F , calls (VERIFYCOMPLETE,vid,0) to deliver the
output.

• Corrupt V :We only need to simulate protocol messages to
V in this case. Note that the verifier forwards the holder’s
part of PRF input nH to C which is used by the card (with
its own part nC to determine the PRF input) to output a ran-
domized commitment B to uid. Similarly the holder com-
bines the forwarded nC with its own part nH to reconstruct
the PRF query n = nC ||nH and uses it to de-randomize
the commitment B to obtain the non-hiding commitment
Q = B.h−PRFK(n)

0 . It can then use Q to identify one of
the joined cards (if any). We let the simulator simulate
(vid,⊥, . . . ,⊥) as the message (5) whenever A incorrectly
forwards nH ,nC or B. If the A relays the messages hon-
estly the simulator simulates message (5) as (vid,⊥, . . . ,⊥)
if F returns (vid,VERIFIED,0) when queried using
VERIFYCOMPLETE interface, and according to simula-
tion in Theorem 4.1 when VERIFYCOMPLETE query re-
turns (vid,VERIFIED,1) as this case meets the require-
ments for the zero knowledge property in the theorem
which honest C and H participate with the correct inputs.
We now provide details of the simulation in this case, and
later argue the correctness.

– On input (SETID,vid) from F : Simulate message
(vid,nC ,B,π) towards A by choosing nC ← {0,1}λ,

28

B← G1 and π← SDL.Sim(B,h0,h1,nV) but only af-
ter A delivers (vid,n′H ,nV). Again, B is sampled inde-
pendent of PRF inputs nC ,nH as these are distinct with
overwhelming probability.

– On A delivering message (vid,n′C ,n
′
V ,aV ,B′): Call

(SETATTRS,vid,aV) of F using any corrupt party V ′.
– On input (SETCRED,vid) from F : Simulate (vid,nH)

towards the adversary where nH ←{0,1}λ. Only after
A delivering messages (2) and (4) in Figure 6 which we
denote by (vid,n′H ,nV) and (vid,n′C ,n

′
V ,aV ,B′) respec-

tively simulate towards A as follows: If (n′C ,n
′
H ,B′) ̸=

(nC ,nH ,B) simulate the message (vid,⊥,⊥,⊥,⊥) to-
wards A . Otherwise, call (VERIFYCOMPLETE,vid,1)
to obtain (VERIFIED,vid, f). If f = 0 simulate the
message (vid,⊥,⊥,⊥,⊥) towards A else simulate
(A′, Ā,d,π′) according to simulator S in Theorem 4.1.

• Corrupt V ,H : On input (SETID,vid,C) from F (i.e,
the card is not anonymous) simulate the message
(nC ,B,π) towards A by setting B = Q ·hPRFK(n)

0 and π←
SDL.Sim(B,h0,h1,nV) for n = nC ||nH but only after A
has delivered the message (vid,nH ,nV). The pair (Q,K)
in the above simulation corresponds to honest (simulated)
card “C”.
On input (SETID,vid) from F (i.e, card is anonymous),
simulate as in the previous case of corrupt V . .

• Corrupt V ,C : On input (SETCRED,vid) from F , simu-
late the message (vid,⊥,⊥,⊥,⊥,0) towards A only after
A has delivered message (vid,nC ,nV ,aV ,B). .

• Corrupt I ,H (and optionally C): In this case we cannot
guarantee unforgeability which is reflected in the function-
ality FcbAC by allowing S to determine the output of the
VERIFYCOMPLETE interface (V-6). We leverage the
same: In this case, the simulator S sees all the messages that
an honest verifier needs to output the bit f . This allows the
simulator to determine the outcome of the real-world pro-
tocol and set b appropriately in the VERIFYCOMPLETE
interface to FcbAC to make the simulation consistent. The
messages to the adversary are simulated as in the case when
I is honest.

We argue that G3 is indistinguishable from G2. We show
the following: (i) This game produces output if and only
if previous game produces output (ii) Outputs are iden-
tical when produced and (iii) The messages received by
adversary are identically distributed in both games. We
note that G2 does not output only if an uninitialized hon-
est card is used in SETID interface (check P-C.1). In
this case, game G3 also does not output as S never calls
VERIFYCOMPLETE interface on F (since it never receives
message (SETID,vid) from F). The only additional case
where game G3 aborts is when VERIFYCOMPLETE is deliv-
ered out of order (V.1) on F which is appropriately avoided

by S calling VERIFYCOMPLETE only after other presenta-
tion phases have been called on F .

