
Thèse

présentée pour obtenir le grade de docteur

de TELECOM ParisTech

Spécialité : Informatique et Réseaux

Alessandro SORNIOTTI

Protocoles pour
Poignées de Main Secrètes

Soutenue le 29 Juin 2010 devant le jury composé de

Pascal Urien Président

Giuseppe Ateniese Rapporteur

Claude Castelluccia Rapporteur

Jan Camenisch Examinateur

Volkmar Lotz Examinateur

Refik Molva Directeur de thèse

PhD Thesis

TELECOM ParisTech

Computer Science and Networks

Alessandro SORNIOTTI

Secret Handshake Protocols

Defense date: June 29th, 2010. Committee in charge:

Pascal Urien Chairman

Giuseppe Ateniese Reporter

Claude Castelluccia Reporter

Jan Camenisch Examiner

Volkmar Lotz Examiner

Refik Molva Advisor

ii

Ai miei genitori, a cui devo tutto.

To my parents, to whom I owe everything.

A mes parents, à qui je dois tout.

iv

Acknowledgements

I would like to start off by thanking my parents: as the dedication of this

manuscript reads, I owe them everything. They have taught me, and are

teaching me a lot every day, they have raised me with the perfect mixture

of strictness and love, I have always felt protected and challenged. It is safe

to say that they have played a significant part in all the good things in my

life. For the bad ones, I proud myself to having done everything on my own.

My gratitude and love goes to Nancy, the greatest gift that these three years

have given me. She has been very patient with me, with my mood swings

when things seemed to go wrong, with my temper when proofs insisted on

telling me that a scheme was flawed.

I am profoundly grateful to prof. Refik Molva. It is through his lectures

that I have become interested in security and research. He has been an

extraordinary mentor, always available to discuss, to explain, to brainstorm,

to help me. I have learned so much from him and this thesis would not have

been possible without him.

Thanks to my friends, Matteo and Chiara, Daniele, Frédéric and Jean-

François. During these past three years, we have shared our experiences

with research, our frustrations and results. More importantly, we have

partied a lot and although we all live in different parts of the world, we

have always managed to stay in touch as good friends do. Thanks to my

“local” friends, Michael and Tünde, Luca and Cécile, Gerald and Julia,

Stuart: we have had a lot of fun together, which has considerably lightened

up these three years of hard work. Moreover, thanks to you guys I have

discovered the beauty of running, and managed to run 42.195 kilometres on

a cold November morning.

I would like to thank my colleagues at SAP, in particular Konrad, Annett,

Laurent, Luca, Florian, Volkmar, JC, Cédric, Slim: thank you all for your

support and especially for creating a good working environment.

Thanks to the staff at EURECOM, in particular to Gwenäelle for helping

me and being really cool.

Finally, thanks to prof. Pascal Urien for agreeing to chair the defense com-

mittee. Thanks to prof. Giuseppe Ateniese, prof. Claude Castelluccia, dr.

Jan Camenisch and Volkmar Lotz for agreeing to be reporters and examin-

ers.

Abstract

Parties cooperating in hostile networked environments often need to es-

tablish an initial trust. Trust establishment can be very delicate when it

involves the exchange of sensitive information, such as affiliation to a secret

society or to an intelligence agency. The mechanism of Secret Handshakes

tackles this problem, providing a solution for secure initial exchange be-

tween mistrusting principals. A Secret Handshake is a protocol that allows

two users to mutually verify one another’s properties, and in case of simulta-

neous matching, to share a key used to secure subsequent communications.

The protocol assures that an outsider, or an illegitimate group member,

does not learn anything by interacting with a legitimate user or by eaves-

dropping on protocol exchanges.

In this thesis, we present several novel protocols, aimed at providing new

features or at fixing shortcomings of existing protocols in the literature. At

first, we focus on a new concept of Secret Handshake, called Dynamic Con-

trolled Matching, generalizing other Secret Handshake variants. We then

address the challenging task of revocation in Secret Handshakes, presenting

an approach through which we can achieve revocation for each of the differ-

ent variants of Secret Handshake known in the literature. Furthermore, we

study two decentralized Secret Handshake protocols, one where a number

of separate mistrusting entities can federate to create a Secret Handshake

scheme and another one where the scheme is self-managed by its users. Fi-

nally we investigate two use-cases for Secret Handshake protocols, the first

involving online social networks and the second addressing supply chain

management.

viii

Résumé

Les utilisateurs qui coopèrent sur des réseaux non fiables ont souvent besoin

d’établir une confiance initiale; cette étape peut etre très délicate si elle

implique l’échange d’informations sensibles, telles l’affiliation à une société

secrète ou à des services de renseignement. Le mécanisme de la poignée de

main secrète fournit une solution à ce problème. La poignée de main secrète

est un protocole qui permet à deux utilisateurs de vérifier mutuellement des

propriétés et, en cas de correspondance simultanée, de partager une clé

pour sécuriser les communications. Le protocole assure qu’aucune entité

malveillante n’apprenne quelque-chose en interagissant avec des utilisateurs

légitimes ou en écoutant les échanges du protocole.

Dans cette thèse, nous présentons plusieurs nouveaux protocoles visant à

fournir de nouvelles fonctionnalités ou à fixer les lacunes des protocoles ex-

istants dans la littérature. Dans un premier temps, nous nous concentrons

sur un nouveau concept de poignée de main secrète appelé vérification dy-

namique contrôlée, qui généralise les autres variantes du protocole. Nous

étudions ensuite le problème de la révocation des titres pour la poignée de

main secrète, en présentant une approche grâce à laquelle nous pouvons

obtenir la révocation pour chacune des différentes variantes du protocole

connues dans la littérature. En outre, nous étudions deux protocoles de

poignées de main secrète décentralisés: l’un où un certain nombre d’entités

distinctes peut gérer le protocole, et l’autre où le système est auto-géré par

ses utilisateurs. Enfin, nous étudions deux cas d’utilisation de ce protocole,

le premier impliquant des réseaux sociaux en ligne et le second couvrant la

gestion d’une châıne d’approvisionnement.

x

Table of Contents

List of Figures xvii

List of Tables xix

List of Publications xxi

1 Introduction 1

1.1 Secret Handshake . 2

1.1.1 Scenarios . 2

1.1.2 Characteristics . 3

1.1.3 Contributions and Organization 4

I Cryptographic Protocols 7

2 Preliminaries 9

2.1 Introduction . 9

2.2 Security and Cryptography . 9

2.2.1 Cryptographic Protocols . 10

2.3 Provable Security . 11

2.3.1 Game-based Security . 12

2.3.2 The Random Oracle Model . 13

2.3.3 The Generic Group Model . 14

2.4 Elliptic Curve Cryptography . 15

2.4.1 ECC mathematical basis . 16

2.4.2 Supersingular curves . 17

2.4.3 Operations on points . 17

xi

TABLE OF CONTENTS

2.4.4 Torsion points . 19

2.5 Bilinear Pairings . 19

2.6 Conclusions . 21

3 About Secret Handshakes 23

3.1 Introduction . 23

3.2 A Primer on Secret Handshakes . 23

3.2.1 Anonymity and Unlinkability . 25

3.2.2 A Word on Fairness . 26

3.3 The state-of-the-art of Secret Handshakes and related protocols 27

3.3.1 Matchmaking . 27

3.3.2 Classic Secret Handshakes schemes 30

3.3.3 Secret Handshake with Dynamic Matching 32

3.3.4 Other Works . 34

3.4 Revocation in Secret Handshakes . 35

3.5 A Taxonomy of Secret Handshake protocols 37

3.5.1 Highlighting the Gaps . 38

3.6 Conclusions . 39

4 Secret Handshake with Dynamic Controlled Matching 41

4.1 Introduction . 41

4.2 Dynamic Controlled Matching . 42

4.2.1 Syntactic Definition . 43

4.2.2 Creating classic Secret Handshakes and Secret Handshakes with

Dynamic Matching . 45

4.2.3 Security Requirements . 45

4.3 SecureMatching: the building block . 50

4.3.1 Preliminaries . 50

4.3.2 Description of SecureMatching . 50

4.3.3 Security Analysis . 52

4.3.3.1 Unlinkability of Properties 54

4.3.3.2 Detector Resistance . 56

4.3.3.3 Impersonation Resistance 58

4.4 From SecureMatching to Secret Handshake 61

xii

TABLE OF CONTENTS

4.4.1 The Scheme . 61

4.4.2 Security Analysis . 62

4.4.2.1 Impersonation Resistance 63

4.4.2.2 Detector Resistance . 66

4.4.3 A Word on Man-In-The-Middle Attacks 69

4.5 Conclusion . 71

5 Revocation in Secret Handshakes 73

5.1 Introduction . 73

5.2 Problem Statement and Motivation . 74

5.2.1 Syntactic Definition . 75

5.2.2 Security Requirements . 77

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation

Support . 81

5.3.1 An overview of the solution . 81

5.3.2 Description of the Scheme . 83

5.3.3 Security Analysis . 86

5.3.3.1 Unlinkability of Properties 93

5.3.3.2 Unlinkability of Users 95

5.3.3.3 Detection Resistance 99

5.3.3.4 Impersonation Resistance 101

5.4 Secret Handshake with Dynamic Matching and Revocation Support . . 108

5.4.1 Security Analysis . 109

5.4.1.1 Detection Resistance and Unlinkability of Properties . . 109

5.4.1.2 Unlinkability of Users 113

5.4.1.3 Impersonation Resistance 114

5.5 Conclusion . 115

6 Towards Decentralized Secret Handshakes 117

6.1 Introduction . 117

6.2 Secret Handshakes with multiple CA support 118

6.2.1 Description of the Scheme . 118

6.2.2 Security Analysis . 120

6.2.2.1 Security against adversary type I 120

xiii

TABLE OF CONTENTS

6.2.2.2 Security against adversary type II 123

6.3 Secret Handshakes with Ad-Hoc Certification 131

6.3.1 Preliminaries . 132

6.3.2 Syntactic Definition . 134

6.3.3 The Scheme . 136

6.3.4 A word on Revocation . 138

6.3.5 Sketch of the Security Analysis 139

6.4 Conclusion . 140

II Use Cases 141

7 Secret Interest Groups in Social Networks 143

7.1 Introduction . 143

7.2 Problem Statement and Motivation . 143

7.3 Design of the SIG Framework . 145

7.3.1 OSN external . 146

7.3.2 OSN internal . 148

7.3.3 Security and Adversarial Model 149

7.4 The SIG Framework . 150

7.5 Implementation in Facebook . 152

7.5.1 What still needs to be implemented 157

7.6 Conclusion . 159

8 RFID-Based Supply Chain Partner Authentication 161

8.1 Introduction . 161

8.2 Motivation . 162

8.2.1 Overview of the Solution . 164

8.3 Related Work . 164

8.4 Supply Chain Partner Authentication 165

8.4.1 Preliminaries . 165

8.4.2 The Scheme . 166

8.5 Security Analysis . 169

8.5.1 Security of RFIDAuth . 170

xiv

TABLE OF CONTENTS

8.5.1.1 Impersonation Resistance 171

8.6 Conclusion . 173

9 Conclusion and Future Work 175

9.1 Summary . 175

9.2 What is missing? . 177

9.3 Future Work . 178

References 181

Appendices 189

A Résumé en Français 191

A.1 Introduction . 191

A.2 Poignées de Main Secrètes . 192

A.2.1 Scénarios . 192

A.3 La Poignée de Main Secrète . 193

A.3.1 Anonymat et “Unlinkability” . 195

A.3.2 Sur l’équité dans les protocoles pour Poignée de Main Secrète . . 196

A.3.3 Récapitulation des exigences . 197

A.4 Protocoles . 198

A.4.1 Poignée de Main Secrète avec Vérification Dynamique Contrôlée 198

A.4.2 Révocation pour Poignées de Main Secrètes. 201

A.5 Cas d’utilisation . 204

A.5.1 Groupes secrets dans les réseaux sociaux 204

A.5.1.1 Motivation . 204

A.5.2 Authentification des partenaires d’une châıne logistique basée sur

RFID . 206

A.5.2.1 Motivation . 207

A.5.2.2 Détail de la Solution . 209

xv

TABLE OF CONTENTS

xvi

List of Figures

2.1 Example of elliptic curve. 18

3.1 A simple protocol for Secret Handshake. 24

3.2 Secret Handshakes from CA-Oblivious Encryption. 33

4.1 The Handshake algorithm executed by two users ui and uj 44

4.2 Challenge for an adversary attempting to break impersonation resistance. 48

4.3 Challenge for an adversary attempting to break detection resistance. . . 49

4.4 Using SecureMatching to build a Secret Handshake. 62

5.1 The Handshake algorithm executed by two users ui and uj 77

5.2 Challenge for an adversary attempting to break impersonation resistance. 80

5.3 Challenge for an adversary attempting to break detection resistance. . . 80

5.4 Secret Handshake with Dynamic Controlled Matching. 86

6.1 The Handshake algorithm executed by two users ui and uj 136

6.2 The Handshake algorithm executed by two users ui and uj 137

7.1 SIGMembersHandshake and relative challenge-response upon friendship

invitation. 153

7.2 Operations of the proxy upon a friendship request. 154

7.3 “About Me” section of a profile containing the first round of the handshake.155

7.4 Message sent upon friendship invitation from the inviter to the invitee. . 155

7.5 Operations of the proxy upon a friendship response. 156

8.1 Ship Protocol. 168

8.2 Handshake. 169

xvii

LIST OF FIGURES

A.1 Un protocole simple pour la Poignée de Main Secrète. 194

A.2 L’algorithme Handshake exécuté par deux utilisateurs ui et uj 201

A.3 L’algorithme Handshake exécuté par deux utilisateurs ui et uj 204

xviii

List of Tables

3.1 Review of Secret Handshake protocols in the literature. 40

xix

LIST OF TABLES

xx

List of Publications

[GLR+08] Laurent Gomez, Annett Laube, Vincent Ribière, Alessandro Sorniotti,

Christophe Trefois, Marco Valente, and Patrick Wetterwald. Encryption-

based access control for building management. In MobiQuitous, 2008.

[GLS08] Laurent Gomez, Annett Laube, and Alessandro Sorniotti. Design guide-

lines for integration of wireless sensor networks with enterprise systems.

In MOBILWARE, page 12, 2008.

[GLS09] Laurent Gomez, Annett Laube, and Alessandro Sorniotti. Trustworthiness

assessment of wireless sensor data for business applications. In AINA,

pages 355–362, 2009.

[KS09] Florian Kerschbaum and Alessandro Sorniotti. Rfid-based supply chain

partner authentication and key agreement. In WISEC, pages 41–50, 2009.

[KS10] Florian Kerschbaum and Alessandro Sorniotti. Extending searchable en-

cryption for outsourced data analytics. In ACNS, 2010.

[SEKG+09] Alessandro Sorniotti, Paul El Khoury, Laurent Gomez, Anjel Cuevas,

and Annett Laube. A security pattern for untraceable secret hand-

shakes. In SECURWARE 2009, 3rd International Conference on Emerg-

ing Security Information, Systems and Technologies, June 18-23, 2009,

Athens/Glyfada, Greece, 06 2009.

[SGWO07] Alessandro Sorniotti, Laurent Gomez, Konrad Wrona, and Lorenzo

Odorico. Secure and trusted in-network data processing in wireless sensor

networks: a survey. JIAS, Journal of Information Assurance and Security,

Volume 2, Issue 3 (Special Issue), September 2007, 2007.

xxi

LIST OF PUBLICATIONS

[SM09a] Alessandro Sorniotti and Refik Molva. A provably secure secret handshake

with dynamic controlled matching. In SEC, pages 330–341, 2009.

[SM09b] Alessandro Sorniotti and Refik Molva. A provably secure secret handshake

with dynamic controlled matching. Computers & Security, Elsevier, In

Press, Corrected Proof, 2009.

[SM09c] Alessandro Sorniotti and Refik Molva. Secret handshakes with revocation

support. In ICISC 2009, 12th International Conference on Information

Security and Cryptology, December 2-4, 2009, Seoul, Korea, 12 2009.

[SM10] Alessandro Sorniotti and Refik Molva. Secret interest groups (sigs) in social

networks with an implementation on facebook. In SAC, pages 621–628,

2010.

[SMG08] Alessandro Sorniotti, Refik Molva, and Laurent Gomez. Efficient access

control for wireless sensor data. In PIMRC, pages 1–5, 2008.

[SMG09a] Alessandro Sorniotti, Refik Molva, and Laurent Gomez. Efficient access

control for wireless sensor data. Ad Hoc & Sensor Wireless Networks,

7(3-4):325–336, 2009.

[SMG+09b] Alessandro Sorniotti, Refik Molva, Laurent Gomez, Christophe Trefois,

Annett Laube, and Piervito Scaglioso. Efficient access control for wire-

less sensor data. International Journal of Wireless Information Networks,

Springer, Vol.16 N◦3, September 2009, 2009.

[TWS+10] Slim Trabelsi, Eric Weil, Alessandro Sorniotti, Stuart Short, and Michele

Bezzi. Privacy-aware policy matching. In ISCC, 2010.

xxii

Chapter 1

Introduction

The motivation for the work of this thesis originates from an analysis of the use-cases

presented by the CoBIs European project in [Cob07]. In one scenario, drums containing

chemicals are stocked in a warehouse; however, safety regulations impose restrictions

on the dispositions of these barrels. For instance, barrels containing reactive chemicals

cannot be stored close to each other: a small leak of the chemicals could have potentially

disastrous consequences.

The devised solution included equipping each barrel with a wireless device. Each

device was exchanging information about the content of its associated barrel in cleart-

ext: this allowed to perform some inference on the disposition of the barrels and take

countermeasures in case of forbidden combinations.

The risk assessment of such scenario showed many shortcomings: the matching

of complementary chemicals was possible only due to the fact that the content of

the barrels was broadcast in cleartext. The fact that transmissions were in cleartext

however may have led to attacks linked to terrorism or to industrial espionage.

Many cryptographic solutions can be thought of, or are existing, to address this

simple matching problem: a study of possible solutions shows that they are very similar

and yet they present subtle differences that in the end create completely different

protocols, achieving greatly different results.

The focus of this thesis is therefore an analysis of the family of these protocols,

called Secret Handshake.

1

1. INTRODUCTION

1.1 Secret Handshake

A Secret Handshake is a distinct form of greeting which conveys membership in club,

group or fraternity [wik10]. Usually a Secret Handshake involves conducting the hand-

shake in a special way so as to be recognizable as such by fellow members while seeming

completely normal to non-members. The need for such a secretive initial exchange is

motivated by the existence in society of gatherings of individuals, revolving around

sensitive topics and therefore secret by nature.

With the increasing role over the past half century of electronic communications in

our society, it is natural to expect that the discipline of computer science should capture

the essence of Secret Handshakes and model it into protocols that can be automatically

executed by electronic devices. In particular, given the secret and sensitive nature of the

scenarios motivating these protocols – namely secret groups and concealed fraternities

– ought to become cryptographic protocols, accounting for the existence of misbehaving

users and attackers.

1.1.1 Scenarios

In this Section we justify Secret Handshakes by presenting a broad range of different

scenarios where these protocols may be required.

Consider a secret agent on a mission, needing to authenticate to a fellow agent or

to a server belonging to the agency. Agents are bound to follow the agency’s policy

never to disclose their Credentials, unless they are certain to be dealing with fellow

agents or with agency’s servers. The same policy is applied by the servers too. The

interesting consequence of the interactions of individuals following such policies is called

a policy deadlock: none of the agents will accept to reveal his Credential first, so the

communication comes to a standstill.

Let us now turn our attention to a user, Alice, who lives in a country with a

questionable human-rights record. She is a member of a pro-democracy movement.

Members periodically gather at secret meetings, where Alice often meets new alleged

members, whom she has never met before. Consequently she is worried that she might

be dealing with members of the secret police of that state, whose aim is to round up

members of the pro-democracy movement and arrest them. Nonetheless, legitimate

2

1.1 Secret Handshake

members need to interact with one another in order to carry on the activities of the

movement.

Consider now justice forces of a federation of states, needing to cooperate with one

another in order to solve cross-boundary criminal cases. Regulations of the federation

define official processes that must imperatively be followed by operating officers: in

particular, these processes mandate which institutions must cooperate upon each par-

ticular case. For instance, a member of an agency of one state must cooperate with

a member of the corresponding agency of another state, to investigate on an alleged

internal scandal. The two officers may need to meet secretly, and authenticate them-

selves on-the-fly. Both are definitely reluctant to disclose their affiliation and purpose

to anybody but the intended recipient.