Next we argue that the outputs are identical in the games
G2 and G3. Let C , H and V denote the parties involved
with V specifying attributes aV = {(i,mi) : i ∈V}. Assume
that G3 outputs (VERIFIED,vid,1). If H is honest, check
V.4 implies that there exists m such that (C ,H ,m) ∈ creds

and m[i] = mi for all i ∈ V . Thus, C and H were joined
with attributes m, and in particular H must have a record
(Q,K,m,σ) where (Q,K) corresponds to the card C and
σ = (A,e,s) is a verifying signature on m (note that an honest
holder only records verifying signatures). From the complete-
ness property in Theorem 4.1, we conclude that G2, which
runs the real-world protocol with honest C and H with valid
inputs also outputs 1 in this case. If H is corrupt, the sim-
ulator calls VERIFYCOMPLETE with b = 1 only after the
checks made by the verifier in real-world protocol are satisfied.
Thus the game G2 also outputs 1 in this case. Now consider
the case when G2 outputs (VERIFIED,vid,1). We show that
game G3 also outputs (VERIFIED,vid,1). This is trivial when
H is honest, as honest holder generates a verifying proof only
when it has a record Q,K,m,σ where (Q,K) corresponds to
the card C , m is the attribute vector satisfying m[i] = mi for
i ∈ V and σ = (A,e,s) is a verifying signature certifying at-
tributes m. Equivalently, the record (C ,H ,m) ∈ creds in F ,
and hence G3 also outputs 1. We now prove that G3 outputs
1 whenever G2 outputs 1, except with negligible probabil-
ity even when H is corrupt. This is clearly true when the
issuer I is also corrupt, as in this case the simulator explic-
itly determines the output of G3 by setting it identical to the
output obtained according to G2 (specifying the output as
b in the VERIFYCOMPLETE interface, and leveraging the
check V-6 to ensure it is the delivered output). Thus, we
assume that issuer is honest, and that with probability ε G3
outputs 0 when G2 outputs 1. We will construct a forger B
that succeeds against a challenger D in the unforgeability
game for signature scheme with probability ε− ε0, where ε0
is negligible in λ. In this experiment, the forger B runs F
and S from Game G2 with slight re-structuring as follows:
Instead of generating the signature secret key x and public
key w, the simulated issuer “I ” obtains w from the challenger
D which simulates a signature oracle with signing key x. We
let A denote the adversary consisting of PPT environment
E and the protocol adversary. The protocol adversary can
be considered a “dummy" (or part of E) when analysing in
the UC framework, while we consider it seperate from E for
standalone security. We also change the issuer to respond to
signature request message (C,H,π′) (message (4) in Figure
5) by A on behalf of a corrupt holder in the following way:

• When using FcbAC without blind attributes from holder:
The forger B assembles message vector m = (m1, . . . ,mℓ)
from aI .

• When using FcbAC with blind attributes from

29

holder: The forger B runs the extractor (mi)i∈H ←
SDL.EA((C,H,{hi+1}i∈H ,n2),π

′) and obtains holder
attributes aH = {(i,mi) : i∈H}. It then assembles message
vector m = (m1, . . . ,mℓ) from aH and aI (available to B
from A).

To ensure that this step runs in polynomial time,
we need the proof π′ to be online extractable (e.g,
those described by Fischlin in [40]). While UC
framework does not permit extraction by rewind-
ing the adversary, even in the standalone setting,
extraction by rewinding may require exponential
time in the number of signing requests. We refer the
interested reader to the discussion in ([58], Section
2.7) regarding extraction by rewinding from several
adaptively generated statement-proof pairs in the
random oracle model (our setting in this paper). To
illustrate the issue broadly, assume that random or-
acle query for proof π′i for commitment Ci is made
before the query for proof π′j for commitment C j,
and C j depends on the random oracles’s answer
to the first query. Now, if the adversary uses C j in
the signing request before Ci, to extract the mes-
sage from Ci, the extractor would need to rewind
A to the state when it queried random oracle for Ci,
and replay it with fresh random oracle simulation.
This will however result in A making a new signing
request for C′j (the changed commitment C j) thus
making it re-do the earlier extraction for C j. Over
n extractions, the extractor can potentially incur 2n

executions.

• B fetches the uid for the honest card C specified by A .

• Obtains signature (A,e,s) by querying the challenger D on
message (uid,m1, . . . ,mℓ).

• Sends (aI , ,A,e,s) to A . Note that (C ,∗,m) is simultane-
ously installed in F .