Imagine now a newly formed project consortium whose members want to securely

add one another as friends on a social network and use the social network infrastructure

as a collaboration tool. The consortium members require means to secure the friend-

ship invitation process: this helps to avoid false negatives, refusing a request from a

legitimate consortium member, or false positives, accepting the invitation from a rogue

user and consequently interacting with it. In addition, the project consortium may

require additional security for fear of industrial espionage.

These different scenarios share some common requirements: in each of these ex-

amples, users are interested in conducting an authentication protocol and willing to

disclose their allegiance, provided that this happens only when they are dealing with

the intended remote party, a secret agent in the first example, a member of the pro-

democracy movement in the second, a justice official of the intended state in the third

and a consortium member in the last. If these conditions do not apply, users require

that no information is leaked on their actual membership, except that the matching is

not successful.

1.1.2 Characteristics

The design space of Secret Handshake protocols is governed by two main dimensions.

The first and most prominent one is the dimension of security requirements; security

requirements aim at giving assurance that Secret Handshake can be used in the presence

of adversaries, whose aim is to subvert its operations and increase their return from

its execution. Common security requirements include resistance to openly subverting

3

1. INTRODUCTION

the protocol: for instance, with reference to the first example of the previous Section,

somebody who is not a member of the agency must not be able to authenticate as one.

Additional security requirements address the amount of information that is leaked

by each protocol instance upon unsuccessful executions, or that is leaked to passive

adversaries whose aim is to read a number of protocol transcripts and derive information

about the nature of users executing them: the information being derived may be the

identity of the user, its membership or even the mere information that the same user

or members of the same agency have executed the protocol twice.

The second dimension relates to functional requirements of the protocol: for in-

stance, these requirements encompass considerations on the existence of a central au-

thority1 and its role in the protocol. Indeed the protocol can either be managed by a

central authority, in charge of creating cryptographic tokens that allow users to con-

duct the authentication; as an alternative, the protocol can be self-managed by user,

without the requirement for a central authority. If a central authority is required, it

can exercise variable degrees of control over the capabilities of users, which represents

as well another design choice. Another example of functional requirement addresses

the actual type of cryptographic token(s) required for the execution of the protocol, as

to whether a single type of token is sufficient, whether it can be reused and whether it

can be self-generated or not.

Further requirements mix functional and security aspects, such as – referring to the

same example as before – the support for disqualification from the status of agency

member, also known as revocation.

1.1.3 Contributions and Organization

This thesis makes several contributions:

• We perform a detailed analysis of the literature on Secret Handshakes; we build

a taxonomy of the Secret Handshake protocol family, examining gradually more

complex protocols and introducing new features; at the end of this analysis we

present a snapshot of the state-of-the art and we highlight a number of missing

features;

1In the sequel of the manuscript, we shall refer to this actor as certification authority (CA) or

certification entity (CE).

4

1.1 Secret Handshake

• We suggest six new protocols, each of which contributes to completing the spec-

trum of available techniques in the field. In particular we focus on:

– a new concept of Secret Handshake whereby the aforementioned central au-

thority exercises a strong control over the capabilities of users;

– bringing revocation support to a number of schemes that either completely

lacked this support or could only cover a limited range of scenarios;

– decentralized Secret Handshake schemes, with a scheme that requires no

central authority and a second one where several independent authorities

can federate but maintain their independence;

• We present a first use-case where the techniques discussed in this thesis can be

leveraged by users of a social network to spontaneously create a secret group

and subsequently secure their interactions on the social network; we design a

framework that achieves this objective, and implement part of it in the ever

growing Facebook platform [fac]; we also discuss some of the implementation

challenges;

• We present a second use-case where companies that are members of a common

supply chain can exchange batches of goods equipped with RFID tags; each part-

ner can then perform a Secret Handshake-like authentication with another partner

to authenticate on the grounds of having handled a common tag at some point

during the life-cycle of the supply chain;

Each new protocol comes with a detailed security analysis, conducted using state-

of-the-art techniques. The analyses show mastery of the complex art of proving security

protocols, since, as it shall be seen in the sequel of this document, in some occasion

they require turning to advanced techniques or resorting on complex approaches.

The reminder of this manuscript is split into two parts. The first part contains con-

tributions in terms of new cryptographic protocols, generic building blocks that can be

used to address several Secret Handshake scenarios. This part of the thesis starts with

Chapter 2, that introduces the context of the work, through an informal introduction to

the discipline of cryptography, to cryptographic protocols, elliptic-curve cryptography

and bilinear pairings, some of the foundations of our work. The subsequent Chapter,

5

1. INTRODUCTION

Chapter 3 presents a detailed analysis of the state of the art of the Secret Handshake

protocol family; through a critical study of the works in the literature, we are able to

present a taxonomy of the various protocols and highlight a number of missing fea-

tures. In the following Chapters we build up on this initial study and we focus on

the design of protocols representing solutions for the highlighted gaps; in particular

Chapter 4 presents a new type of Secret Handshake with a different role of the certifi-

cation authority; Chapter 5 focuses on the challenging problem of revocation for Secret

Handshake protocols; finally Chapter 6 constitutes a first effort toward decentralized

Secret Handshake schemes.

The second part of this manuscript presents real-world use-cases where the protocols

presented in the previous part serve as practical cryptographic solutions; in particular,

in Chapter 7 we introduce an ad-hoc framework that can be used to create secret user

groups and use such groups to secure the interaction of users in online social networks;

Chapter 8 instead presents a solution for an authentication protocol between partners

of a supply chain.

Finally, Chapter 9 presents the global conclusions of the manuscript and gives an

outline of the future work.

6

Part I

Cryptographic Protocols

7

Chapter 2

Preliminaries

2.1 Introduction

In this Chapter we give the reader an overview of the fields of Security and Cryptog-

raphy. At first we define what a cryptographic protocol is; then we discuss how it can

proved to be secure, referring to the common approach of game-based security proofs

and related security models such as the random oracle model and the generic group

model. Finally we introduce elliptic curve cryptography and bilinear pairings as most

protocols presented in this thesis will leverage on them.

2.2 Security and Cryptography

The definition of the science of Information Security can only be done under the as-

sumption that an information system has some “enemies”, a set of users whose ob-

jectives are to misuse it or disrupt its standard operations. Under this assumption,

we can define information security as the branch of computer science that deals with

the protection of information and information systems from a number of unauthorized,

malicious or accidental uses. By extension, information security is also the science

that studies the means of detecting and preventing such unauthorized, malicious or

accidental uses.

A number of requirements have historically been identified as confidentiality, re-

quiring information to be disclosed only to the intended receiver; integrity, detecting

and preventing malicious or accidental modifications of information or of an informa-

tion system; availability referring to the degree to which an information system is in

9

2. PRELIMINARIES

an operating state; authentication dealing with the corroboration of the identity of an

actor of an information system, such as the identity of the sender of a message.

Under certain circumstances, some of the aforementioned requirements can be met

without recurring to cryptography: for instance, confidentiality and integrity of the

transmission of a message can be ensured by building a dedicated transmission line

physically secured against any tampering. However, under most circumstances, cryp-

tographic solutions are required.

According to Menezes and colleagues [MvOV96], cryptography is the study of math-

ematical techniques related to aspects of information security such as confidentiality,

data integrity, entity authentication, and data origin authentication.

2.2.1 Cryptographic Protocols

Over the centuries, an elaborate set of protocols and mechanisms has been created

to deal with information security issues ranging from the simple encryption schemes

devised in roman times up to the most recent and sophisticated encryption and au-

thentication schemes.

In order to understand what a cryptographic protocol is, let us first focus on al-

gorithms: an algorithm is a finite set of instructions whose execution attempts at the

solution of a problem.

A cryptographic protocol is a distributed algorithm defined by a sequence of steps

precisely specifying the actions required of two or more entities to achieve a specific

security objective.

To define a protocol, at first the actors taking part in its execution need to be

defined. Each actor performs a particular algorithm in response to an event such as

the receipt of a message, or to trigger the execution of the protocol or part of it.

In the design of a cryptographic protocol, usually assumptions are made on the

behavior of actors; some actors faithfully execute the protocol as it is their interest to

assure the fulfillment of the security objective at stake; some others may abide by the

rules of the protocols and carry out additional actions to increase their return from the

execution of the protocol, for instance to learn additional information.

Every security protocol has by definition a set of adversaries. Adversaries are actors

of the protocol, who know the algorithms composing it and may execute parts of them

or interact with other actors. However, adversaries do not necessarily abide by the rules

10

2.3 Provable Security

of the protocol (i.e. apply faithfully its algorithms): adversary are only constrained by

time and complexity of algorithms.

2.3 Provable Security

To be usable in practice, any security protocol needs evidence that it can actually fulfill

the security requirements that it promises. To this end, security proofs are usually

provided to support a newly proposed protocol.

The proofs usually require assumptions on the capabilities of the attacker, especially

the type of information accessible to him; for instance, an attacker may be able to not

only execute the various algorithms of the protocol, but also to access some secret

information, that is otherwise unaccessible to standard users.

Depending on the considered assumptions, one can define a more or less powerful

attacker; if a protocol is proved secure against a very powerful attacker, it implies that

its security is guaranteed in practice even if the rules of the protocol are not completely

respected.

For instance, an encryption protocol may include a “Setup” algorithm wherein a

set of secret parameters is generated. These parameters are supposed to be known in

practice only by a specific actor, a “Key Generation Centre”. Nonetheless, the protocol

may be proved secure even in presence of an attacker who is able to disclose some of

this secret information.

In the early days of modern cryptography, a new scheme would be equipped with

an informal security analysis, where the author(s) of the scheme would underline the

unfeasibility of selected attacks due to the hardness of a particular operation required

to perpetrate them.

One drawback of this approach is that it makes assumptions on the strategy followed

by the attacker to mount an attack; this approach is limited, since the proof does not

guarantee that the attack is not feasible, but shows that a particular strategy to mount

it is. This approach clearly does not give any guarantee against different strategies to

achieve the same attack: it may be sufficient for simple protocols, but for more complex

ones, some unforeseen attacks can still lay undetected.

11

2. PRELIMINARIES

2.3.1 Game-based Security

To overcome the limits expressed in the previous Section, the notion of game-based se-

curity has been established in the cryptographic community. Essentially, this approach

consists of the following steps: at first, a generic security property is defined, together

with the existence of an adversary A, whose objective is to break the security property.

The adversary however does not interact directly with real instances of the protocol

actors; instead a challenger C simulates internally all other actors. The adversary can

interact with the simulated actors through so-called oracles. Usually there is one-to-

one mapping between the algorithms defining the protocol and the oracles available for

query to the adversary. Additional oracles can also be available to model additional

capabilities of the attacker, such as compromising legitimate users or disclosing some

otherwise secret material. The more oracles are available to the adversary, the more

powerful the adversary is. As a consequence, if the protocol is proved secure against a

powerful adversary, it clearly enjoys a stronger security.

After defining the oracles, the challenger sets rules on how the adversary can interact

with them: usually, a set of phases is defined. Phases normally include a query phase,

wherein the adversary can freely interact with the oracles; a challenge phase, whereby

the adversary is asked to perform a particular action (send a message, give an answer)

possibly subject to restrictions linked with the queries of the previous phase, in order

to avoid a trivial success of the attacker; this phase can be followed by another round

of queries by the attacker.

A security game is identified by the aforementioned oracles and phases together

with the attacker definition. Examples of security games are for instance the various

games that are now well-established to prove the security of encryption schemes, such

as OW-CPA, IND-CCA1 and IND-CCA2 [BDPR98].

The game is set up with the objective of showing that such an attacker, with

the capabilities specified through the defined oracles, cannot exist. To this end, the

challenger sets up the environment where the attacker can perform its queries and

answer the oracle queries using the inputs of a problem whose solution is currently

assumed to be hard, i.e. unfeasible in polynomial time. Examples of these problems

are for instance the RSA problem [RSA83], the discrete logarithm problem or the

Diffie-Hellman problem [DH03].

12

2.3 Provable Security

Of particular importance for this manuscript is the Decisional Diffie-Hellman prob-

lem, that we hereby state:

Definition 1 (Hardness of the Decisional Diffie-Hellman Problem). We say that the

Decisional Diffie-Hellman Problem (DDH) is hard if, for all probabilistic, polynomial-

time algorithms B,

AdvDDHB := Pr[B(g, ga, gb, gx) = > if x = ab]− 1
2

is negligible in the security parameter. We assume a random choice of g, a, b; x is

equal to ab with probability 1
2 and is otherwise equal to a random value different from

ab with the same probability.

Then a reduction is performed, showing that the complexity of performing the at-

tack modeled in the game is equivalent to that of solving the hard problem. Informally,

if the adversary manages to break the protocol, it is “tricked” into providing an answer

to the hard problem.

The advantage of this approach is the exhaustive coverage of all possible attacks

since the proof does not assume any strategy for the adversary.

2.3.2 The Random Oracle Model

Some security protocols may use cryptographic hash functions. Cryptographic hash

function are usually functions defined on bitstrings of arbitrary size to bitstrings of a

fixed size, say, n. These functions often also enjoy properties such as collision resistance,

preimage resistance and second preimage resistance.

To prove the security of protocols using hash functions, it is often required to

model them as ideal hash functions, also referred to as random oracles. Concretely, if

the challenger controls an oracle simulating some hash function H used by the cryp-

tographic scheme, then the outputs of the oracle, which are returned to the adver-

sary, are supposed to be computationally indistinguishable from a truly random output

source [Bag06].

This is modeled by replacing H with a member of the family of all truly random

functions with same domain and codomain, chosen uniformly at random. When queried

on the same input, the oracle must be defined to produce the same output, since the

hash function will behave this way in the real world. Hence, in the random oracle

model, the adversary cannot take advantage of the structure of the real hash function.

13

2. PRELIMINARIES

First formulated by Bellare and Rogaway in [BR93], the random oracle model is

considered as a widely accepted assumption in the community. Provided that the ad-

versary has no insight into the hash function, using this black box idealized approach

to model hash functions clearly captures the security essence of the overall crypto-

graphic scheme. Moreover, the abstraction allows designing cryptographic schemes

whose efficiency cannot be achieved if the security proofs are performed without any

ideal assumption.

As presented in [BR93], the random oracle model provides thus a bridge between

cryptographic theory and cryptographic practice. Critics argue that no single determin-

istic polynomial time function can provide a good implementation of random oracles

in the real world. In other words, they argue that the random oracle methodology is

flawed. We refer the reader to [CGH04] for a critical look at the relationship between

the security of cryptographic schemes in the random oracle model and the security of

the schemes that result from implementing the random oracle by real hash functions.

2.3.3 The Generic Group Model

The generic group model is a theoretical framework for the analysis of the success of

algorithms in groups where the representation of the elements reveals no information

to the attacker. The most popular generic group model is the one presented by Victor

Shoup [Sho97]. In this model, the attacker is not given direct access to group elements,

but rather to the images of group elements under a random one-to-one mapping. The

only operations the attacker can perform are therefore equality testing by a bitwise

comparison on the images. Group operations can be computed by the attacker through

a series of oracles. It is clear that in this situation, the attacker can gain no advantage

in solving a computational problem from the representation of the group element.

The generic group is usually not adopted directly to prove the security of a protocol;

instead, it is used to provide evidence as to the hardness of computational problems;

for example [ACHdM05; BB08; LRSW99].

Internally, the simulator represents the elements of a group as their discrete log-

arithms relative to a chosen generator. To represent the images of the elements of

the group for the attacker, a random one-to-one mapping is used from the considered

group – say, of order q – to a codomain represented by random bitstrings of length n,

such that n = dlog2qe. For instance, the group element ga is represented internally

14

2.4 Elliptic Curve Cryptography

as a, whereas the attacker is given the external string representation ξ1(a), where ξ

represents the aforementioned mapping.

The adversary communicates with the oracles using the string representation of the

group elements exclusively. The proof then can show a lower-bound for the complexity

of solving the particular problem at hand, under the assumption that the structure of

the group does not allow for any operation other than the ones modeled through the

set of oracles.

2.4 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) is an approach to public-key cryptography based

on the algebraic structure of elliptic curves over finite fields. The use of elliptic curves

in cryptography was suggested by Neal Koblitz [Kob87] and Victor S. Miller [Mil85].

To date, all the known algorithms to solve the discrete logarithm problem on elliptic

curves are exponential. This allows, in systems using elliptic curves, to use keys of

much smaller size than in the systems relying on the hardness of integer factoring or

discrete logarithms in finite fields. There have been several efforts aimed at designing

theoretical special purpose computers that would implement the existing attack algo-

rithms far faster than general computing resources. Unlike the RSA and Diffie-Hellman

cryptosystems, which slowly succumbed to increasingly strong attack algorithms, ellip-

tic curve cryptography has remained at its full strength since it was first presented in

1985 and it has also been an active area of study in academia.

The US National Institute for Standards and Technology (NIST) has recommended

that 1024-bit systems 1 are sufficient for use until 2010. After that, NIST recommends

that they be upgraded to systems providing an increased security level. This further

enhancement to public key systems can be obtained in two main ways. One option

is to simply increase the public key parameter size to a level appropriate for another

decade of use. Another option, the one we describe in this Section, is to take advantage

of the past 30 years of public key research and analysis and move from first generation

public key algorithms to elliptic curves. Calculations on this kind of curves provide a

more different asymmetry between legitimate users and non-users: these calculations

run indeed polynomial time for users and exponential time for non-users. The length of

1The majority of public key systems in use today use indeed 1024-bit parameters.

15

2. PRELIMINARIES

a key, in bits, for a conventional encryption algorithm is a common measure of security.

One can see that, as symmetric key sizes increase, the required key sizes for RSA and

Diffie-Hellman increase at a much faster rate than the required key sizes for elliptic

curve cryptosystems [HMV03]. Hence, elliptic curve systems offer more security per

bit increase in key size than either RSA or Diffie-Hellman public key systems.

Security is not the only attractive feature of ECC. Elliptic curve cryptosystems

also are more computationally efficient than the first generation public key systems,

RSA and Diffie-Hellman [GPW+04]. Although elliptic curve arithmetic is slightly more

complex per bit than either RSA or DH arithmetic, the added strength per bit more

than makes up for any extra compute time.

The NIST has standardized on a list of 15 elliptic curves of varying sizes. Ten of

these curves are for what are known as binary fields and 5 are for prime fields. For

protecting both classified and unclassified National Security information, the National

Security Agency (NSA) has decided to move to elliptic curve based public key cryptog-

raphy. Where appropriate, NSA plans to use the elliptic curves over finite fields with

large prime moduli (256, 384, and 521 bits) published by NIST.

In conclusion, ECC provides greater security and more efficient performance than

the first generation public key techniques (RSA and Diffie-Hellman) now in use. As

vendors look to upgrade their systems they should seriously consider the elliptic curve

alternative for the computational and bandwidth advantages they offer at comparable

security.

2.4.1 ECC mathematical basis

We now propose a brief overview of the mathematical basis under Elliptic Curve Cryp-

tography. For more details, please refer to [HMV03].

Elliptic curves for cryptography are defined over finite algebraic structures such as

finite fields. Let us define Fq as a finite field of characteristic p, p being a prime and q

a power of this prime. Fq will be referred to as the base group. The fields F kq with k a

positive integer are extensions of the base group.

The general equation of an elliptic curve E over a field Fq is:

y2 + a1xy + a2y = x3 + a3x
2 + a4x+ a5,

16

2.4 Elliptic Curve Cryptography

where the coefficients ai belong to the field Fq. We consider only smooth curves,

meaning a curve with no singular points, in other words no points where both partial

derivate in x and y vanish.

We denote by E(Fq) the set of pairs (x,y) such that (x,y) are solutions of the

previous equation. To have the points on E to form a group, an extra point denoted

by θ is included. This extra point is called the point at infinity and can be formulated

as θ = (∞,∞).

If the characteristic of the field Fq is neither 2 nor 3, then a simple admissible change

of variables allows us to simplify the elliptic curve equation to:

y2 = x3 + ax+ b (Weierstrass form)

We write the set of all such points on E as:

E(Fq) = {P = (x, y)|x, y ∈ Fq solved from E : y2 = x3 + ax+ b} ∪ {θ}

The obtained set of points form an Abelian group under the additive group opera-

tion, which is conventionally written using the notation “+”.

The order of E(Fq) is the number of points that lie on the elliptic curve E(Fq). The

order of a point on the curve E(Fq) is the smallest integer m (if it exists) such that

mP =∞. If such an integer does not exist the point is said to have infinite order.

2.4.2 Supersingular curves

E is said to be supersingular over Fq if E [p] = θ, with p being the characteristic of Fq.

Concretely, this means that E has no point of order p, since θ is of order 1.

Supersingular elliptic curves are sometimes used in cryptography because compu-

tations (of pairings for example) can be made in an easier way, and determining the

group order is also simpler.

2.4.3 Operations on points

We define the addition of two points in the following way:

• Let P ∈ E(Fq). Then P + θ = P and θ + P = P . So θ serves as the identity for

the additive group. If P = θ then we define −P = θ.

17

2. PRELIMINARIES

Figure 2.1: Example of elliptic curve.

• Let P := (x, y) ∈ E(Fq)
∗ (E(Fq)

∗ = E(Fq) − θ). Then −P = −(x, y) = (x,−y)

and P + (−P) = θ. So the inverse of P is -P.

• Let P := (x, y) ∈ E(Fq)
∗ and Q := (x0, y0) ∈ E(Fq)

∗. If x 6= x0, then P + Q =

−R, where -R is a reflection of R in the x-axis and R is the point of intersection

of the line joining P and Q with E.

• Let P := (x, y) ∈ E(Fq)
∗. Then P + P = −R, here -R is also a reflection of R in

the x-axis where R is the point of intersection of the tangent at P with E. This

particular operation is called point doubling.

This addition law can be shown to be commutative and associative, making the

group (E(Fq)
∗,+) an Abelian group.

The addition operation can be repeated P + . . .+P (m times). We note this scalar

multiplication with mP, where m is a positive integer. When m is negative, then mP

18

2.5 Bilinear Pairings

stands for (-m)(-P). By doing so it is possible, starting from a given point P, to quickly

generate other points, by computing 2P, 3P and so on. This will generate new points

until kP = P for some integer k.

2.4.4 Torsion points

Torsion points are points of finite order. To be more precise, P is said to be a r-torsion

point (where r is a positive integer) if rP =∞.

If the curve is defined over a finite field Fq, then all rational points are torsion

points, since their order divides the order of the curve and that the order of the curve

is finite.

2.5 Bilinear Pairings

Recently, elliptic curve also finds new and exciting applications in cryptography, in

particular in cryptographic protocols. This is from so-called bilinear pairing of points

over certain elliptic curves. The intuition behind pairings is the construction of a

mapping between two well-defined groups. This mapping allows the design of new

cryptographic schemes whose security is based on the reduction of one problem in the

first group to a different and usually easier problem in the second group.

Today, the known implementations of such mappings, namely the Weil and the

Tate pairings, use groups over elliptic curves, while the most popular pairing-based

cryptographic scheme is the identity-based encryption scheme proposed by Boneh and

Franklin in 2001 [BF03a]. We refer in the following to this document, presenting its

definition of map.

Let us consider G1 and G2 two groups of order q for some large prime p, and a

bilinear map ê : G1 ×G1 → G2 between these two groups. The map must satisfy

the following properties:

1. Bilinear: a map ê : G1 ×G1 → G2 is bilinear if ê(aP, bQ) = ê(P,Q)ab for all

P,Q ∈ G1 and all a, b ∈ Z

2. Non-degenerate: the map does not send all pairs in G1 ×G1 to the identity in

G2.

3. Computable: there is an efficient algorithm to compute ê(P,Q) for any P,Q ∈ G1

19

2. PRELIMINARIES

The existence of the bilinear map has two direct implications: the MOV reduction

and the easiness of the DDH problem.

Menezes, Okamoto, and Vanstone [MOV93] show that the discrete log problem in

G1 is no harder than the discrete log problem in G2. To see this, let P,Q ∈ G1 be

an instance of the discrete log problem in G1 where both P,Q have order q. We wish

to find an α ∈ Zq such that Q = αP . Let g = ê(P, P) and h = ê(Q,P). Then, by

bilinearity of ê we know that h = gα. By non-degeneracy of ê both g,h have order q in

G2. Hence, the discrete log problem in G1 is reduced to a discrete log problem in G2.

It follows that for discrete log to be hard in G1, the discrete log in G2 has to be hard

too.

The Decision Diffie-Hellman problem (DDH) in G1 is to distinguish between the

distributions 〈P, aP, bP, abP 〉 and 〈P, aP, bP, cP 〉 where a,b,c are random in Z∗q and P

is random in G1∗. Joux and Nguyen [JN03] point out that the DDH in G1 is easy.

Given P, aP, bP, cP ∈ G1∗ we have:

c = ab mod q ⇐⇒ ê(P, cP) = ê(aP, bP).

The Computational Diffie-Hellman problem (CDH) in G1 can still be hard (CDH

in G1 is to find abP given random 〈P, aP, bP 〉. Joux and Nguyen [JN03] give examples

of mappings ê : G1×G1→ G2 where CDH in G1 is believed to be hard even though

DDH in G1 is easy.

Since the DDH in G1 is easy, security systems have to be based on a variant of the

CDH called Bilinear Diffie-Hellman Assumption(BDH).

The Bilinear Diffie-Hellman problem in 〈G1,G2, ê〉 is defined as follows: given

〈P, aP, bP, cP 〉 for some a, b, c ∈ Z∗q , compute W = ê(P, P)abc ∈ G2. An algorithm A

has advantage ε in solving BDH in 〈G1,G2, ê〉 if

Pr [A(P, aP, bP, cP) = ê(P, P)abc] ≥ ε

where the probability is over the random choice of a,b,c in Z∗q , the random choice

of P ∈ G1∗ and the random bits of A.

Let G be a BDH parameter generator. We say that an algorithm A has advantage

ε(k) in solving the BDH problem for G if for sufficiently large k :

20

2.6 Conclusions

AdvG,A(k) = Pr[A(q,G1,G2, ê, P, aP, bP, cP) = ê(P, P)abc |
〈q,G1,G2, ê〉 ← G(1k), P ← G1∗, a, b, c← Z∗q] ≥ ε(k)

We say that G satisfies the BDH assumption if for any randomized polynomial time

(in k) algorithm A we have that AdvG,A(k) is a negligible function. When G satisfies

the BDH assumption, BDH is hard in groups generated by G.

2.6 Conclusions

In this Chapter, we have presented the discipline of cryptography and the main no-

tions to which we will refer in the sequel of the manuscript. In particular, we briefly

presented cryptographic protocols and the foundations of the concept of provable secu-

rity, including the reductionist proof strategy, the random oracle model as well as the

generic group model. Moreover, we gave an overview of bilinear pairings over elliptic

curves, which are used as a building block for the proposed cryptographic schemes.

21

2. PRELIMINARIES

22

Chapter 3

About Secret Handshakes

3.1 Introduction

Secret Handshakes belong to a very specific and yet very complex family of crypto-

graphic protocols. A new Secret Handshake protocol can be better understood by

reference to its functional and security requirements. The task of drafting a taxonomy

for Secret Handshakes however has, to-date, not yet been undertaken.

The purpose of this Chapter is therefore to survey the Secret Handshake protocol

family. Starting from a toy protocol, we introduce all the orthogonal dimensions in

the family of Secret Handshakes and describe its design space, by identifying a set of

characteristics for these protocols. We then move on to the analysis of the numerous

Secret Handshake protocols in the state-of-the-art, explaining what they achieve and

how they position themselves within the identified taxonomy.

In Section 3.5.1, while wrapping up the conclusions of the Chapter, we highlight a

number of shortcomings of the solutions available in the state of the art. The latter

step then serves as a natural launching pad to introduce the protocols that we present

in the subsequent Chapters of this Thesis: these protocols, as we shall see, complete

the landscape of available protocols in the Secret Handshake family.

3.2 A Primer on Secret Handshakes

Secret Handshakes consist of users engaging in a protocol in order to exchange informa-

tion about a property. There are two actions that each user performs during a Secret

Handshake: proving and verifying. Proving means convincing the other party that one

23

3. ABOUT SECRET HANDSHAKES

possesses the property object of the handshake. Verifying in turn means checking that

the other party actually possesses the property object of the handshake.

The core objective of Secret Handshakes can be defined as follows:

Definition 2 (Secret Handshake). A Secret Handshake is a protocol wherein two users

ui and uj belonging to a universe of users U authenticate as possessors of a common

property p∗ belonging to a universe of properties P.

A simple protocol achieving this objective is shown in Figure 3.1. Users ui and uj

receive a secret value Kp∗ associated with property p∗. The two users exchange ni and

nj , two nonces randomly chosen by each user. After the two nonces are exchanged,

each user can compute a value k = MACKp∗ (ni||nj), using a message authentication

code such as [BCK96]; both users will compute the same value k only if they both

posses the correct secret value Kp∗ .

ui −→ uj ni

uj −→ ui nj

uj ←→ ui prove knowledge of k = MACKp∗ (ni||nj)

Figure 3.1: A simple protocol for Secret Handshake.

First of all we can see that the output of the protocol is a value, k. A proof of

knowledge that the same value has been computed by both users accomplishes the

proving and verifying actions. This value can also possibly be used by the two users to

derive a key used to secure further communication.

A limitation of the protocol of Figure 3.1 is that the actions of proving and verifying

cannot be separated since they are both accomplished at the same time through the

proof of knowledge of k; in turn, k is a function of the nonces and of Kp∗ : therefore,

in the simple protocol of Figure 3.1, the knowledge of Kp∗ grants at the same time

the right to prove and to verify for property p∗. Let us then define the concept of

separability:

Definition 3 (Separability). A Secret Handshake protocol is separable if the ability to

prove can be granted without the ability to verify (and vice versa).

According to Definition 3, the protocol described in Figure 3.1 is non-separable. Sepa-

rability in particular translates into splitting secrets associated with a property – such

24

3.2 A Primer on Secret Handshakes

as Kp∗ in our previous example – into two separate components: Credentials and

Matching References . Credentials grant the ability to prove to another user the pos-

session of a property. Matching References in turn grant the ability to verify whether

another user possesses a property. Now that we have formally introduced Credentials

and Matching References, we can underline the fact that, in Secret Handshakes, only

legitimate bearers of Credentials should be able to prove possession of a property, and

only legitimate bearers of Matching References should be able to verify possession of a

property. We can thus refine Definition 2 as follows:

Definition 4 (Secret Handshake). A Secret Handshake is a protocol wherein two users

ui and uj belonging to a universe of users U authenticate as possessors of a common

property p∗ belonging to a universe of properties P. The authentication is successful if

both users possess legitimate Credentials and Matching References for p∗.

The legitimacy of Credentials and Matching References depends on the particular

way in which these are generated. Indeed, different Credentials and Matching Reference

generation policies play a crucial role on the control over “who can prove possession of a

property” and “who can verify possession of a property”. We shall refer to proof-control

and verification-control respectively, to refer to these two concepts.

For instance, if a certification authority generates Credentials and gives them away

only to selected users, it retains the control over the ability to prove. The same happens

for Matching References.

3.2.1 Anonymity and Unlinkability

In this Section we investigate the amount of information leaked to an observer from a

Secret Handshake execution. At first, we will state a few definitions, taken from [PH08].

Definition 5 (Anonymity). Anonymity of a user means that the user is not identifiable

within a set of user, the user set.

Definition 6 (Unlinkability). Unlinkability of two or more items of interest (IOIs,

e.g., subjects, messages, actions, ...) from an observer’s perspective means that within

the system (comprising these and possibly other items), the observer cannot sufficiently

distinguish whether these IOIs are related or not.

25

3. ABOUT SECRET HANDSHAKES

At first, let us notice that Anonymity always relates to users and their identifica-

tions, whereas Unlinkability relates to general items of interest, which are not necessar-

ily restricted to users. Let us nonetheless focus on users. The user set is the universe of

users U introduced in Definition 2. Then, we say that a Secret Handshake scheme guar-

antees Anonymity if the identifiers of the involved users are not revealed throughout

its execution. Unlinkability of users instead relates to the ability of an observer to link

the same user throughout multiple instances of Secret Handshake. In order to make

the observer as powerful as possible, we assume that the observer is one of the two

users engaging in a protocol. We can therefore say that a Secret Handshake protocol

guarantees Unlinkability of users if – upon executing two separate instances of Secret

Handshake – an observer is not able to tell whether he is interacting with the same

user or two different ones.

Let us now turn our attention to Unlinkability of properties. Following the same

approach, we say that a Secret Handshake protocol guarantees Unlinkability of prop-

erties if – upon executing two separate instances of Secret Handshake – an observer is

not able to tell whether he is interacting with users holding Credentials for the same

property or users holding Credentials for different ones; naturally, this requirement

should hold only in case of failed handshake, since in case of success, linking properties

is possible by definition.

3.2.2 A Word on Fairness

Let us now introduce the concept of fairness, according to Asokan’s definition [Aso98]

and understand its relationship with Secret Handshakes.

Definition 7 (Fairness). An exchange protocol is considered fair if at its end, either

each player receives the item it expects or neither player receives any additional infor-

mation about the other’s item.

In a Secret Handshake scenario, this definition translates to the requirement that

either both users learn that they both possess a given property, or they do not learn

anything at all. As we have seen, proving knowledge of the computed key to one

another is what allows users to learn of a successful handshake. Therefore fairness

can be achieved if users can execute a protocol that allows them to exchange fairly

26

3.3 The state-of-the-art of Secret Handshakes and related protocols

the results of a proof of knowledge of the two keys, for instance a challenge-response

protocol.

Unfortunately, a result from Pagnia and Gärtner [PG99] shows that fairness in

exchange protocols is impossible to be achieved without a trusted third party. Secret

Handshake protocols however can achieve some more limited form of fairness. Let us

define the following predicate

P := “both participants to the Secret Handshake protocol possess the property object of

the handshake”

We can then introduce the notion of fairness in Secret Handshakes:

Definition 8 (Fairness in Secret Handshake). Upon termination of a Secret Handshake

protocol after either a complete or incomplete execution, either at least one party learns

P, or no one learns any information besides qP.

where by qP we mean the negation of the predicate P.

Definition 8 acknowledges the unfairness of Secret Handshakes, but allows one of the

two users, padv, to have an advantage over the other only under specific circumstances.

Indeed, in order for padv to learn P, padv must possess the property object of the

handshake. padv can only learn qP otherwise. The full impact of this will be clearer

later on in this Chapter.

3.3 The state-of-the-art of Secret Handshakes and related

protocols

Thanks to the definitions that we have given in the previous Section, we will now go

through the Secret Handshakes protocols presented in the literature, underlining how

they relate to the dimensions highlighted so far and gradually introducing new features.

3.3.1 Matchmaking

The seminal work that introduced Secret Handshakes has been presented by Balfanz

et al. in 2003 [BDS+03]. Before this paper, a few other works have described protocols

with similar objectives. In this Section we will describe these protocols, highlighting

some new features whose understanding will be essential for the comprehensive study

of the Secret Handshake design space.

27

3. ABOUT SECRET HANDSHAKES

In 1985, Baldwin and Gramlich introduced the concept of Matchmaking [BG85].

In Matchmaking protocols, the concept of property that we have referred to as part of

Definition 4 become user-generated wishes; for instance, the authors present an example

involving a company hiring a high-level manager from within the workforce of other –

possibly competing – companies. On the one hand, a manager is reluctant to expose

his willingness to leave his current employer; on the other hand, a company is not keen

on publicizing that they need a replacement in the current management workforce.

Given the sensitiveness of the topics, both users express communication “wishes” on

the nature of the other party; wishes can be – as it is the case in the example – fairly

sensitive; therefore, users want to interact only with another user who has the same

wish. The paper presents a set of protocols involving users and an external matchmaker,

whose role is to guarantee fairness in the system. The matchmaker is assumed to be

an honest-but-curious third party.

Matchmaking, as described in the paper, is a non-separable protocol that guarantees

fairness (according to Definition 7) thanks to the use of a trusted third party. Since the

protocol is non-separable, Credentials and Matching References are fused into a single

token, namely the self-generated wish. The protocol can be summarized as follows:

users have certified public-private key pairs associated with their identities; users write

in a public database a number of wish key-pairs associated with a pseudonym; users

can then lookup a particular wish, fetching the respective keys. A user would then try

to match another user under a particular wish by trying to compute a shared key out

of the fetched ones; the key computation involves the public key of both users. If two

users are trying to match one another under the same wish, they will end up computing

the same key; the key will be published in the matchmaker’s database, associated with

the pseudonyms users have chosen: this way, the interested users know of a matching

while for the matchmaker and for other users remain oblivious.

The protocol preserves Unlinkability and Anonymity of users against the match-

maker and against users engaging in unsuccessful matchmaking protocols. However

the protocol fails to guarantee Unlinkability of properties against the matchmaker as

observer. In this scheme, both proof and verification control are under the control of

users who received a certificate for their keypair. In addition, although wishes can be

generated autonomously by users, the fact that the key computation involves certified

public keys associated with identities, prevents fraudulent matching attempts: assume

28

3.3 The state-of-the-art of Secret Handshakes and related protocols

that ui tries to match the wish w off uj : then, only uj (i.e. a user chosen and sup-

posedly trusted by ui), thanks to its private key, will be able to engage in a successful

matching.

In [ZN01], Zhang and Needham present another protocol, similar to Baldwin and

Gramlich’s. This protocol relies on an untrusted matchmaker, acting as a public

database where users publish encrypted versions of their wishes. In this case how-

ever, there is no proof and verification control: any user is able to search for a match

and fake one; in addition, the encryption of wishes is deterministic, and therefore dic-

tionary attacks are not prevented. Last, for the same reason, the protocol does not

guarantee Unlinkability of properties.

In [Mea86], Meadows presents a new Matchmaking protocol. The starting point

of this work is the fact that Baldwin and Gramlich’s solution requires an online third

party, which is arguably too strong a requirement in many scenarios. The protocol

builds on top of the Diffie-Hellman key exchange [DH03]. The protocol operates as

follows: a series of organization federate by exchanging public keys. Each organization

can then issue Credentials associated with properties. When two users engage in a

protocol run, they exchange Credentials and can tell whether the other party has the

same Credential or not. On top of this binary answer, they exchange a key they can

use to secure later communications.

Despite referencing Baldwin and Gramlich’s work as closest related work, Mead-

ows’ protocol achieves significantly different results. The protocol is non-separable as

Baldwin and Gramlich’s, but it achieves fairness according to Definition 8. Other dif-

ferences include the fact that, although Anonymity and Unlinkability of properties are

preserved, Unlinkability of users is not, since users exchange all the time the same

Credential. The biggest change however resides in proof and verification control; since

the protocol is non-separable, there is a single token acting as both Credential and

Matching Reference. This token is generated by an organization acting as certification

authority, which therefore keeps the control over who can prove and who can verify

which property.

In [Hoe08], Hoepman presents a very simple protocol – similar to Meadows’ [Mea86]

– and also based on the Diffie-Hellman key exchange.

29

3. ABOUT SECRET HANDSHAKES

3.3.2 Classic Secret Handshakes schemes

In 2003 [BDS+03], Balfanz and colleagues first introduced the notion of Secret Hand-

shake, presenting a scheme based on bilinear pairings. Balfanz et al.’s is also the

first scheme whose security is formally proved. The scheme introduced in the paper

is, according to our definitions, a non-separable protocol: users of the scheme receive

from a Group Authority – upon registration – two separate lists of tokens, a list of

pseudonyms and a list of secret points associated with each pseudonym. The tokens

act as Credentials and Matching References for membership to a group: therefore proof

and verification control are under the control of the Group Authority. Upon execution

of the Secret Handshake, the users exchange nonces and pseudonyms and perform a

local computation. Thanks to the properties of bilinear pairings, the two users share

the same key if they belong to the same group. Despite the fact that users receive

Credentials and Matching References separately (which is a first step toward separa-

bility as we shall see later), the protocol is admittedly still non-separable: indeed it is

impossible for a user to only verify the membership of another user without proving

its own. This is a consequence of the fact that the protocol openly provides fairness

according to Definition 8: therefore, either both users prove and verify membership to

the same group, or they only learn of a failed handshake.

The protocol guarantees Anonymity thanks to the use of pseudonyms; Unlinkabil-

ity of properties is proved by reduction to the Bilinear Diffie-Hellman problem (in the

paper, this property is referred to as indistinguishability to eavesdroppers). Unlinka-

bility of users is achieved by providing users with a large number of pseudonyms and

by asking users to never reuse them: however, although Unlinkability of users is indeed

guaranteed, the solution is suboptimal since it trades off the number of Credentials

provided with the number of unlinkable handshakes that a user can perform.