We note that if extraction succeeds, the signature (A,e,s)
computed above is distributed identically to the one output
by issuer in G2. Let ε′ denote the negligible probability, that
one of the extractions does not output a valid witness. Then
A cannot distinguish between the experiment with the forger
B and the game G2 except with probability ε′. Thus, with
probability ε− ε′, A outputs a proof π′ on behalf of a corrupt
holder in the presentation phase which satisfies all verification
constraints, but the subsequent (VERIFYCOMPLETE,vid,1)
as in game G3 would have output 0. Invoking the extractor
as in in Theorem 4.1, B extracts a signature (A,e,s) over
message (uid′,m′) such that m′[i] = mi for all i ∈V . We note
that the proof π′ in the presentation phase is not required to
be online extractable, as in the indistinguishability argument,
we only need to extract from one such proof.

Now uid′ equals the uid of an honest card not joined to A
with negligible probability (say ε′′). If uid′ corresponds to
card joined to A but G3 outputs 0, it implies m′ is not present
in the list of signed messages maintained by F (as part of
B). Thus B outputs the message (uid′,m′) and (A,e,s) as the
forgery with probability at least ε− ε0 where ε0 = ε′+ ε′′.
Since the signature scheme is EUF-CMA secure we conclude
that ε must be negligible. This completes the argument that
both G2 and G3 produce identical outputs.

Finally, we need to show that messages to the adversary A are
indistinguishable between G2 and G3. When H is corrupt,
the message (nC ,nV ,B,aV) from V is indistinguishable to
A when nC ,nV ,B are chosen as nC ,nV ← {0,1}λ, B← G1
for the case where the card C is not joined to H . This is
because A does not know the PRF seed K used by honest
card C to generate B = Q · hPRFK(n)

0 with n = nC ||nH and
so B appears independent of n as with overwhelming proba-
bility the values n are distinct throughout the protocol (and
PRF is indistinguishable from a random function). Otherwise
it is simulated as nC ,nV ← {0,1}λ, B = Q · hPRFK(n)

0 with
n = nC ||nH for (Q,K) corresponding to C (which is leaked
to H in this case). Indistinguishability of simulation for the
case of corrupt V (and also corrupt V ,C) follows from ob-
serving: Whenever V modifies nH ,nC or B, the real protocol
outputs (vid,⊥, . . . ,⊥) with overwhelming probability, and
so does the simulator. Similarly, when corrupt V truthfully
forwards the values the real protocol outputs (vid,⊥, . . . ,⊥)
as message (5), when either C and H have not been joined
(their PRF seeds are different), or they have not been joined
with attributes satisfying the predicate aV . These cases re-
sult in output (VERIFIED,vid,0) for S which accordingly
simulates the message as (vid,⊥, . . . ,⊥). In the remaining
case when the card and holder have been joined with the
satisfying attributes, F outputs (VERIFIED, f ,1) to the sim-
ulator S which the simulates according to the simulator in
zero-knowledge property in Theorem 4.1. This proves that
messages to the adversary are indistinguishable across both
the games. In other words, when the verifier truthfully for-
wards nC ,nH and B, the simulator can determine if it needs
to simulate the proof (vid,⊥, . . . ,⊥) or an honest proof using
Theorem 4.1 by querying F .

Game G4: F stops forwarding inputs in Join In this
game, F stops forwarding the inputs of honest parties in
the join interface to S , and instead interfaces with E and S
according to the join interface of FcbAC. This makes F in this
game identical to FcbAC. We introduce following changes to
the simulator: S no longer runs the honest parties in setup and
join phases. Instead S explicitly maintains the state of hon-
est parties and uses it to simulate the messages from honest
parties to the adversary. The following code describes the fi-
nal simulator S . In the code below S initializes records JR(x)
with attributes (C←⊥,H←⊥) in case they do not exist when
being updated.

30

• On input (SETUP,sid) from FcbAC

– Check that sid= (I ,sid′).
– Choose x← Zp, ḡ1←G1. Compute w← gx

2.
– Set vk := (ḡ1, ḡx

1,w).
– Output (SETUPDONE,sid).

• On message (JOINID, jid,C) from FcbAC:

– If entry (C ,∗,∗) does not exist, samples uid← Zp, K←
K and stores (C ,uid,K).

– Updates JR(jid).C← C .

• On message (JOIN, jid,H ′) from FcbAC:

– S updates JR(jid).H←H , JR(jid).setH← H ′.

• When A delivers the message (jid,C,π′,H) on behalf of
corrupt H :

– S extracts s′,{mi}i∈H ← EA((C,{hi+1}i∈H ,nI),π
′) if

the proof π′ verifies for the statement (C,{hi+1}i∈H ,nI),
else it aborts. Here nI is the nonce generated by issuer
as part of message (3) in the join protocol in Figure 5.

– It sets aH = {(i,mi) : i ∈H}, stores (jid,aH ,s′) and calls
(JOIN, jid,aH) interface of F on behalf of some corrupt
holder H ′.

• On message (JOINISSUE, jid) from FcbAC:

– Honest H
* Call (JOINCOMPLETE, jid) on F after recieving
(JOINID, jid) and (JOIN, jid) messages from F .