In order to mitigate this issue, Xu and Yung have presented in [XY04] the concept

of k-anonymous Secret Handshakes and of reusable Credentials. Let us start with the

latter:

Definition 9 (Reusable Credentials). A Secret Handshake scheme supports reusable

Credentials if some form of Anonymity and Unlinkability are guaranteed and users

receive a single Credential.

30

3.3 The state-of-the-art of Secret Handshakes and related protocols

Clearly Balfanz et al.’s scheme does not support reusable Credential. Xu and Yung’s

scheme is the first one to support reusable Credentials. This is achieved as follows:

upon a Secret Handshake execution, a user hides its handshake message among the

handshake messages that could plausibly have been generated by other k−1 users with

(possibly different) Credentials. The algorithm used to draft the other users that help

hiding the handshake message makes sure that only the correct handshake message will

be considered, which guarantees correctness. Thus, with a single Credential, users can

execute an arbitrary number of Secret Handshake at the expense of full Anonymity.

In [Ver05], Vergnaud presents three Secret Handshake protocols whose security

is based on the RSA assumption. The scheme is similar to Balfanz et al.’s, and in

particular also does not ensure Unlinkability of users with reusable Credentials.

In [SG08] Shin and Gligor present a privacy-enhanced matchmaking protocol that

shares several features with Secret Handshakes. The protocol operates as follows: users

receive anonymous Credentials and run a password-based authenticated key exchange

(PAKE, see [BM93; BMP00; BPR00]), where instead of the password, they use self-

generated communication wishes, as in matchmaking protocol. This suggests that

users may retain proof and verification control; however, after a successful matching of

the communication wish through the PAKE, users are requested to show certificates

linking the pseudonym that has been declared upfront with the wish that they claim

they possessed/were interested in. Thus in fact, proof and verification control is under

the control of the certification authority. The protocol guarantees fairness according to

Definition 8.

In this scheme there is a situation in which an attacker may retrieve some informa-

tion in an unauthorized way, as follows: let user A without a legitimate Credential for

a property – say p∗ – interact with user B who does have such Credential; the PAKE –

with p∗ as a communication wish – would be successful. However, since the misbehav-

ing user would not be able to present an anonymous Credential for p∗, the other user

could present the transcript of the protocol and have the attacker’s Credential revoked

(more on revocation will come in Section 3.4). However the adversary, user A, would

still have discovered valuable information on the Credential of the other party.

In [JL07] Jarecki and Liu underline the fact that schemes proposed so far either sup-

port limited nuances of Unlinkability or support reusable Credentials. Therefore they

31

3. ABOUT SECRET HANDSHAKES

propose an unlinkable version of Secret Handshake, affiliation/policy hiding key ex-

changes, wherein Credentials are reusable and yet Secret Handshake executions do not

leak the nature of the properties linked with Credentials (called affiliation) and Match-

ing References (called policies). The scheme is based on public-key group-management

schemes.

In [JKT08], the same authors strengthen the concept of affiliation-hiding key ex-

changes to include perfect forward secrecy; the authors also investigate the amount of

information leaked in the case of an attacker able to compromise sessions (thus learning

if the two users belonging to the session do belong to the same group) and users (thus

learning the group that user belongs to). The scheme however relies on pseudonyms

and therefore gives up Unlinkability of users.

3.3.3 Secret Handshake with Dynamic Matching

The concept of Dynamic Matching allows users to prove and verify possession of two

distinct properties during the execution of a Secret Handshake, as opposed to Secret

Handshakes introduced in Section 3.3.2 which allowed users to prove and verify the

matching of a unique property, that is, membership to a single, common group; we

shall refer to the latter type of Secret Handshake as to classic Secret Handshakes from

here on.

Definition 10 (Secret Handshake with Dynamic Matching). A Secret Handshake with

Dynamic Matching is a protocol wherein two users ui and uj belonging to a universe

of users U authenticate if two conditions are satisfied: (i) ui has a Credential for the

same property p∗ for which uj has a Matching Reference; and (ii) uj has a Credential

for the same property p◦ for which ui has a Matching Reference.

The introduction of Secret Handshake with Dynamic Matching in Definition 10 re-

quires to revisit the concept of fairness in Secret Handshakes introduced in Definition 8;

in particular we need to rephrase the predicate P as follows:

P := “both participants to the Secret Handshake protocol possess Credentials for the

property object of the other’s Matching Reference ”

Let us first of all notice that this definition of Secret Handshakes with Dynamic

Matching encompasses classic Secret Handshakes: indeed, by simply equipping users

of a Secret Handshake with Dynamic Matching scheme with Credentials and Matching

32

3.3 The state-of-the-art of Secret Handshakes and related protocols

Reference referring to the same property, one can easily obtain classic Secret Hand-

shakes. Therefore, Secret Handshakes with Dynamic Matching are a generalization of

classic Secret Handshakes.

The concept of Dynamic Matching has been introduced in [AKB07] by Ateniese and

colleagues; however an earlier work already gave the same ability to users, although

the fact has not been stressed by the authors in their paper.

In [CJT04], Castelluccia et al. introduce the concept of CA-Obliviousness and show

how to build Secret Handshakes using CA-Oblivious PKI system. CA-obliviousness

can be explained as follows: imagine a sender who wants to send a message to a

receiver. The sender’s keypair has been certified by a CA. The receiver starts by

sending its identity and its certificate to the sender; the sender extracts the public key

from the receiver’s certificate and encrypts the message destined to the receiver under

the extracted public key. The system is CA oblivious if the sender cannot tell which CA

certified the receiver’s public key, and if the receiver cannot tell which CA the sender

assumed upon extracting the public key from the receiver’s certificate. Clearly there is

one situation in which sender and receiver will disclose one another’s CA: this happens of

course when both CAs are equal. The CA in this setting plays the role of group manager

handing out Credentials (the certificates). Two users can perform a Secret Handshake

by exchanging their certificates, extracting public keys, exchanging encrypted messages

and showing one another proofs that the decryption has been successful.

A ←− B IDB, ωB

A computes PKB assuming CA

A −→ B EPKB
(rA), IDA, ωA, chA

B computes PKA assuming CA

A ←− B EPKA
(rB), chB, respB

A checks that respB = H(rA, rB, chA)

A −→ B respA

B checks that respA = H(rA, rB, chB)

Figure 3.2: Secret Handshakes from CA-Oblivious Encryption.

The protocol can be seen in Figure 3.2: A and B are the two users, IDA and IDB

are their identities (or pseudonyms), ωA and ωB are the certificates of the two public

keys PKA and PKB. The protocol is successful if and only if ωA is a certificate issued

33

3. ABOUT SECRET HANDSHAKES

by CA on PKA and IDA and ωB is a certificate issued by the same CA on PKB and

IDB. The protocol achieves the same results in terms of Anonymity, Unlinkability,

fairness and proof control as Balfanz et al.’s. However verification control is under the

control of users: this can be seen by the fact that each user can choose arbitrarily the

CA that they assume the other user has a Credential from.

Consequently two users can obtain a Secret Handshake with Dynamic Matching

as follows: suppose that A is equipped with a certificate ωA issued from CA∗, the

CA responsible for property p∗; suppose also that B is equipped with a certificate ωB

issued from CA◦, the CA responsible for property p◦. Also assume that there exist a

public map associating the public key of each CA with the property it is responsible

for. Then suppose that A chooses to use the public key of CA◦ in order to compute

PKB, effectively trying to match p◦ from B; suppose also that B chooses to use the

public key of CA∗ in order to compute PKA, effectively trying to match p∗ from A. In

this case, the Secret Handshake would be successful: A and B would have effectively

conducted a Secret Handshake with Dynamic Matching as described in Definition 10.

The concept of Secret Handshake with Dynamic Matching has been introduced in

2007 by Ateniese and colleagues in [AKB07]. The protocol is compliant with Defi-

nition 10. The protocol is separable: users receive Credentials from the certification

authority – which retains the proof control – whereas users can freely create Matching

References without the intervention of the CA; thus, verification control is under the

control of users.

The protocol is innovative also because it is the first one supporting reusable Cre-

dentials and guaranteeing Anonymity and Unlinkability of users and of properties.

3.3.4 Other Works

In [LDB05], Li Du and Boneh introduce the concept of Oblivious Signature-Based

Envelopes (OSBEs). An OSBE is an envelope that is sent by a sender to a receiver, with

the assurance that the receiver will only be able to “open” it if he holds a signature on a

pre-defined message. The protocol guarantees that (i) the sender will remain oblivious

whether the receiver has or has not been able to open the envelope and (ii) the receiver

will not be able to read it unless he has the correct signature.

An OSBE round between a sender and a receiver may be seen as a single side

of a Secret Handshake: indeed in Secret Handshakes a prover wants to reveal some

34

3.4 Revocation in Secret Handshakes

information to a verifier only under certain circumstances, as a sender of an OSBE

wants to reveal its content only to a receiver holding a particular signature.

OSBEs have been studied also in [LDB05], where the authors hint to the possibility

of using two symmetric OSBE instances to achieve a Secret Handshake. The Secret

Handshake scheme resulting from the two OSBE instances would only support classic

Secret Handshakes (in particular, no support for Dynamic Matching); fairness according

to Definition 8 would be guaranteed provided that knowledge of the two keys exchanged

in the envelope is proved simultaneously. Anonymity and Unlinkability of properties

is guaranteed thanks to the obliviousness property; however the protocol would fail to

guarantee Unlinkability of users, since Credentials are not reusable.

In [JKT06] Jarecki et al. investigate multi-party Secret Handshakes: a group of

users will share a key only if all its members belong to a common group. The key

agreement scheme is affiliation-hiding as defined in [JL07], and therefore no information

about the property object of Credentials and Matching References is leaked. However

Credentials are not reusable and therefore Unlinkability of users is guaranteed only if

Credentials are never re-used.

3.4 Revocation in Secret Handshakes

Revocation represents an interesting challenge for Secret Handshakes: on the one hand,

as we have stressed in Section 3.2.1, a strong requirement for Secret Handshakes is

Unlinkability of both users and properties. On the other hand, revocation usually

requires means of tagging Credentials in order to single out the revoked ones and refuse

any interaction with users bearing them, which in principles requires some degree of

linkability.

There are normally three main ways of addressing revocation of cryptographic to-

kens: short-lived Credentials, black lists and white lists. Short-lived Credentials are

Credentials with an expiration date embedded in them; this way, after a pre-defined

amount of time, Credentials automatically expire and the certification authority can

decide whether to renew them. Black lists, also called revocation lists, are public lists,

whose content is signed by the certification authority; these lists contain identifiers for

all Credentials that have been revoked. A consequence of choosing this approach is

the fact that Credentials need to carry a univocal identifier that can be published in

35

3. ABOUT SECRET HANDSHAKES

the revocation list. White lists are based on cryptographic accumulators: in short,

an accumulator is a public cryptographic token which can be used to test if a value

belongs to the accumulator or not. To serve for revocation purposes, the accumula-

tor is initialized by the certification authority, who adds all the identifiers of the valid

Credentials. If a user wants to prove that he has a valid Credential, he needs to reveal

the identifier of the Credential and anyone can check if it belongs to the accumula-

tor. Camenisch et al. have shown in [CL02] how dynamic accumulators [Pfi97; BA93]

can be used to achieve efficient revocation for anonymous Credentials, by turning the

aforementioned check into a zero knowledge proof-of-knowledge: this way, the verifying

user does not need to know the value of the identifier. However dynamic accumulators,

quoting Balfanz [BDS+03], are ill-suited for Secret Handshakes, mainly due to the fact

that when a verifier has checked that a prover’s witness belongs to the accumulator,

he has already disclosed the prover’s affiliation and can then selfishly refuse to reveal

his own witness. Turning accumulator based asymmetric membership verification into

symmetric handshakes is indeed an interesting open challenge.

In the rest of this Section we are going to revisit Secret Handshake schemes with

respect to their coverage of revocation. Most schemes follow a black-list approach for

revocation. The scheme by Jarecki and Liu [JL07] is to the best of our knowledge the

only one following a revocation approach based on epochs and short-lived Credentials.

In the seminal work by Baldwin and Gramlich [BG85], the certification authority

does not exercise any control on proof and verification; the only option for the CA

is to revoke the public key, thus revoking the possibility of executing matchmaking

altogether. The protocol described in [ZN01] on the contrary does not support any

type of revocation, since it is entirely based on non-certified information. In the work

by Meadows [Mea86], the certification authority has two options: either the revocation

of the signatures on the user information or a complete rekeying. The latter on the

contrary is the only option in the protocol presented by Hoepeman in [Hoe08].

The seminal work by Balfanz and colleagues [BDS+03] supports revocation of single

Credentials; the CA can publish user pseudonyms on a public CRL and users can refuse

to engage in Secret Handshake if the pseudonym used by the other party belongs to the

list. This allows to selectively revoke the power to prove; notice that all pseudonyms

look alike and are published on a common list: therefore the nature of the properties of

revoked users is not revealed even after revocation. Additionally, since the scheme uses

36

3.5 A Taxonomy of Secret Handshake protocols

one-time Credentials, a user does not lose its Unlinkability after revocation, provided

that the publication of pseudonyms in the list are not performed in batches of one single

user at a time, which would inevitably reveal that all of the published Credentials did

belong to a single user. The same approach is followed by Jarecki et al. in [JKT08]

and [JKT06].

The scheme of Vergnaud [Ver05] is based on RSA public key cryptography; Creden-

tials are represented by the knowledge of a pair of encryption/decryption exponents;

as a consequence, Credentials (i.e. public keys) can be revoked through a standard

revocation list, whereby only the indices of revoked Credentials are published. Simi-

larly, also the work by Xu and Yung [XY04], based on public-key encryption, supports

revocation of Credentials through standard revocation of certificates.

As we have mentioned before, revocation is a critical feature of Shin and Gligor’s

scheme [SG08]; indeed, only by threatening users to revoke their anonymous Credentials

if they misbehave, can the certification authority retain proof and verification control.

The seminal work on Dynamic Matching by Ateniese and colleagues does not sup-

port revocation. On the contrary, the work by Castelluccia et al., also supporting Secret

Handshake with Dynamic Matching, does support revocation of Credentials through

revocation of one-time Credentials.

As for OSBE, which we have listed among related protocols, the study of revoca-

tion has not been addressed in [LDB05; NT06]. However, given the operation of an

OSBE exchange, we can list two different possibilities of revocation of Credentials: one

consists in periodically updating the pre-defined message that sender and receiver have

to agree upon, for example by concatenating an expiration date. The second approach

for revocation is based upon publishing the randomizer of signatures that need to be

revoked on a revocation list.

3.5 A Taxonomy of Secret Handshake protocols

Let us recap here the main requirements that we have identified:

• Separability addresses the possibility of granting the right to prove separately

from the right to verify, and vice versa.

37

3. ABOUT SECRET HANDSHAKES

• Proof-control relates to the entity which can grant the right to prove possession

of a property.

• Verification-control relates to the entity which can grant the right to verify pos-

session of a property.

• Anonymity requires that a user – upon a Secret Handshake execution – is not

identifiable within the user set.

• Unlinkability of Users requires that an observer cannot link two Secret Handshake

executions to a single user.

• Unlinkability of Properties requires that an observer cannot link two Secret Hand-

shake executions to a single property.

• Fairness is guaranteed by a Secret Handshake scheme if, at the hand of the pro-

tocol, one or both users learn either that both users possess Credentials matching

each other’s Matching References or neither learns anything except of a failed

match.

• Reusable Credentials correspond to the fact that user get a single Credential,

which they can use an arbitrary number of time, yet preserving Anonymity and

Unlinkability of users and properties.

• Revocation Support relates to the fact that Credentials can be revoked, dealing

with the possibility that users lose their Credentials, or that attackers can steal

them.

In Table 3.1 we briefly summarize Secret Handshake and related protocols that

we have analyzed in this Chapter, highlighting how they relate to the aforementioned

requirements.

3.5.1 Highlighting the Gaps

From an analysis of Table 3.1, we can notice that the protocols in the literature fail to

cover two protocol scenarios:

38

3.6 Conclusions

• among the two schemes supporting separable Credentials, namely the work of

Castelluccia et al. [CJT04] and the work of Ateniese et al. [AKB07], none allows

the CA to maintain verification control; indeed in both schemes, the user has the

freedom of choosing the property to be matched from the other party, and the

CA can exercise no control over it;

• in all the schemes in the literature, the support for revocation seems to be in

contrast with the ability to support more advanced features such as reusable

Credentials and/or separability; as an example, the scheme of Castelluccia et

al. [CJT04] supports revocation but does not support reusable Credentials; the

scheme put forward by Jarecki et al. [JL07] supports revocation, reusable Cre-

dentials but does not support Dynamic Matching;

These two observations motivate the work of the next two Chapters; in Chapter 4 we

try to overcome the first of the two limitations by introducing the concept of Dynamic

Controlled Matching. In Chapter 5 instead, we address the second point and focus

our attention on the topic of revocation for Secret Handshake schemes supporting more

complete flavours of Secret Handshake than simple classic Secret Handshake, or meeting

advanced requirements such as reusable Credentials.

A third observation instead motivates the work of the last Chapter of this first part

of this manuscript: all the schemes in the state-of-the-art require a centralized entity to

hand out either or both Credentials and Matching References. In Chapter 6 we make

a first attempt to relax this assumption.

3.6 Conclusions

In this Chapter we have investigated the design space of Secret Handshakes and related

protocols. Starting from a toy protocol, we have listed a series of requirements and

target properties for Secret Handshake protocols. We then analyzed the protocols in

the state-of-the-art based on this criteria.

Through this analysis we have identified a number of gaps, of missing features

amongst the protocols in the literature. In the subsequent Chapters, we shall focus our

attention on researching solutions for those.

39

3. ABOUT SECRET HANDSHAKES

T
a
b

le
3
.1

:
R

ev
iew

o
f

S
ecret

H
a
n

d
sh

a
ke

p
ro

to
co

ls
in

th
e

literatu
re.

P
ro

to
co

l
S
ep

a
ra

b
ility

P
ro

o
f

V
erifi

ca
tio

n
A

n
o
n
y
m

ity
U

n
lin

ka
b
ility

U
n
lin

ka
b
ility

F
a
irn

ess
R

eu
sa

b
le

R
ev

o
ca

tio
n

co
n
tro

l
co

n
tro

l
o
f

U
sers

o
f

P
ro

p
erties

C
red

en
tia

ls
S
u
p
p

o
rt

B
a
ld

w
in

et
a
l.

[B
G

8
5
]

N
o

U
sers

U
sers

Y
es

Y
es

N
o

Y
es

a
N

/
A

Y
es

b

Z
h
a
n
g
et

a
l.

[Z
N

0
1
]

N
/
A

N
o
n
e

N
o
n
e

Y
es

Y
es

N
o

N
o

N
/
A

N
o

M
ea

d
ow

s
[M

ea
8
6
]

N
o

C
A

C
A

Y
es

N
o
c

Y
es

Y
es

N
o

N
o

H
o
ep

m
a
n

[H
o
e0

8
]

N
o

C
A

C
A

Y
es

Y
es

Y
es

Y
es

N
o

N
o

B
a
lfa

n
z
et

a
l.

[B
D

S
+

0
3
]

N
o

C
A

C
A

Y
es

N
o
c

Y
es

Y
es

N
o

Y
es

X
u
et

a
l.

[X
Y

0
4
]

N
o

C
A

C
A

Y
es

d
Y

es
d

Y
es

Y
es

Y
es

Y
es

V
erg

n
a
u
d

[V
er0

5
]

N
o

C
A

C
A

Y
es

N
o
c

Y
es

Y
es

N
o

Y
es

S
h
in

et
a
l.

[S
G

0
8
]

N
o

C
A

e
C

A
e

Y
es

N
o
c

Y
es

Y
es

N
o

Y
es

J
a
reck

i
et

a
l.

[J
L

0
7
]

N
o

C
A

C
A

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

J
a
reck

i
et

a
l.

[J
K

T
0
8
]

N
o

C
A

C
A

Y
es

N
o
c

Y
es

Y
es

N
o

Y
es

C
a
stellu

ccia
et

a
l.

[C
J
T

0
4
]

Y
es

C
A

U
sers

Y
es

N
o
c

Y
es

Y
es

N
o

Y
es

A
ten

iese
et

a
l.

[A
K

B
0
7
]

Y
es

C
A

U
sers

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

a
T

h
is

p
ro

to
co

l
u
ses

a
sem

i-tru
sted

m
a
tch

m
a
k
er,

so
p

erfect
fa

irn
ess

ca
n

b
e

a
ch

iev
ed

.
b

W
h
a
t

is
b

ein
g

rev
o
k
ed

h
ere

is
n
o
t

th
e

rig
h
t

to
p
rov

e
p

o
ssessio

n
o
f

a
p
ro

p
erty,

b
u
t

th
e

rig
h
t

to
p
a
rticip

a
te

in
th

e
p
ro

to
co

l
a
lto

g
eth

er.
c

U
n
lin

ka
b
ility

o
f

U
sers

ca
n

o
n
ly

b
e

a
ch

iev
ed

b
y

u
sin

g
m

u
ltip

le
o
n
e-tim

e
C

red
en

tia
ls.

d
A

u
ser

is
o
n
ly

a
n
o
n
y
m

o
u
s/

u
n
lin

ka
b
le

w
ith

in
a

g
ro

u
p

o
f

o
th

er
k

u
sers,

k
b

ein
g

a
p
a
ra

m
eter

o
f

th
e

sy
stem

.
e

U
sers

ca
n

m
isb

eh
av

e
b
u
t

th
ey

ca
n

b
e

tra
ced

a
n
d

rep
o
rted

to
th

e
C

A
,

w
h
ich

ca
n

rev
o
k
e

th
e

C
red

en
tia

ls.

40

Chapter 4

Secret Handshake with Dynamic

Controlled Matching

4.1 Introduction

In this Chapter we introduce the concept of Dynamic Controlled Matching. Dynamic

Controlled Matching fills one of the gaps in the state-of-the-art, helping to complete the

landscape of available Secret Handshake solutions. A Secret Handshake scheme with

Dynamic Controlled Matching allows for separability yet leaving proof and verification

control to the CA. A look at Table 3.1 tells us that no scheme in the literature supports

such setting.

The contributions of this Chapter are manifold: in Section 4.2 we formally introduce

the concept of Dynamic Controlled Matching, highlighting its flexibility and showing

how it can cover both classic Secret Handshakes and Secret Handshakes with Dynamic

Matching. In order to build a practical scheme for Secret Handshake with Dynamic

Controlled Matching, we proceed in steps: at first, in Section 4.3, we present a simpler

scheme that accomplishes only a single round of a Secret Handshake, and prove its

security. Then in Section 4.4 we show how this simpler protocol can be used as a

building block to create a Secret Handshake scheme that supports Dynamic Controlled

Matching, and demonstrate its security.

41

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

4.2 Dynamic Controlled Matching

In this Chapter we present the first Secret Handshake scheme with Dynamic Controlled

Matching. In Secret Handshake schemes that support Dynamic Controlled Matching,

users are required to possess Credentials and Matching References issued by a trusted

certification authority in order to be able to prove and to verify possession of a given

property. Therefore the certification authority retains the control over who can prove

what and who can verify which Credentials. However verification is dynamic, in that it

is not restricted to a single, common property, as opposed to the approaches suggested

in [BDS+03; Ver05; SG08; Mea86; XY04].

Let us first of all point out that this new scheme is of clear practical use. For

instance, it fulfills the requirements identified by the EU Project R4EGov [Eur07]. In

one of the project’s use cases, EU justice forces cooperate with one another in order to

solve cross-boundary criminal cases. EU regulations define official processes that must

imperatively be followed by operating officers: in particular, these processes mandate

which institutions must cooperate upon each particular case. During such collabora-

tion, for instance, a member of France’s Ministère de la Défense must cooperate with a

member of the Bundesnachrichtendienst, Germany’s intelligence service, to investigate

on an alleged internal scandal. The two officers may need to meet secretly, and authen-

ticate themselves on-the-fly. Both are definitely reluctant to disclose their affiliation

and purpose to anybody but the intended recipient.

It is evident that they cannot use matchmaking or plain Secret Handshake: the

former does not offer any certification on the exchanged properties, the latter only

allows matching within the same organization. Handshakes with Dynamic Matching

too fall short of providing a suitable solution for the problem. The freedom of matching

any property gives too much liberty to the officials, who must instead strictly abide by

EU regulations that mandate which institution must cooperate on a case-by-case basis.

Indeed, these officials are acting on behalf of the State and of the people: they must

follow rules and ought not make personal choices.

It is important also to stress that Secret Handshake with Dynamic Controlled

Matching is a generalization of both classic Secret Handshake and Secret Handshake

with Dynamic Matching, as we shall see later on in this Chapter.

42

4.2 Dynamic Controlled Matching

4.2.1 Syntactic Definition

In a Secret Handshake with Dynamic Controlled Matching the actors are represented

by users drawn from a set of users U and a single CA. Each user can possess properties

drawn from a set of properties P. Users are interested in conducting handshakes in order

to mutually prove and verify possession of properties. The CA – upon system bootstrap

– executes a Setup algorithm to generate public and private system parameters. In a

Dynamic Controlled Matching scenario, users need to receive Credentials and Matching

References from the CA – which is the only entity able to compute them – in order to

conduct a successful Secret Handshake. To this end, the CA exposes two algorithms,

Certify and Grant that users can invoke to receive Credentials and Matching References

respectively. Finally, two users can engage in a Handshake protocol; the protocol is

successful if the first user has a Credential for the property associated with the second

user’s Matching Reference and if the second has a Credential corresponding to the first

user’s Matching Reference.

A Secret Handshake with Dynamic Controlled Matching is defined by the following

algorithms:

• Setup(k)→ (param, secret) is a probabilistic polynomial-time algorithm executed

by the certification authority taking a security parameter k as input and produc-

ing public parameters param and private parameters secret;

• Certify(u, p, secret) → (credp) is a probabilistic polynomial-time algorithm ex-

ecuted by the certification authority upon a user’s request. The certification

entity verifies that the supplicant user u ∈ U possesses the property p ∈ P whose

possession will later be proved during the protocol execution; after a successful

check, the certification entity issues to u the appropriate Credential credp. The

user can verify the correctness of the Credential. If the verification succeeds, the

user accepts the Credential, and aborts otherwise;

• Grant(u, p, secret)→ (matchu,p, Xu) is a probabilistic polynomial-time algorithm

executed by the certification entity upon a user’s request. First of all the certifi-

cation entity verifies that – according to the policies of the system – the user u

is entitled to verify that another user possesses property p ∈ P. Upon success-

ful verification, the certification entity issues the appropriate Matching Reference

43

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

formed by the pair (matchu,p, Xu) associated with the user; the user can verify

the correctness of the Matching Reference. If the verification succeeds, the user

accepts the Matching Reference and aborts otherwise;

• Handshake is a probabilistic polynomial-time two-party algorithm executed by

two users, ui and uj ; the algorithm is composed of three sub-algorithms:

– Handshake.Init(param, state) → (n, stateupd) outputs a nonce n and updates

the internal state state;

– Handshake.RandomizeCredentials(param, credp, state, n)→ (SH, stateupd)

takes as input the system parameters, the user Credentials credp, the nonce

n received from the other party and produces the Secret Handshake message

SH; it also updates the internal state state;

– Handshake.Match(param, SH, (matchu,p, Xu), state) → (K) takes as input

the system parameters, the Secret Handshake message SH received from

the other user, the local state and the Matching Reference (matchu,p, Xu)

and outputs a key K;

The algorithm operates as follows:

ui : Handshake.Init(param, statei)→ (ni, statei,upd)

ui −→ uj : ni

uj : Handshake.Init(param, statej)→ (nj , statej,upd)

uj −→ ui : nj

uj : Handshake.RandomizeCredentials(credp1 , statej , ni)

→ (SHj , statej,upd)

uj −→ ui : SHj

ui : Handshake.RandomizeCredentials(credp2 , statei, nj)

→ (SHi, statei,upd)

ui −→ uj : SHi

ui : Handshake.Match(SHj , (matchui,p3 , Xui), statei)→ (Ki)

uj : Handshake.Match(SHi, (matchuj ,p4 , Xuj), statej)→ (Kj)

Figure 4.1: The Handshake algorithm executed by two users ui and uj .

44

4.2 Dynamic Controlled Matching

The two keys Ki and Kj are the same under the following conditions: p1 = p3

and p2 = p4. This implies that ui’s Credential is for the same property as uj ’s

Matching Reference and similarly, that uj ’s Credential is for the same property

as ui’s Matching Reference. Otherwise at least one of the two keys is a random

value with overwhelming probability.

4.2.2 Creating classic Secret Handshakes and Secret Handshakes with

Dynamic Matching

In this Section we highlight the fact that Secret Handshakes with Dynamic Controlled

Matching includes both classic Secret Handshakes and Secret Handshakes with Dy-

namic Matching, thus being a more general and flexible protocol.

In order to create classic Secret Handshakes, the CA can use Setup, Certify, Grant

and Handshake with one amendment: the policy followed by the CA upon the execution

of Grant is equivalent to granting a Matching Reference to a user only if the latter has

the corresponding Credential. This way, users are only allowed to execute successful

Secret Handshake proving and verifying possession of a common property.

Conversely, in order to create Secret Handshakes with Dynamic Matching, the CA

can use Setup, Certify, Grant and Handshake with one amendment: the policy followed

by the CA upon the execution of Grant is equivalent to granting Matching References for

every property. This way, users can choose autonomously the Matching Reference to use

upon each Secret Handshake, thus effectively keeping control over verification. Notice

that this approach only incurs in limited overhead, since the universe of properties P

is not expected to be too large.

4.2.3 Security Requirements

The security requirements of Secret Handshake with Dynamic Controlled Matching can

be effectively resumed as follows:

1. Correctness: if two users A and B engage in Handshake, and if A possesses

Credentials for B’s Matching References and B possesses Credentials for A’s

Matching References, they both output the same key;

45

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

2. Impersonator Resistance: given any two properties p∗ and p◦; let us assume two

users, A and B, engage in Handshake; B possesses a Credential for p◦ and A pos-

sesses the corresponding Matching Reference. B also has a Matching Reference

for p∗; then, it is computationally infeasible for A – without the appropriate Cre-

dential for p∗ – to distinguish a random value from the key B computes executing

Handshake;

3. Detector Resistance: given any two properties p∗ and p◦; let us assume that two

users, A and B, engage in Handshake; B possesses a Matching Reference for p◦

and A possesses the corresponding Credential. B also has a Credential for p∗;

then, it is computationally infeasible for A – without the appropriate Match-

ing Reference for p∗ – to distinguish a random value from the key B computes

executing Handshake;

4. Unlinkability of Users: it is computationally unfeasible for a user – engaging in

two executions of Handshake – to tell whether he was interacting with the same

user or two different ones;

5. Unlinkability of Properties: it is computationally unfeasible for a user – engaging

in two executions of Handshake without the appropriate Matching References –

to tell whether he was interacting with users having Credentials for the same

property or for different ones;

Notice that Anonymity is not listed among the desired properties since it is intrin-

sically implied by the fact that we require the stronger requirement of Unlinkability of

Users, that includes Anonymity.

We consider the same adversarial type as the one adopted in numerous closely-

related works such as [AKB07; CJT04; BDS+03], wherein:

• the adversary can always obtain Credentials and Matching References for prop-

erties at his will, except of course for properties being object of challenges: in

particular, the adversary cannot get a Credential (resp. Matching Reference) for

the property he is trying to impersonate (resp. detect);

46

4.2 Dynamic Controlled Matching

• the adversary for Unlinkability requirements is not limited to passively observing

protocol instances1, but can actively engage in protocol instances and even receive

the correct key at the end;

The adversary is allowed to access a number of oracles managed by the challenger

in order to interact with the system as follows:

• OSetup is invoked when the adversary wants to create a new certification authority

by calling Setup;

• OCertify is invoked when the adversary wants to receive a Credential for a given

property through the execution of Certify;

• OGrant is invoked when the adversary wants to receive a Matching Reference for

a given property through the execution of Grant;

Additionally, we also define the oracle OH; this oracle can be accessed by the adver-

sary and corresponds – in the real implementation of the scheme – to a hash function,

which we assume to be a truly random function. Therefore, our security proofs will

take place in the so-called Random Oracle Model [BR93].

Notice that this adversarial model is weaker than the arbitrary composition model

adopted by Jarecki and colleagues in [JKT08]. Under this model, as opposed to the

one used in this and several other works [AKB07; CJT04; BDS+03], the adversary

can access a OHandshake oracle through which it can initiate arbitrary concurrent Secret

Handshake instances and reveal the outcome of some of them. Quoting Jarecki and

colleagues, we focus our analysis only on the “security of isolated protocol instances”.

Let us now see how the security requirements listed above can be modeled with the

oracles that we have introduced in this Section.

Resistance to Impersonation Attacks An adversary A’s goal is to impersonate a

user owning a given Credential, without possessing it. A has access to oracles

OH, OSetup, OCertify, OGrant; A then chooses a property p∗ ∈ P for which no call to

OCertify has been made (i.e. A does not have a Credential for p∗). A also chooses a

property p◦; then, challenger and adversary engage in the execution of Handshake

as shown in Figure 4.2.

1Adversaries trying to detect/impersonate are by nature active ones.

47

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

c : Handshake.Init(param, statec)→ (nc, statec,upd)

c −→ A : nc

A −→ c : nA

c : Handshake.RandomizeCredentials(credp◦ , statec, nA)

→ (SHc, statec,upd)

c −→ A : SHc

A −→ c : SHA

c : Handshake.Match(SHA, (matchc,p∗ , Xc), statec)→ (K0)

c : K1
R← {0, 1}n

c : b
R← {0, 1}

c −→ A : Kb

Figure 4.2: Challenge for an adversary attempting to break impersonation resistance.

The adversary is the challenged to output a guess for b. n corresponds to the

bitlength of the key K0. Intuitively, this game challenges the capacity of the

adversary to impersonate a user owning a Credential for a given property p∗.

The adversary generates a handshake message; he is then required to distinguish

the key the challenger computes using Handshake.Match on input the adversary’s

handshake message and the Matching Reference for p∗ from a random value of

the same length.

Resistance to Detection Attacks Let us consider an adversary A whose goal is

to verify presence of a property of his choice without owning the correspond-

ing Matching Reference. A has access to oracles OH, OSetup, OCertify, OGrant; A

then chooses a property p∗ ∈ P for which no call to OGrant has been made (i.e.

A does not have a Matching Reference for p∗). A also chooses a property p◦.

Then, challenger and adversary engage in the execution of Handshake as shown

in Figure 4.3.

The adversary is the challenged to output a guess for b. n corresponds to the

bitlength of the key K0. Intuitively, this game challenges the capacity of the

adversary to impersonate a user owning a Matching Reference for a given prop-

erty p∗. The adversary receives a handshake message; then, he is required to

distinguish the key linked to a successful detection of p◦ by the challenger and a

48

4.2 Dynamic Controlled Matching

c : Handshake.Init(param, statec)→ (nc, statec,upd)

c −→ A : nc

A −→ c : nA

c : Handshake.RandomizeCredentials(credp∗ , statec, nA)

→ (SHc, statec,upd)

c −→ A : SHc

A : Handshake.RandomizeCredentials(credp◦ , stateA, nc)

→ (SHA, stateA,upd)

A −→ c : SHA

c : Handshake.Match(SHA, (matchc,p◦ , Xc), statec)→ (K0)

c : K1
R← {0, 1}n

c : b
R← {0, 1}

c −→ A : Kb

Figure 4.3: Challenge for an adversary attempting to break detection resistance.

successful detection of p∗ by the adversary from a random bitstring of the same

length.

Unlinkability of Users Consider an adversary A whose goal is – given any two pro-

tocol instances – to determine whether they were generated by the same user. A

has access to oracles OH, OSetup, OCertify, OGrant; A is then challenged as follows:

he engages in two instances of Handshake with the challenger and is required to

tell whether or not the challenger was impersonating the same user over the two

Handshake instances.

Unlinkability of Properties Consider an adversary A whose goal is – given any two

protocol instances – to determine whether they were generated to prove possession

of the same property. A has access to oracles OH, OSetup, OCertify, OGrant; A

chooses a property p∗ such that no query to OGrant has been submitted and is

then challenged as follows: he engages in two instances of Handshake with the

challenger and has to return true if he can decide that during both instances, the

challenger has used Credentials for p∗.

Let us analyze more in details the games associated with impersonation and detec-

tion resistance. We can see that the adversary is – in both cases – challenged to engage

49

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

in the Handshake protocol, with one parameter missing: in the first case the Credential

and in the second case the Matching Reference for property p∗, that was the object

of the challenge. Then in both cases the adversary is shown a key; intuitively, the

adversary would be able to compute the key had he had the missing token (Credential

or Matching Reference); conversely, without, it is computationally infeasible for him to

distinguish the correct key from a random value.

4.3 SecureMatching: the building block

In this Section we introduce SecureMatching, a novel cryptographic scheme that allows

a prover to convince a verifier that he owns a given property. In Section 4.4 we then

leverage this scheme as a building block to create a Secret Handshake protocol with

Dynamic Controlled Matching.

4.3.1 Preliminaries

Given a security parameter k, let (G1,+) and (G2, ∗) be two groups of order q for some

large prime q, where the bitlength of q is determined by the security parameter k. Our

scheme uses a computable, non-degenerate bilinear map ê : G1 × G1 → G2 for which

the Computational Diffie-Hellman Problem (CDH) is assumed to be hard. Modified

Weil or Tate pairings on supersingular elliptic curves are examples of such maps. We

recall that a bilinear pairing satisfies the following three properties:

• Bilinear: for P,Q ∈ G1 and for a, b ∈ Z∗q , ê(aP, bQ) = ê(P,Q)ab

• Non-degenerate: ê(P, P) 6= 1 is a generator of G2

• Computable: an efficient algorithm exists to compute ê(P,Q) for all P,Q ∈ G1

We also introduce a one-way hash function H : P→ G1. A suitable implementation

is the MapToPoint function introduced in [BF03a].

4.3.2 Description of SecureMatching

SecureMatching is a prover-verifier protocol wherein a prover can convince a verifier

that he owns a property. Provers receive Credentials for a given property, allowing

them to convince a verifier that they possess that property. Verifiers in turn receive

50

4.3 SecureMatching: the building block

Matching References for a given property, which allow them to detect possession of

that property after the protocol exchange.

Let us see the algorithms composing SecureMatching:

• Setup is executed by the certification authority at the bootstrap of the system;

Let P ∈ G1 be a random generator of G1. Let r, s, t, v ∈ Z∗q be random values.

The CA sets P̃ ← rP , S ← sP , T ← tP and V ← vrP . The system public

parameters are {q, P, P̃ , S, T, V, ê,G1,G2, H}. The system secret parameters are

the values r, s, t and v;

• Certify is executed by the certification entity upon a user’s request. The cer-

tification entity verifies that the supplicant user u ∈ U possesses the property

p ∈ P whose possession will later be proved during the protocol execution; after

a successful check, the certification entity issues to u the appropriate Credential

credp = vH(p). The user verifies that ê(credp, P̃) = ê(H(p), V). If the verifica-

tion succeeds, the user accepts the Credential and aborts otherwise;

• Grant is executed by the certification entity upon a user’s request. First of all

the certification entity verifies that – according to the policies of the system –

the user u is entitled to verify that another user possesses property p ∈ P. If

the verification is successful, a secret value xu
R← Z∗q is drawn. Then, the value

Xu = xus
−1rP is issued to u through a secure channel; this value is kept secret

by the user. In addition, the certification entity issues the appropriate Matching

Reference matchu,p = t−1r(credp + xuP), where xu is the secret value associated

with user u; the user verifies that

ê(matchu,p, T) = ê(H(p), V) · ê(Xu, S)

If the verification is not successful, the user aborts;

• Matching is executed by a prover A and a a verifier B. A has credpA to prove

possession of property pA; B holds matchB,pB to detect property pB. The protocol

proceeds as follows:

– Matching.Init B picks n
R← Z∗q , and sends N1 = nP and N2 = nP̃ to A;

51

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

– Matching.RandomizeCredentials A checks whether ê(N1, P̃) = ê(N2, P); if so,

A picks r1, r2
R← Z∗q and sends to B the tuple SHA =< r1credpA , r2N2,

r1r2S, r1r2T >;

– Matching.Match B checks whether

K =
ê(r1credpA , r2N2)

n−1 · ê(r1r2S,XB)

ê(r1r2T,matchB,pB)
(4.1)

equals to one; XB is the secret value associated with B, n is the nonce picked

upon execution of Matching.Init. If K is equal to one, B concludes that A

possesses property pB (or similarly that pA and pB are the same) and outputs

true; otherwise B outputs false;

4.3.3 Security Analysis

In this Section we analyze the security of SecureMatching. The Security Requirements

are similar to the ones listed in Section 4.2.3 with minor differences, as we can see

below:

1. Correctness: if a prover A engages in SecureMatching with a verifier B, and if A

possesses a Credential for B’s Matching Reference, the result of the execution of

Matching.Match by B will be true;

2. Impersonator Resistance: given a property p∗; let us assume two users, A and

B, engage in SecureMatching; B has a Matching Reference for p∗; then, it is

computationally infeasible for A – without the appropriate Credential for p∗ – to

produce a valid handshake message such that the execution of Matching.Match

by B will return true;

3. Detector Resistance: given a properties p∗; let us assume two users, A and B,

engage in SecureMatching; B has a Credential for p∗; then, it is computationally

infeasible for A – without the appropriate Matching Reference for p∗ – to decide

whether B, upon the execution of Matching.RandomizeCredentials, has used the

Credential for p∗ or another random Credential (for which of course A does not

dispose of a Matching Reference);

52

4.3 SecureMatching: the building block

4. Unlinkability of Users: it is computationally unfeasible for a user – engaging in

two executions of Matching – to tell whether he was interacting with the same

user or two different ones;

5. Unlinkability of Properties: it is computationally unfeasible for a user – engaging

in two executions of Matching without the appropriate Matching References –

to tell whether he was interacting with users having Credentials for the same

property or for different ones;

Before the actual analysis, let us spend a few words on Unlinkability of users.