– Corrupt H
* Simulates message (jid,nC ,nI) to A after receiving
(JOINID, jid,C) from F .

* Deliver the credential to holder and install the at-
tributes in F after receiving (JOINID, jid,∗) and
(JOIN, jid,∗) from F :
· Fetch (uid,K) from the record (C ,uid,K), and

aH ,s′ from record (jid,aH ,s′).
· Abort if H ̸= L\ I.
· Parse aH = {(i,mi) : i∈H}. Parse aI = {(i,mi) : i∈

I}. Let (m1, . . . ,mℓ) be message vector contained
in aH and aI .

· Compute B = huid1 hPRFK(nC)
0 , C = hs′

0 ∏i∈H hmi
i+1.

· Compute e ← Zp \ {x}, s ← Zp, A ←(
g1hs

0huid1 ∏
ℓ
i=1 hmi

i+1

)1/(e+x). Here the simula-
tor takes the signing key x from simulated issuer
“I ”.

· Simulate (jid,aI ,A,e,s) towards A .
· Call (JOINCOMPLETE, jid) on F .

• Corrupt I : The messages to the corrupt issuer are simulated
as follows, where the last two steps apply only if the holder
H is honest.

– On message (JOINID, jid,C) from FcbAC:

* If no record (C ,∗,∗) exists, sample uid← Zp, K←
K and store (C ,uid,K);

* Set JR(jid).C= C .
– On message (jid,nI) from A :

* Simulate message (jid,nC ,B,π) but only af-
ter (JOINID, jid,C) is received from FcbAC.
The message is simulated by choosing
nC ← {0,1}λ, r ← PRFK(nC), B ← huid1 hr

0 and
π ← SDL.Sim(B,h0,h1,nI) where (uid,K) are
fetched from the record (C ,uid,K).

– On message (jid,n′C ,n
′
I) from A :

* Simulate message (C,H,π′) from H by choos-
ing C ← G1, H = JR(jid).setH and π′ ←
SDL.Sim(C,{hi+1}i∈H ,nI) but only after receiving
(JOIN, jid,∗) from FcbAC.

– On message (jid,aI ,A,e,s) from A :

* Abort if e(A,wge
2) ̸= e(g1hs

0 ·B ·C ·∏i∈I hmi
i+1,g2). Here

we assume aI = {(i,mi) : i ∈ I}.
* Send (JOINISSUE, jid,aI) to FcbAC and on

immediate output (JOINISSUE, jid) send
(JOINCOMPLETE, jid) to FcbAC.

We now argue that game G4 is indistinguishable from game
G3. We first notice that S explicitly maintains the state of hon-
est cards, instead of implicitly having that as part of simulated
party “C”. This change is only syntactic. We now show that a
card C and a holder H are joined with attributes m in G4 if
and only if they are joined with the same attributes in G3. This
is obvious in the case of honest H as both the real protocol in
G3 and simulator in G4 abort only if the pre-signature (A,e,s)
obtained from the issuer is incorrect. Hence both the games
install identical attributes by calling JOINCOMPLETE.

For the corrupt holder, as long as the issuer is honest, the
checks made in G4 before calling JOINCOMPLETE are iden-
tical to the checks made by simulated issuer in G3, and hence
identical set of attributes are installed in both the games. When
both the holder and the issuer are corrupt, no credentials are
installed in FcbAC in both the games. Finally, we notice that
for the case of corrupt holder, the simulator has the state of all
honest parties, to simulate the messages towards the adversary
in the join phase. Further, both games are identical during
presentation phase as its only dependence on the join phase is
the list creds of installed attributes which is identical in both
the games. This proves the indistinguishability of G3 and G4
and completes the proof of the theorem.

31

	Introduction
	Related Work

	Problem statement
	Solution overview
	High-level scheme design
	Threat model
	Issuers
	Holders and verifiers
	Smartcards

	Preliminaries and Notation
	Bilinear groups
	Signature of Knowledge
	Signatures of Knowledge for discrete log

	BBS+ Signature Scheme
	Proof of Knowledge for BBS+ Signatures
	Signatures over committed messages

	Joint Proof of Knowledge for BBS+
	A Model for Secure card-based Anonymous Credentials
	Ideal functionality for cbAC
	Our card-based Anonymous Credential scheme
	Security

	Evaluation
	Conclusion
	Non Interactive Random Oracle Arguments
	Random Oracle Proofs of Knowledge of Discrete Log

	Full protocol description
	Public parameters and writing conventions
	Setup
	Join
	Presentation

	Full proofs
	Proof of Theorem 4.1
	Proof of Theorems 7.1 and 7.2