Unlinkability of users refers to the unfeasibility for a verifier to link any two protocol

executions to the same prover. In particular, the verifier should not be able to tell apart

users he has interacted with, by running a successful matching for a common property.

The satisfaction of this requirement by the presented scheme is trivially proved: given

any property p ∈ P, the associated Credential credp, from which the protocol message

is derived, does not contain any information other than the master secret v and the

hash of the property H(p). None of this information can be used to identify a user

among those that possess the same property.

The adversary is allowed to access a number of oracles managed by the challenger

in order to interact with the system; the oracles are:

• OSetup is invoked when the adversary wants to create a new certification authority

by calling Setup;

• OCertify is invoked when the adversary wants to receive a Credential for a given

property through the execution of Certify;

• OGrant is invoked when the adversary wants to receive a Matching Reference for

a given property through the execution of Grant;

Additionally, we also define the oracle OH; this oracle can be accessed by the adver-

sary and corresponds – in the real implementation of the scheme – to the hash function

H which is modeled as a truly random oracle.

In the rest of this Section we introduce three games, Link, Detect and Impersonate,

that capture the essence of the attacks mentioned above, and we show the impossibility

of these attacks. Notice that we prove the security of our scheme in the exact same

53

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

setting as the one chosen in the closest state-of-the-art paper by Ateniese et al. [AKB07],

which in turn is similar to the one chosen by Balfanz et al. in [BDS+03].

Before proceeding further, we state the well-known BDDH problem:

Definition 11 (Hardness of the Bilinear Decisional Diffie-Hellman Problem). We

say that the Bilinear Decisional Diffie-Hellman Problem (BDDH) is hard if, for all

probabilistic, polynomial-time algorithms B,

AdvBDDHB := Pr[B(P, aP, bP, cP, xP) = true if x = abc]− 1
2

is negligible in the security parameter.

This probability is taken over random choice of P ∈ G1, a, b and c ∈ Z∗q ; x is equal

to abc with probability 1
2 and is otherwise equal to a random value in Z∗q/{abc} with the

same probability. This problem has been extensively used in the literature, for instance

in [CPP05]. The security proofs for the scheme follow from the hardness of the BDDH

problem in the random oracle model.

4.3.3.1 Unlinkability of Properties

Consider an adversary A whose goal is – given any two protocol messages – to trace

them to having been generated from the same Credential, so as to prove possession of

the same property. The attacker cannot decide whether there is a property that both

Credentials can be matched to.

A can access OH, OSetup, OCertify, OGrant. A is then challenged as follows: A chooses

a property p∗ for which no call to OGrant has been submitted; he is then given SH1

and SH2 generated by two calls to Matching.RandomizeCredentials and is required to

return true if he can decide that both SH1 and SH2 refer to p∗. This implies that

Match.Match returns true for both Credentials with Matching References in the set

Smatch,p∗ = {matchui,p∗ : ui ∈ U}. We call this game Link.

Lemma 1. If an adversary A has a non-null advantage

AdvLinkA := Pr[A wins the game Link]

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve any given instance of the Bilinear Decisional Diffie-Hellman

problem (BDDH).

54

4.3 SecureMatching: the building block

Proof. We define B as follows. B is given an instance (P, aP, bP, cP, xP) of the BDDH

problem and wishes to use A to decide if x = abc. The algorithm B simulates an

environment in which A operates, using A’s advantage in the game Link to help compute

the solution to the BDDH problem. In particular, B implements the oracles OH, OSetup,

OCertify, OGrant as follows:

OH : on a query H(x), if x has never been queried before, B picks hx
R← Z∗q , storing

the pair (x, hx) in a table. Then B flips a random biased coin guess(x) ∈ {0, 1}
biased as follows: guess(x) equals 1 with probability δ and is equal to 0 with

probability 1 − δ. B answers as follows: if guess(x) = 0, he looks up hx in the

table and answers with H(x) = hxP . Instead, if guess(x) = 1, B answers with

H(x) = hx(aP);

OSetup : B picks s, t, v
R← Z∗q , sets P̃ ← (bP), S ← sP , T ← tP and V ← v(bP). B then

publishes the public parameter according to the rules of the protocol;

OCertify : A queries for credpi for arbitrary properties pi; the challenger answers with

credpi = vH(pi); A can check that ê(credpi , P̃) = ê(H(pi), V);

OGrant : A queries B for an arbitrary number of Matching References Xui and matchui,pi
for any given pairs (ui, pi) ∈ U×P. Assume that guess(pi) = 0; B can then answer

as follows: if ui has never been queried before, B picks xui
R← Z∗q and stores the

pair (ui, xui) in a table. Then, B looks up in the table for the xui , and answers:

Xui = xuis
−1(bP) and matchui,pi = t−1(vbH(pi) + xuibP); A can check that

ê(T,matchui,pi) = ê(H(pi), V) · ê(Xui , S) hold;

Setup and Queries The adversary A can interact with the oracles OH, OSetup,

OCertify, OGrant;

Challenge At the end of this phase, A chooses a property p∗, for which no query

to OGrant has been submitted. Assume that guess(p∗) = 1. A inputs two nonce pairs

N1 = n1P,N
′
1 = n1P̃ and N2 = n2P,N

′
2 = n2P̃ ; B can check that the nonces are

generated conforming to the specification of the protocol. B then answers as follows:SH1 =< r1vhp∗(aP), r2N
′
1, r1r2S, r1r2T >

SH2 =< vhp∗(xP), r3N2, r3s(cP), r3t(cP) >

where r1, r2, r3 are random values ∈ Z∗q . Then, the adversary outputs his decision.

Analysis of A’s answer It is straightforward to verify that, if A wins the game,

B can give the same answer to solve the BDDH problem. Indeed, if A wins the game,

55

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

he is able to decide if ∃α ∈ Z∗q such thatr1r2vhp∗ab+ r1r2bxu1 = r1r2b(xu1 + vα)

r3vxhp∗ + r3cbxu2 = r3cb(xu2 + vα)
(4.2)

are both verified for any user u1, u2 ∈ U. Indeed, if A returns true, according to the

Correctness requirement, Matching.Match would return true for both SH1 and SH2

with any Matching Reference in the set Smatch,p∗ = {matchui,p∗ : ui ∈ U} for property

p∗. Since this system of equations must be valid for any value of xu1 and xu2, we can

rewrite 4.2 as r1r2vhp∗ab = r1r2bvα

r3vxhp∗ = r3cbvα
(4.3)

and solve the first equation as α = ahp∗ . If A wins the game and decides that the two

protocol instances can be matched to the same property, then we can solve the second

equation as x = abc, which is the positive answer to BDDH. Conversely, x 6= abc, which

is the negative answer to BDDH.

A detailed analysis shows that if guess(p∗) = 1 and guess(x) = 0 for all other

queries to OGrant such that x 6= p∗, then the execution environment is indistinguishable

from the actual game Detect. This happens with probability

Pr[guess(p∗) = 1 and guess(x) = 0 for all x 6= p∗] = δ · (1− δ)QO (4.4)

where QO is the number of queries A makes to the oracle OGrant. By setting δ ≈ 1
QO

we know that the probability in 4.4 is greater than 1
e·QO

. So in conclusion, we can

bound the probability of success of the adversary AdvDetectA as AdvDetectA ≤ e · QO ·
AdvBDDHB.

4.3.3.2 Detector Resistance

Consider an adversary A whose goal is to verify presence of a property of his choice with-

out owning the corresponding Matching Reference. A can access OH, OSetup, OCertify,

OGrant. A is then challenged as follows: he chooses a property p∗ ∈ P, such that no query

to OGrant has been submitted. Finally the adversary engages in Matching with B, and is

challenged to decide whether B, upon the execution of Matching.RandomizeCredentials,

has used the Credential for p∗ or another random Credential (for which of course A

does not dispose of a Matching Reference). We call this game Detect.

Lemma 2. If an adversary A has a non-null advantage

56

4.3 SecureMatching: the building block

AdvDetectA := Pr[A wins the game Detect]

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve any given instance of the Bilinear Decisional Diffie-Hellman

problem (BDDH).

Proof. We define B as follows. B is given an instance (P, aP, bP, cP, xP) of the BDDH

problem and wishes to use A to decide if x = abc. The algorithm B simulates an

environment in which A operates, using A’s advantage in the game Detect to help

compute the solution to the BDDH problem. In particular, B implements the oracles

OH, OSetup, OCertify, OGrant as follows:

OH : on a query H(x), if x has never been queried before, B picks hx
R← Z∗q , storing

the pair (x, hx) in a table. Then B flips a random biased coin guess(x) ∈ {0, 1}
biased as follows: guess(x) equals 1 with probability δ and is equal to 0 with

probability 1 − δ. B answers as follows: if guess(x) = 0, B looks up hx in the

table and answers with H(x) = hxP . Instead, if guess(x) = 1, B answers with

H(x) = hx(aP);

OSetup : B picks s, t, v
R← Z∗q and sets P̃ ← (bP), S ← sP , T ← tP and V ← v(bP). B

then publishes the public parameter according to the rules of the protocol;

OCertify : A queries for credpi for arbitrary properties pi; the challenger answers with

credpi = vH(pi); A can check that ê(credpi , P̃) = ê(H(pi), V);

OGrant : A queries B for an arbitrary number of Matching References Xui and matchui,pi
for any given pairs (ui, pi) ∈ U × P. Suppose that guess(pi) = 0. B answers as

follows: if ui has never been queried before, B picks xui
R← Z∗q and stores the

pair (ui, xui) in a table. Then, B looks up in the table for the xui , and answers:

Xui = xuis
−1(bP) and matchui,pi = t−1(vbH(pi) + xuibP); A can check that

ê(T,matchui,pi) = ê(H(pi), V) · ê(Xui , S) hold;

Setup and Queries The adversary A can interact with the oracles OH, OSetup,

OCertify, OGrant;

Challenge A then chooses the property p∗ ∈ P which is object of the challenge

among the ones for which no query to OGrant has been submitted.

Then A sends to B a pair of nonces N1 = nP, n2 = nP̃ ; B can check that the

nonces were generated according to the specifications of the protocol. Suppose that

guess(p∗) = 1; B can lookup hp∗ and answer by sending the tuple

< vhp∗(xP), r1N1, r1s(cP), r1t(cP) > (4.5)

57

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

Analysis of A’s answer Let’s assume x = abc. If the adversary wins this

game, it means he was successful in detecting p∗; then – according to the Correctness

requirement – Matching.Match would return true with any Matching Reference in the

set Smatch,p∗ = {matchui,p∗ : ui ∈ U} for the property p∗ ∈ P object of the challenge.

For every user ui ∈ U, we can then write

K =
ê(vhp∗(abcP), r1nP)n

−1 · ê(r1s(cP), Xui)

ê(r1t(cP), t−1(credp∗ + xui)(bP))
= 1 (4.6)

which is the result of Matching.Match returning true. Indeed

r1vhp∗x+ r1bcxu∗ − r1c(vhp∗ab+ xuib) = 0 (4.7)

is satisfied ∀xui ∈ Z∗q if and only if x = abc.

Therefore, if A wins the game and is able to detect property p∗, B can give the

same answer to the BDDH.

A detailed analysis shows that if guess(p∗) = 1 and guess(x) = 0 for all other

queries to OGrant such that x 6= p∗, then the execution environment is indistinguishable

from the actual game Detect. This happens with probability

Pr[guess(p∗) = 1 and guess(x) = 0 for all x 6= p∗] = δ · (1− δ)QO (4.8)

where QO is the number of queries A makes to the oracle OGrant. By setting δ ≈ 1
QO

we know that the probability in 4.8 is greater than 1
e·QO

. So in conclusion, we can

bound the probability of success of the adversary AdvDetectA as AdvDetectA ≤ e · QO ·
AdvBDDHB.

4.3.3.3 Impersonation Resistance

The goal of an adversary A is to impersonate a user possessing a given property, without

actually owning the corresponding Credential. A can access OH, OSetup, OCertify, OGrant.

A is then challenged as follows: he chooses a property p∗ ∈ P, for which no query to

OCertify has been made, which will be the object of the challenge. A then receives a

nonce value, and has to produce a valid handshake message, able to convince any user

with a valid Matching Reference for property p∗, that he owns the Credential credp∗ .

We call this game Impersonate.

Notice that this game does not prevent an attacker from stealing legitimate users’

Credentials and claiming to possess their properties. As discussed in Chapter 3.1,

this property is common to many Secret Handshakes schemes in the literature, for

58

4.3 SecureMatching: the building block

instance [AKB07]. We could require Credentials to be stored on password-protected,

tamper resistant hardware; an algorithmic solution however would require an efficient

revocation method as will be discussed in the next Chapter.

Lemma 3. If an adversary A has a non-null advantage

AdvImpersonateA := Pr[A wins the game Impersonate]

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve a given instance of the Bilinear Decisional Diffie-Hellman

Problem (BDDH).

Proof. We define B as follows. B is given an instance (P, aP, bP, cP, xP) of the BDDH

problem and wishes to use A to decide if x = abc. The algorithm B simulates an

environment in which A operates: B will in particular implement the oracles OH,

OSetup, OCertify, OGrant.

OH : on a query H(x), if x has never been queried before, B picks hx
R← Z∗q , storing

the pair (x, hx) in a table. Then B flips a random biased coin guess(x) ∈ {0, 1}
biased as follows: guess(x) equals 1 with probability δ and is equal to 0 with

probability 1 − δ. B answers as follows: if guess(x) = 0, B looks up hx in the

table and answers with H(x) = hxP . Instead, if guess(x) = 1, B answers with

H(x) = hx(aP);

OSetup : B picks random values r, s, t and v ∈ Z∗q and sets P̃ = rP , S = sP , T = t(bP)

and V = vr(bP). B then publishes the public parameter according to the rules

of the protocol;

OCertify : A queries for credpi for arbitrary properties pi. Assume that guess(pi) = 0;

the challenger can answer by first looking up the value hpi associated with pi

by the oracle OH; then B answers with credpi = vbH(pi); A can check that

ê(credpi , P̃) = ê(H(pi), V);

OGrant : A queries B for an arbitrary number of Matching References Xui and matchui,pi
for any given pairs (ui, pi) ∈ U × P. B answers as follows: if ui has never

been queried before, B picks xui
R← Z∗q and stores the pair (ui, xui) in a table.

Then, B looks up in the table for the xui , and answers: Xui = xuirs
−1(bP)

and matchui,pi = t−1r(vH(pi) + xuiP); A can check that ê(T,matchui,pi) =

ê(H(pi), V) · ê(Xui , S) hold;

59

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

Setup and Queries The adversary A can interact with the oracles OH, OSetup,

OCertify, OGrant;

Challenge A then chooses the property p∗ ∈ P which is object of the chal-

lenge among the ones for which no query to OCertify has been submitted. Assume that

guess(p∗) = 1. B then sends to A nonces cP, r(cP) according to the protocol, and

challenges A to produce a Secret Handshake message such that Matching.Match re-

turns true with any Matching Reference in the set Smatch,p∗ = {matchui,p∗ : ui ∈ U}
for the property p∗ ∈ P object of the challenge.

A answers the challenge with the tuple (A,B,C,D) ∈ G4
1; the adversary wins the

game if Matching.Match returns true on input the tuple received from the adversary;

this implies ê(A,B)c
−1 · ê(Xu∗ , C) = ê(D,matchu∗,p∗).

Analysis of A’s response Let us write A = αP , B = βP , C = γP and D = δP .

Let us assume that A wins the game; then we can write

αβc−1 + γs−1rxu∗b = δ(t−1rvahp∗ + t−1rxu∗) (4.9)

If A wins the game, any user u∗ must be able to verify property p∗, according to the

Correctness requirement expressed in Section 4.2.3. B can choose any value for xu∗ .

Consequently, αβc−1 and δt−1rvahp∗ must be independent of xu∗ . We can then rewrite

Equation 4.9 as αβc−1 = δt−1rvahp∗

γs−1rxu∗b = δt−1rxu∗
(4.10)

Solving the second equation as δ = γs−1tb and substituting the resulting expression of

δ in the first, yields αβ = γs−1rvabchp∗ . Therefore if A wins the game, B can decide

whether x = abc based on the outcome of ê(A,B)sr
−1v−1h−1

p∗ = ê(C, xP).

A detailed analysis shows that if guess(p∗) = 1 and guess(x) = 0 for all other

queries to OCertify such that x 6= p∗, then the execution environment is indistinguishable

from the actual game Impersonate. This happens with probability

Pr[guess(p∗) = 1 and guess(x) = 0 for all x 6= p∗] = δ · (1− δ)QO (4.11)

where QO is the number of queries A makes to the oracle OCertify. By setting δ ≈ 1
QO

we know that the probability in 4.11 is greater than 1
e·QO

. So in conclusion, we can bound

the probability of success of the adversary AdvImpersonateA as AdvImpersonateA ≤
e · QO · AdvBDDHB.

60

4.4 From SecureMatching to Secret Handshake

4.4 From SecureMatching to Secret Handshake

Thanks to the SecureMatching protocol introduced in the previous Section, we can

now show how we can build Secret Handshake with Dynamic Controlled Matching;

a round of SecureMatching covers half of the properties that Secret Handshakes with

Dynamic Controlled Matching need to cover. Indeed, a Secret Handshake with Dynamic

Controlled Matching is successful if two users A and B engage in the protocol with A

possessing Credentials for B’s Matching References and B possessing Credentials for

A’s Matching References; instead, in SecureMatching, it is sufficient for A to possess

a Credential for B’s Matching Reference; two symmetric instances of SecureMatching,

wherein each user plays in turn the role of prover and verifier would accomplish both

verifications.

However, two additional characteristics are required: (i) the capability of establish-

ing a session key out of the protocol exchange and (ii) the assurance that the key is

mutually established only if SecureMatching is successful at both sides. If the key is

successfully shared by both users, each of them is certain that the other possesses the

expected property as defined by the local Matching Reference. Note that the properties

verified by both users need not be identical.

4.4.1 The Scheme

In this Section we describe an implementation of Secret Handshake with Dynamic

Controlled Matching based on SecureMatching. The algorithms Setup, Certify and Grant

are the same as the ones of the SecureMatching protocol described earlier on in this

Chapter. Let us now describe the Handshake protocol.

• Handshake is a probabilistic polynomial-time two-party algorithm executed by

two users, ui and uj ; the algorithm is composed of three sub-algorithms:

– Handshake.Init: the user picks n
R← Z∗q , and produces N1 = nP and N2 = nP̃ ;

– Handshake.RandomizeCredentials: the user, upon receiving nonces N1 and

N2, checks whether ê(N1, P̃) = ê(N2, P); if so, the user picks r1, r2, r3
R← Z∗q

and sends the tuple SH =< r1(credp + r3P), r2N2, r1r2S, r1r2T >;

61

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

– Handshake.Match: the user parses SH as (A,B,C,D) and computes

K =

(
ê(A,B)n

−1 · ê(C,Xu)

ê(D,matchu,p)

)r1r2r3
(4.12)

The algorithm operates as follows: let us assume two users, Alice and Bob, want to

perform a Secret Handshake and share a key if the Handshake is successful. Alice owns

the tuple (credP1,matchA,P2, XA) and Bob owns the tuple (credP2,matchB,P1, XB).

Alice and Bob can draw four random values each, r1A, r2A, r3A, nA for Alice and

r1B, r2B, r3B, nB for Bob. Then – as we can see in Figure 4.4 – each performs the

steps of SecureMatching, with the only exception that Alice sends r1A(credP1 + r3AP)

instead of sending r1AcredP1. The same applies to Bob, who sends r1B(credP2+r3BP).

A −→ B nAP, nAP̃

A ←− B nBP, nBP̃ , r1B(credP2 + r3BP), r2B(nAP̃), r1Br2BS, r1Br2BT

A −→ B r1A(credP1 + r3AP), r2A(nBP̃), r1Ar2AS, r1Ar2AT

A computes K1 =
ê(r1B(credP2 + r3BP), r2B(nAP̃))n

−1
A · ê(r1Br2BS,XB)

ê(r1Br2BT,matchB,P2)

r1Ar2Ar3A

B computes K2 =
ê(r1A(credP1 + r3AP), r2A(nBP̃))n

−1
B · ê(r1Ar2AS,XA)

ê(r1Ar2AT,matchA,P1)

r1Br2Br3B

A ←→ B mutual proof of knowledge of K1 and K2

Figure 4.4: Using SecureMatching to build a Secret Handshake.

The addition of a random value to the Credential, prevents Alice and Bob from

getting a true/false result, as it was the case for Matching.Match. Indeed, the same value

that in Matching.Match was equal to one upon success, now equals to ê(P, P)r1Ar2Ar3Ar

at Bob’s side; similarly on Alice’s side, the value is ê(P, P)r1Br2Br3Br.

However, Alice can raise the computed value to the power of r1Ar2Ar3A; similarly,

Bob can raise it to the power of r1Br2Br3B, and – in case of successful simultaneous

matching – the two values will be equal. This value can be subsequently used to derive

a secret key, shared between Alice and Bob only if the matching is successful.

4.4.2 Security Analysis

In this Section we focus on the analysis of the security of Secret Handshakes with

Dynamic Controlled Matching. The security requirements and attacker model have

62

4.4 From SecureMatching to Secret Handshake

already been formally defined in Section 4.2.3. We omit the proof for Unlinkability

because it is a trivial adaptation of the proof of Lemma 1.

As for detection and impersonation resistance instead, we present two new games,

ImpersonateSH and DetectSH, inspired on Impersonate and Detect, covering these at-

tacks in the Secret Handshake scenario; in particular, instead of asking the adversary to

perform the detection of the property or the impersonation of a user owning a Creden-

tial, challenger and adversary engage in a Secret Handshake protocol run, at the end of

which the adversary receives a key; the adversary is then asked to tell whether the key

is the correct key associated with that instance of the handshake or not. This approach

is the standard approach used in the proof of authenticated key exchange schemes,

requiring key indistinguishability. We stress that this requirement is the strongest pos-

sible; other works such as [BDS+03; AKB07] prove resilience to attacks with weaker

adversaries: in particular, in the games presented in [BDS+03; AKB07], the attacker

is required to actually produce the correct key instead of only distinguishing it from a

random value.

4.4.2.1 Impersonation Resistance

The objective of an adversary A is to impersonate a user owning a given property,

without actually owning the corresponding Credential. At first, A has access to oracles

OH, OSetup, OCertify, OGrant.

A then chooses a property p∗ ∈ P, such that no query to OCertify has been made.

A also picks a property p◦; this property is the one the challenger will use to generate

its side of the handshake. This is required because what is being tested is the ability

of the adversary to impersonate, so the detection part of the handshake should be

successful. A is then challenged in the following way: he engages in Handshake with the

challenger, he receives a bitstring and has to tell whether this bitstring is the key linked

to a successful detection of p◦ by the adversary and a successful detection of p∗ by the

challenger, or a random bitstring of the same length. We call this game ImpersonateSH.

Lemma 4. If an adversary A has a non-null advantage

AdvImpersonateSHA := Pr[A wins the game ImpersonateSH]

63

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve a given instance of the Bilinear Decisional Diffie-Hellman

Problem (BDDH).

Proof. We define B as follows. B is given an instance (P, aP, bP, cP, xP) of the BDDH

problem and wishes to use A to decide if x = abc. The algorithm B simulates an

environment in which A operates: B will in particular implement the oracles OH,

OSetup, OCertify, OGrant.

OH : on a query H(x), if x has never been queried before, B picks hx
R← Z∗q , storing

the pair (x, hx) in a table. Then B flips a random biased coin guess(x) ∈ {0, 1}
biased as follows: guess(x) equals 1 with probability δ and is equal to 0 with

probability 1 − δ. B answers as follows: if guess(x) = 0, B looks up hx in the

table and answers with H(x) = hxP . Instead, if guess(x) = 1, B answers with

H(x) = hx(aP);

OSetup : B picks random values r, s, t and v ∈ Z∗q and sets P̃ = rP , S = sP , T = t(bP)

and V = vr(bP). B then publishes the public parameter according to the rules

of the protocol;

OCertify : A queries for credpi for arbitrary properties pi. Assume that guess(pi) = 0;

the challenger answers by first looking up the value hpi associated with pi by the

oracle OH; then B answers with credpi = vbH(pi); A can check that ê(credpi , P̃) =

ê(H(pi), V);

OGrant : A queries B for an arbitrary number of Matching References Xui and matchui,pi
for any given pairs (ui, pi) ∈ U × P. B answers as follows: if ui has never

been queried before, B picks xui
R← Z∗q and stores the pair (ui, xui) in a table.

Then, B looks up in the table for the xui , and answers: Xui = xuirs
−1(bP)

and matchui,pi = t−1r(vH(pi) + xuiP); A can check that ê(T,matchui,pi) =

ê(H(pi), V) · ê(Xui , S) hold;

Setup and Queries The adversary A can interact with the oracles OH, OSetup,

OCertify, OGrant;

Challenge A then chooses the property p∗ ∈ P which is the object of the

challenge among the ones for which no query to OCertify has been made in the previous

phase. Finally, A chooses the property p◦ that B will use for his Matching Reference.

After this phase, A and B engage in a Secret Handshake instance; in particular

A sends nonces nP and nP̃ ; B verifies that the nonces are compliant, sends to A

64

4.4 From SecureMatching to Secret Handshake

nonces cP, r(cP) according to the protocol, sends the handshake tuple (r1(vH(p◦) +

r3cP), r2nP̃ , r1r2S, r1r2T) and challenges A to produce SH; A answers the challenge

with (A,B,C,D) ∈ G4
1. Suppose that guess(p∗) = 1; B then sends A a key formed as

follows:

K =

(
ê(A,B)

ê(C, xP)s
−1rvhp∗

)r1r2r3
and challenges A to tell whether it is the correct key or a random bitstring of the same

length. Correct key means the key the challenger computes with any Matching Refer-

ence matchu∗,p∗ and Xu∗ of a user u∗ ∈ U, as specified by the Correctness requirement.

A answers the challenge with a bit b; A wins the game when b = 0 if the key is a

random bitstring, and b = 1 if the key is correct.

Analysis of A’s response Let us write A = αP , B = βP , C = γP and

D = δP . Let us assume that A wins the game and his answer is b = 1; B can then

write

K =

(
ê(A,B)

ê(C, xP)s
−1rvhp∗

)r1r2r3
=

(
ê(A,B)c

−1 · ê(C,Xu∗)

ê(D,matchu∗,p∗)

)r1r2r3c
(4.13)

The right end of the equality represents the fact that if A was successful in the im-

personation and detected the key as correct, then the key must be computable exe-

cuting Handshake.Match with the Matching Reference for property p∗ and the random

values r1, r2 and r3c used by the challenger during the invocation of the algorithm

Handshake.RandomizeCredentials.

From Equation 4.13 we can rewrite

αβ − γrs−1hp∗vx = αβ + γxu∗rs
−1bc− δt−1rc(vhp∗a+ xu∗) (4.14)

Notice that the challenger can choose any value for xu∗ . Consequently, γrs−1hp∗vx

and δt−1rvhp∗ac must be independent of xu∗ . We can then rewrite Equation 4.14 asγrs−1hp∗vx = δt−1rvhp∗ac

γxu∗rs
−1bc = δt−1rcxu∗

(4.15)

Solving the second equation as δ = γs−1tb and substituting the resulting expression

of δ in the first, yields x = abc, which is the positive answer to the BDDH problem.

If instead A answers b = 0, through the same calculation we conclude that x 6= abc,

which is the negative answer to the BDDH problem. Therefore if A wins the game, B

can solve the BDDH problem by answering with b.

65

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

A detailed analysis shows that if guess(p∗) = 1 and guess(x) = 0 for all other

queries to OCertify such that x 6= p∗, then the execution environment is indistinguishable

from the actual game ImpersonateSH. This happens with probability

Pr[guess(p∗) = 1 and guess(x) = 0 for all x 6= p∗] = δ · (1− δ)QO (4.16)

where QO is the number of queries A makes to the oracle OCertify. By setting δ ≈ 1
QO

we know that the probability in 4.16 is greater than 1
e·QO

. So in conclusion, we can bound

the probability of success of the adversary AdvImpersonateSHA as AdvImpersonateSHA ≤
e · QO · AdvBDDHB.

4.4.2.2 Detector Resistance

Consider an adversary A whose goal is to verify presence of a property of his choice

without owning the corresponding Matching Reference. At first, A has access to oracles

OH, OSetup, OCertify, OGrant.

A then chooses a property p∗ ∈ P, for which no query to OGrant has been made. A

also picks a property p◦; this property is the one the adversary will use to generate its

side of the handshake. This is required because what is being tested in this game is the

ability of the adversary to detect, so the impersonation part of the handshake should

be successful. A is then challenged in the following way: he has to engage in Secret

Handshake with the challenger and he receives a bitstring, and has to tell whether

the bitstring is the key linked to a successful detection of p◦ by the challenger and to

a successful detection of p∗ by the adversary, or just a random bitstring of the same

length. A clearly does not posses any of the Matching References in Smatch,p∗ . We call

this game DetectSH.

Lemma 5. If an adversary A has a non-null advantage

AdvDetectSHA := Pr[A wins the game DetectSH]

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve any given instance of the Bilinear Decisional Diffie-Hellman

problem (BDDH).

Proof. We define B as follows. B is given an instance (P, aP, bP, cP, xP) of the BDDH

problem and wishes to use A to decide if x = abc. The algorithm B simulates an

environment in which A operates, using A’s advantage in the game Detect to help

66

4.4 From SecureMatching to Secret Handshake

compute the solution to the BDDH problem. In particular, B will run for A the oracles

OH, OSetup, OCertify, OGrant.

OH : on a query H(x), if x has never been queried before, B picks hx
R← Z∗q , storing

the pair (x, hx) in a table. Then B flips a random biased coin guess(x) ∈ {0, 1}
biased as follows: guess(x) equals 1 with probability δ and is equal to 0 with

probability 1 − δ. B answers as follows: if guess(x) = 0, B looks up hx in the

table and answers with H(x) = hxP . Instead, if guess(x) = 1, B answers with

H(x) = hx(aP);

OSetup : B picks s, t, v
R← Z∗q and sets P̃ ← (bP), S ← sP , T ← tP and V ← v(bP). B

then publishes the public parameter according to the rules of the protocol;

OCertify : A queries for credpi for arbitrary properties pi; the challenger answers by first

looking up the value hpi associated with pi by the oracle OH; then B answers with

credpi = vH(pi); A can check that ê(credpi , P̃) = ê(H(pi), V);

OGrant : A queries B for an arbitrary number of Matching References Xui and matchui,pi
for any given pairs (ui, pi) ∈ U×P. Let us assume that guess(pi) = 0. B answers

as follows: if ui has never been queried before, B picks xui
R← Z∗q and stores the

pair (ui, xui) in a table. Then, B looks up in the table for the xui , and answers:

Xui = xuis
−1(bP) and matchui,pi = t−1(vbH(pi) + xuibP); A can check that

ê(T,matchui,pi) = ê(H(pi), V) · ê(Xui , S) hold;

Setup and Queries The adversary A can interact with the oracles OH, OSetup,

OCertify, OGrant;

Challenge A then chooses the property p∗ ∈ P which is object of the challenge

among the ones for which no query to OGrant has been made. Finally, A chooses the

property p◦ that B will use for his Credential.

After this phase, A and B engage in a Secret Handshake instance; in particular, A

sends to B a pair of nonces N1 = nP,N2 = nP̃ ; B can check that they were generated

according to the specifications of the protocol. B verifies that the nonces are compliant,

sends to A nonces n′P, n′P̃ according to the protocol.

Suppose that guess(p∗) = 1. Notice that, supposing guess(p∗) = 1, H(p∗) = hp∗aP .

B picks r1, r2, r3
R← Z∗q , sets r′1 = r1bc, r

′
2 = r2b

−1 and r′3 = (bc)−1(vhp∗x + r3b −
vabchp∗) and creates a handshake tuple generated adhering to the rules of the algorithm

Handshake.RandomizeCredentials, as follows:

67

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING



r′1(vH(p∗) + r′3P) = r1(vhp∗(xP) + r3bP)

r′2N2 = r2N1

r′1r
′
2S = r1r2s(cP)

r′1r
′
2T = r1r2t(cP)

and sends it to A; B in turn receives SH = (A,B,C,D) ∈ G4
1 from A.

At this point B uses the received handshake message and executes Handshake.Match

to generate the key to be sent to A. Let us go through the steps of the execution of

this sub-algorithm. At first B computes

K ′ =
ê(A,B)n

′−1 · ê(C,Xu◦)

ê(D,matchu◦,p◦)
= ê(P, P̃)µ

for an unknown value µ. In this step, the challenge has matched property p◦ from

the handshake message received from the adversary. Then the challenger should raise

the value K ′ to the power r′1r
′
2r
′
3. To do so, the challenger assumes that x = abc;

the product r′1r
′
2r
′
3 thus becomes equal to r1r2r3. Then the challenger can send to the

adversary the following key

K = K ′r1r2r3 =
(
ê(P, P̃)µ

)r1r2r3
and challenges A to tell whether K is the correct key or a random string of the same

length. Correct key means the key linked to a successful detection of p∗ by the adversary

and a successful detection of p◦ by the challenger.

A answers the challenge with a bit b; A wins the game if b = 0 if the key is a random

bitstring, and b = 1 if the key is correct.

Analysis of A’s answer If A wins the game and answers b = 1, it means

that the key B generated was correct. Every user u∗ ∈ U owning a Matching Reference

matchu∗,p∗ should be able to compute the same key. This last consideration stems from

the Correctness requirement expressed in Section 4.2.3. We can therefore write(
ê(r1(vhp∗(xP) + r3bP), r2nP)n

−1 · ê(r1r2s(cP), xu∗s
−1(bP))

ê(r1r2t(cP), t−1(vhp∗a+ xu∗)(bP))

)µ
= K =

=
(
ê(P, P̃)µ

)r1r2r3
From this expression we notice that

(r1r2vhp∗x+ r1r2r3b+ r1r2xu∗bc− r1r2bc(vhp∗a+ xu∗))µ = r1r2r3bµ (4.17)

68

4.4 From SecureMatching to Secret Handshake

is satisfied ∀xu∗ ∈ Z∗q if and only if x = abc. Therefore, if A wins the game B can give

the same answer to the BDDH.

A detailed analysis shows that if guess(p∗) = 1 and guess(x) = 0 for all other

queries to OGrant such that x 6= p∗, then the execution environment is indistinguishable

from the actual game ImpersonateSH. This happens with probability

Pr[guess(p∗) = 1 and guess(x) = 0 for all x 6= p∗] = δ · (1− δ)QO (4.18)

where QO is the number of queries A makes to the oracle OGrant. By setting δ ≈ 1
QO

we know that the probability in 4.18 is greater than 1
e·QO

. So in conclusion, we can bound

the probability of success of the adversary AdvImpersonateSHA as AdvImpersonateSHA ≤
e · QO · AdvBDDHB.

4.4.3 A Word on Man-In-The-Middle Attacks

In this Section we focus on man-in-the-middle attacks and investigate their relation

to the Secret Handshake scheme presented in Section 4.4. At first let us notice that,

upon a successful Secret Handshake protocol run, two users Alice and Bob establish

a common secure channel. This channel assures Alice that at the other hand there is

a user whose Credentials match her Matching Reference; the same holds for Bob. No

man-in-the-middle attack can break this assurance: this has been demonstrated by the

proofs of Lemma 4 and 5, that assure that an adversary – without the appropriate

Credential and Matching Reference– cannot distinguish between a correct key and a

random bitstring.

However the protocol does not give any information about the identities of the

communicating parties. Let us see with a few examples the consequences of this feature.

Let us imagine that Alice, Bob and Mallory are equipped with Credentials and Matching

References for property p. This scenario is consistent with classic Secret Handshakes

such as the scheme by Balfanz et al. [BDS+03]. In this scenario the following attack

is possible: Alice and Bob try to run a Secret Handshake on a channel controlled by

Mallory; Mallory runs two parallel Secret Handshakes, one with Alice and another with

Bob, establishing two keys – and consequently two channels. At this point, Mallory is

in the condition of acting as the man-in-the-middle in the conversation between Alice

and Bob.

First of all, let us underline that this attack does not compromise what the protocol

guarantees: at the end of the handshake, both Alice and Bob are indeed on a secure

69

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

channel with another member of their group. In addition, group pressure would ensure

that a group member would not mount such an attack to a fellow group member:

indeed group membership tokens (Credentials and Matching References) are issued

after a check of the compliance of the user to the group policies, so it can be refused

to untrusted members.

This problem is usually thwarted including identity enforcement in the protocol;

this however requires drastic changes to the protocol, because Secret Handshake by

definition requires Unlinkability and Anonymity, whereas if the Credentials carry a

reference to the identity of their possessor, these requirements cannot be easily fulfilled.

Indeed, either users reveal their identities upfront, thus losing their Anonymity, or they

do not know who they are interacting with until the Secret Handshake is successful.

An apparent solution is represented by the use of pseudonyms together with an

efficient revocation mechanism: this way the Anonymity of users is not violated and

the certification authority can still revoke Credentials of misbehaving users. This is the

approach adopted by Balfanz et al. [BDS+03]. This approach is still not perfect since

pseudonyms by definition do not provide users with information on the real identity

of the carrier of the Credentials; in addition, detecting misbehaving users is not a

straightforward task, given that these types of attack are quite stealthy; we argue that

the pressure of secret groups is a strong enough argument in favor of the security of

our scheme, given that in addition, the most viable alternative solution that is based

on pseudonymity, does not completely solve the problem.

A different scenario occurs when our scheme is used in a Dynamic Controlled Match-

ing scenario, where users are equipped with Credentials and Matching References po-

tentially for different properties. The man-in-the-middle attack presented earlier on in

this Section does not apply any longer as illustrated with the following example: Alice

is equipped with a Credential for p1 and a Matching Reference form p2; Bob is equipped

with a Credential for p2 and a Matching Reference form p1. To perpetrate the same

attack as before, Mallory would be required to possess Credentials for both p1 and p2

and Matching References for both p1 and p2. The certification authority can restrict

this kind of attacks by refusing to issue Credentials and Matching References for two

different properties; or it can explicitly allow this to particular users that are allowed

to act as proxies in the communications of two other users.

70

4.5 Conclusion

4.5 Conclusion

In this Chapter we have introduced the concept of Secret Handshake with Dynamic

Controlled Matching: after a semantic description of the protocol and of its security

requirements, we have proposed at first a prover-verifier protocol using bilinear pairings;

then, we have shown how to use this protocol in order to build the first Secret Handshake

with Dynamic Controlled Matching.

Our work studies the problem of Secret Handshakes under new requirements, dif-

ferent than the ones considered before in the state of the art, thus completing the

landscape of available techniques in the field.

71

4. SECRET HANDSHAKE WITH DYNAMIC CONTROLLED
MATCHING

72

Chapter 5

Revocation in Secret Handshakes

5.1 Introduction

Supporting revocation in Secret Handshake scenarios is a challenging task. On the

one hand, we have seen in Chapter 3 that Anonymity and Unlinkability of users and

properties is a desired requirement. On the other hand, most of the approaches to the

revocation problem require Credentials to be somehow labeled, so that – either through

whitelists or blacklists – revoked Credentials can be told apart from active ones: this

openly violates the requirements of Unlinkability.

As described in Chapter 3 in Table 3.1, most of the schemes in the state of the art

so far either support revocation for limited versions of Secret Handshake (e.g. without

reusable Credentials, without separability) or they support more complete versions of

Secret Handshake with no possibility of introducing revocation, at least not without

radical changes to the protocol. Notice that also the scheme that we presented in

Chapter 4 falls in the latter category: it supports a wide variety of Secret Handshake

protocols with reusable Credentials, but revocation support is missing.

In this Chapter we address this challenging problem and show how we can support

in a comprehensive way all Secret Handshakes scenarios known in the literature, classic

Secret Handshakes, Secret Handshakes with Dynamic Matching or Secret Handshakes

with Dynamic Controlled Matching, adding revocation support to each. Our contri-

butions are manifold: at first, in Section 5.2 we define the requirements for a Secret

Handshake scheme supporting revocation. Then in Section 5.3 we present the first

Secret Handshake scheme with Dynamic Controlled Matching with revocation support

73

5. REVOCATION IN SECRET HANDSHAKES

and reusable Credentials. The analysis of the security of the scheme, in particular

for the resistance to impersonation attacks, requires the support of a rather complex

proving strategy, in conjunction with a new hardness assumption, the SM Problem, for

which we give evidence of being a hard problem in the generic group model. Finally,

in Section 5.4 we introduce the first Secret Handshake scheme with Dynamic Matching

with revocation support and reusable Credentials, thus bringing revocation support to

the work of Ateniese et al. [AKB07].

5.2 Problem Statement and Motivation

In Chapter 3 we have highlighted a number of features of Secret Handshake schemes.

In particular, we have stressed that reusable Credentials is a key feature of a practical

scheme; the same holds for revocation. In addition, we have listed Unlinkability of

users as an extremely relevant security requirement, whose importance is increased by

the sensitive use cases that we have sketched in Chapter 1.

In Table 3.1 unfortunately we can see that only two schemes support all three

features, namely [XY04] and [JL07]. The first scheme however only supports a lim-

ited version of Anonymity, namely k-Anonymity. The second scheme follows a differ-

ent approach from white/black list, namely, an epoch-based approach with short-lived

Credentials. However both schemes fail to satisfy another important requirement: sep-

arability. As we have seen in Chapter 3, separability is the key enabler for more flexible

versions of Secret Handshake, namely Secret Handshake with Dynamic Matching and

Secret Handshake with Dynamic Controlled Matching.

It is therefore evident that a scheme supporting separability, reusable Credentials,

revocation and Unlinkability is missing. This is going to be the contribution of this

Chapter.

A possible alternative approach to the one that we follow in the remainder of this

Chapter would be the use of Zero-Knowledge Proofs of Knowledge (ZKPK) [GMW86;

GMR89; GMW91] together with Accumulators, as suggested in [CL02]. This approach

allows a prover to prove to a verifier possession of valid (i.e. not revoked) Credentials in

an anonymous and unlinkable way. However this accomplishes just half of the require-

ments of a Secret Handshake, namely one the two parties proving to the other that

74

5.2 Problem Statement and Motivation

it possesses a Credential: turning this into a two-party protocol satisfying fairness ac-

cording to Definition 8 is not a straightforward task. These shortcomings have already

been acknowledge by Balfanz and colleagues [BDS+03], who stated that accumulators

are ill-suited for Secret Handshake scenarios. For this reason we do not follow this

approach.

5.2.1 Syntactic Definition

In this Section we formally define a Secret Handshake scheme supporting revocation

of Credentials. The scheme is constructed using two symmetric instances of a prover-

verifier protocol. The difference with the scheme of Chapter 4 is that in this case the

two schemes will effectively be separated, leading to the computation of two separate

keys. It is therefore essential that, at the end of the scheme, the two users can prove to

one another knowledge of both keys simultaneously: this will ensure fairness according

to Definition 8.

The algorithms composing the scheme are:

• Setup(k)→ (param, secret) is a probabilistic polynomial-time algorithm executed

by the certification authority taking a security parameter k as input and produc-

ing public parameters param and private parameters secret;

• Certify(u, p, secret) → (credu,p, xu,p) is a probabilistic polynomial-time algorithm

executed by the certification authority upon a user’s request. The certification

entity verifies that the supplicant user u ∈ U possesses the property p ∈ P whose

possession will later be proved during the protocol execution; after a successful

verification, the certification entity issues to u the appropriate Credential formed

by the pair (credu,p, xu,p). The user can verify the correctness of the Credential.

If the verification succeeds, the user accepts the Credential and aborts otherwise;

• Grant(u, p, secret) → (matchp) is a probabilistic polynomial-time algorithm exe-

cuted by the certification entity upon a user’s request. First of all the certification

entity verifies that – according to the policies of the system – the user u is entitled

to verify that another user possesses property p ∈ P. If the verification is success-

ful, the certification entity issues the appropriate Matching Reference matchp;

the user can verify the correctness of the Matching Reference. If the verification

succeeds, the user accepts the Matching Reference and aborts otherwise;

75

5. REVOCATION IN SECRET HANDSHAKES

• Revoke(u, p, secret, rl) → (rlupd) is a probabilistic polynomial-time algorithm ex-

ecuted by the certification entity when the Credential for property p owned by

user u needs to be revoked. The certification entity executes the algorithm by

updating a public revocation list rl, appending revocation information for the

newly revoked Credential;

• Handshake is a probabilistic polynomial-time two-party algorithm executed by

two users, ui and uj ; the algorithm is composed of three sub-algorithms:

– Handshake.Init(param, state) → (n, stateupd) outputs a nonce n and updates

the internal state state;

– Handshake.RandomizeCredentials(param, (credu,p1 , xu,p1), state, n) → (SH,

stateupd, K1) takes as input the system parameters, the user Credential, the

nonce n received from the other party and produces the Secret Handshake

message SH and the key K1 linked to the proof of possession of property

p1; it also updates the internal state state;

– Handshake.CheckRevoked(param, SH, rl, . . .)→ (b) takes as input the system

parameters, the Secret Handshake message received from the other party, an

updated version of the revocation list rl and additional parameters; the algo-

rithm outputs a boolean value set to true if the Credential used to generate

SH has been revoked;

– Handshake.Match(param, SH,matchp2 , state)→ (K2) takes as input the sys-

tem parameters, SH, the Credentials received from the other user, the local

state, the Matching Referencematchu,p; the user first executes sub-algorithm

Handshake.CheckRevoked to check whether the other user’s Credential has

been revoked, in which case the algorithm aborts; if Handshake.CheckRevoked

gives a negative answer (i.e. if the Credential has not been revoked), the al-

gorithm outputs a key K2, linked to the verification of possession of property

p2;

Assume two users ui and uj engage in the execution of Handshake; ui’s input

is a Credential for property p2, (credui,p2 , xui,p2) and a Matching Reference for

property p3, matchp3 ; uj ’s input is a Credential for property p1, (creduj ,p1 , xuj ,p1)

76

5.2 Problem Statement and Motivation

and a Matching Reference for property p4, matchp4 . The algorithm operates as

described in Figure 5.1.

ui : Handshake.Init(param, statei)→ (ni, statei,upd)

ui −→ uj : ni

uj : Handshake.Init(param, statej)→ (nj , statej,upd)

uj −→ ui : nj

uj : Handshake.RandomizeCredentials((creduj ,p1 , xuj ,p1), statej , ni)

→ (SHj , statej,upd,Kj,1)

uj −→ ui : SHj

ui : Handshake.RandomizeCredentials((credui,p2 , xui,p2), statei, nj)

→ (SHi, statei,upd,Ki,1)

ui −→ uj : SHi

ui : Handshake.Match(SHj ,matchp3 , statei)→ (Ki,2)

uj : Handshake.Match(SHi,matchp4 , statej)→ (Kj,2)

Figure 5.1: The Handshake algorithm executed by two users ui and uj .

The two pairs of keys Ki,1, Kj,2, and Ki,2, Kj,1 are equal under the following

conditions: p1 = p3 and p2 = p4. This implies that ui’s Credential is for the same

property as uj ’s Matching Reference and similarly, that uj ’s Credential is for the same

property as ui’s Matching Reference. Otherwise at least one of the two keys is a random

value with overwhelming probability.

Notice that Handshake.CheckRevoked has been purposely defined with a different

set of arguments; indeed, depending on the particular instance of Secret Handshake

(classic, with Dynamic Matching, with Dynamic Controlled Matching), a variable list

of arguments is required, as we shall see in the rest of this Chapter.

5.2.2 Security Requirements

In this Section we analyze the security requirements of Secret Handshakes, taking

revocation into consideration.

In the previous Section we have seen that two separate keys are computed; with

a reference to Figure 5.1, key Ki,1 is the key that ui is able to compute if successful

in the proof of possession of property p2; key Kj,2 is the key that uj is able to com-

pute if successful in the verification of property p4. If both are successful in the proof

77

5. REVOCATION IN SECRET HANDSHAKES

and verification (respectively), then Ki,1 = Kj,2. The same applies for Ki,2 and Kj,1.

Thus, the two pairs of keys are effectively separate, in that each pair depends on the

proof/verification of one property. Therefore in the security analysis we will acknowl-

edge this separation by focusing only on one key at a time in the games for detection

and impersonation resistance.

The handshake is sealed by a simultaneous proof of knowledge of both keys. It is a

necessary prerequisite for the security of the scheme that the proof of knowledge does

not – in any way – leak the actual value of the keys and that it proves knowledge of

both keys simultaneously.

The security requirements of the scheme can be effectively resumed as follows:

1. Correctness: if two users A and B engage in Handshake, and if A possesses valid

Credentials for B’s Matching References and B possesses valid Credentials for

A’s Matching References, they both output the same pair of keys;

2. Impersonator Resistance: given property p∗; let us assume two users, A and B,

engage in Handshake; B has a Matching Reference for p∗; then, it is computa-

tionally infeasible for A – without a non-revoked Credential for p∗ – to engage

in Handshake with B and output the correct key, linked to a successful proof of

possession of p∗ by A and a successful detection of p∗ by B;

3. Detector Resistance: given property p∗; let us assume two users, A and B, engage

in Handshake; B has a Credential for p∗; then, it is computationally infeasible for

A – without the appropriate Matching Reference for p∗ – to distinguish between

the key A computes executing Handshake and a random value;

4. Unlinkability of Users: it is computationally unfeasible for a user – engaging in

two executions of Handshake – to tell whether he was interacting with the same

user or two different ones;

5. Unlinkability of Properties: it is computationally unfeasible for a user – engaging

in two executions of Handshake without the appropriate Matching References –

to tell whether he was interacting with users having Credentials for the same

property or for different ones;

78

5.2 Problem Statement and Motivation

Notice that for Impersonator Resistance we consider a weaker requirement than the

one considered in Section 4.2.3: indeed the adversary is required to output the correct

key instead of distinguishing between the correct key and a random value. The same

holds for the security analyses of Secret Handshake schemes in the literature, such

as [BDS+03; AKB07].

We consider a similar type of adversarial model as in Section 4.2.3. A substantial

difference with respect to that model however, is brought forward by the fact that this

scheme supports revocation. Indeed, in the present model the adversary can always

obtain Credentials for any properties at his will, with no restriction; however the Cre-

dentials for properties being object of impersonation attacks are revoked before the

challenge.

The adversary is allowed to access a number of oracles managed by the challenger

in order to interact with the system; the oracles are:

• OSetup is invoked when the adversary wants to create a new certification authority

by calling Setup;

• OCertify is invoked when the adversary wants to receive a Credential for a given

property through the execution of Certify;

• OGrant is invoked when the adversary wants to receive a Matching Reference for

a given property through the execution of Grant;

• ORevoke is invoked when the adversary wants to receive a Revocation Handle for

a given Credential through the execution of Revoke;

Let us now see how the security requirements listed above can be modeled with the

oracles that we have introduced in this Section.

Resistance to Impersonation Attacks The goal of an adversary A is to imperson-

ate a user possessing a given property, without actually owning the corresponding

Credential. A has access to oracles OSetup, OCertify, OGrant, ORevoke; A then chooses

a property p∗ ∈ P; all Credentials for p∗ A received so far are revoked. Then,

challenger and adversary engage in the execution of only one side of the Handshake

protocol, as shown in Figure 5.2. The adversary is the challenged to output the

key K;

79

5. REVOCATION IN SECRET HANDSHAKES

c : Handshake.Init(param, statec)→ (nc, statec,upd)

c −→ A : nc

A −→ c : SHA

A −→ c : K

Figure 5.2: Challenge for an adversary attempting to break impersonation resistance.

Resistance to Detection Attacks Let us consider an adversary A whose goal is to

verify presence of a property of his choice without owning the corresponding

Matching Reference. A has access to oracles OSetup, OCertify, OGrant, ORevoke; A

then chooses a property p∗ ∈ P for which no call to OGrant has been made (i.e.

A does not have a Matching Reference for p∗). Then, challenger and adversary

engage in the execution of Handshake as shown in Figure 5.3.

A −→ c : nA

c : Handshake.RandomizeCredentials((credc,p∗ , xc,p∗), statec, nA)

→ (SHc, statec,upd,Kc,1)

c −→ A : SHc

c : K0 ← Kc,1

c : K1
R← {0, 1}n

c : b
R← {0, 1}

c −→ A : Kb

Figure 5.3: Challenge for an adversary attempting to break detection resistance.

The adversary is the challenged to output a guess for b. n corresponds to the

bitlength of the key Kc,1. Intuitively, this game challenges the capacity of the

adversary to impersonate a user owning a Matching Reference for a given prop-

erty p∗. The adversary receives a handshake message and is then required to

distinguish the key linked to a successful detection of p∗ from a random bitstring

of the same length.

Unlinkability of Users Consider an adversary A whose goal is – given any two pro-

tocol instances – to determine whether they were generated by the same user.

A has access to oracles OSetup, OCertify, OGrant, ORevoke; A is then challenged as

80

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

follows: he engages in two instances of Handshake with the challenger and is re-

quired to tell whether or not the challenger was impersonating the same user over

the two Handshake instances.

Unlinkability of Properties Consider an adversary A whose goal is – given any two

protocol instances – to determine whether they were generated to prove possession

of the same property. A has access to oracles OSetup, OCertify, OGrant,ORevoke; A

chooses a property p∗ such that no query to OGrant has been submitted and is

then challenged as follows: he engages in two instances of Handshake with the

challenger and has to return true if he can decide that during both instances, the

challenger has used Credentials for p∗.

5.3 Secret Handshake with Dynamic Controlled Matching

and Revocation Support

In this Section we describe a Secret Handshake scheme supporting Dynamic Controlled

Matching, reusable Credentials and revocation. The scheme fulfills the security require-

ments outlined in the previous Section, as we shall see later in this Chapter.

5.3.1 An overview of the solution

In this Section we give the reader an insight on the choices behind the actual design of

the scheme and their rationale.

At first, let us describe the notation used in the sequel of the Chapter. Given a

security parameter k, let G1, G2 and GT be groups of order q for some large prime

q, where the bitsize of q is determined by the security parameter k. Our scheme

uses a computable, non-degenerate bilinear map ê : G1 × G2 → GT for which the

Symmetric External Diffie-Hellman (SXDH) problem is assumed to be hard. The

SXDH assumption in short allows for the existence of a bilinear pairing, but assumes

that the Decisional Diffie-Hellman problem is hard in both G1 and G2 (see [AKB07]

for more details).

Our starting objective is to design a scheme that helps a prover convince a verifier

that he owns the Credential for a property; however, the verification will be successful

only for entitled verifiers. In addition, we also want to support revocation of Credentials.

81

5. REVOCATION IN SECRET HANDSHAKES

To this end, we need some means of secretly “labeling” each Credential, so that we can

later on reveal the label and use it as a handle to refuse handshake instances embedding

it.

Let us assume that g and g̃ are generators of G1 and G2 respectively. Also, t ∈ Z∗q
is a master secret. Next, we describe how we represent strings into group elements.

Following [BB04; Wat05], let g̃
R← G2; let us also choose n+1 random values {yi}ni=0

R←
Z∗q ; we assign g̃0 = g̃y0 , g̃1 = g̃y1 , . . . , g̃n = g̃yn . If v ∈ {0, 1}n is an n-bit string, let us

define h(v) = y0 +
∑

i∈V (v) yi, where V (v) represents the set of indexes i for which the

i-th bit of v is equal to 1. We also define H(v) = g̃0
∏
i∈V (v) g̃i = g̃h(v) ∈ G2.

Then, given a property p, Matching References can be formed asH(p)t = g̃h(p)t ∈ G2

and given to verifiers; in order to successfully authenticate as a possessor of property

p, a prover must then prove knowledge of gh(p)t ∈ G1. However, instead of simply

giving that value to the prover, we pick a random value x ∈ Z∗q , different for every

Credential, and give x and g(x+h(p)t) to the prover. g(x+h(p)t) is the Credential and x is

the aforementioned tag, called Identification Handle in the rest of this Chapter, used

to identify Credentials.

Then, a prover can be authenticated by a verifier as follows: the verifier sends

a challenge g̃m and receives
〈
gr(x+h(p)t), gr

〉
from the prover, where r is a random

number, used by the prover to salt the handshake message. The prover can compute

K = (ê (g, g̃)m)rx and the verifier can compute K ′ =
(
ê
(
gr(x+h(p)t), g̃

)
/ê
(
gr, g̃h(p)t

))m
;

if the authentication is successful, K and K ′ are the same.

If the Credential is to be revoked at some point, all we need to do is reveal g̃x,

called Revocation Handle in the rest of the Chapter. This way, the verifier can verify

if the Credential used by the prover has been revoked, by checking if ê
(
gr(x+h(p)t), g̃

)
=

ê
(
gr, g̃h(p)t · g̃x

)
holds.

Two challenges arise: first, it should be impossible to use the value x in order to

trace Credentials before they have been revoked; and second, a user should be forced

to send Credentials unmodified. The solution presented above respects the privacy

of users: prior to the revocation of a given Credential, an attacker cannot use the

Identification Handle to link two different instances of the handshake to the same user:

it is easy to show that linking the same x through subsequent instances of the protocol,

is equivalent to solving DDH in G1. We remind the reader that, under the SXDH

82

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

assumption, the DDH problem is still hard in the two groups G1 and G2, despite the

existence of a computable pairing operation.

However this solution still does not prevent an attacker from modifying Credentials

in order to circumvent revocation. In order to prevent this attack, we also introduce

another public parameter W = gw, where w
R← Z∗q is kept secret. Each Credential is

raised to the power of the product zw, z being a random number different for every

Credential, to yield a randomized version of the Credentials such as gzw(x+h(p)t); in

addition, the prover also receives g̃(zw)
−1

and g̃z
−1

. The verifier then computes K =(
ê
(
grzw(x+h(p)t), g̃(zw)

−1
)
/ê
(
gr, g̃h(p)t

))m
. In addition we require the verifier to also

check that ê
(
g, g̃z

−1
)

= ê
(
W, g̃(zw)

−1
)

.

The protocol introduced in the next Section is not very different from the simple

one that we proposed here. The only modifications are an additional random number

used to also salt the terms g̃z
−1

and g̃(zw)
−1

, which would otherwise not be randomized

and open up to tracing attacks. Finally, the master secret t is substituted by a function

f(p) to the same end.

5.3.2 Description of the Scheme

In this Section we introduce the Secret Handshake scheme. The active parties are

essentially users and a trusted entity that we will call certification authority (CA).

Users receive from the CA Credentials and Matching References for a given property.

In case of compromised Credentials, the CA adds a value called Revocation Handle to

a publicly available revocation list: this way, verifiers may refuse to interact with users

bearing revoked Credentials.

The scheme is composed of the following algorithms:

• Setup according to the security parameter k, the CA chooses g and g̃, randomly

selected generators of G1 and G2 respectively. The CA also picks w
R← Z∗q and

sets W ← gw. Finally the CA picks {yi}ni=0
R← Z∗q and assigns g̃0 ← g̃y0 , g̃1 ←

g̃y1 , . . . , g̃n ← g̃yn . The CA chooses as well a function f : P→ Z∗q , where P is the

set of all properties in the system. f is implemented maintaining a list of pairs

(p ∈ P, f(p) ∈ Z∗q), which is filled as follows: if p is not in the list, the CA picks

a random number r ∈ Z∗q and inserts the pair (p, r) in the list. If p is already in

the list, the CA looks up the pair (p, r) and sets f(p) = r. The system’s public

83

5. REVOCATION IN SECRET HANDSHAKES

parameters are {q,G1,G2, g, g̃,W, g̃0, . . . , g̃n, ê}. The values w, y0, . . . , yn and the

function f(p) are instead kept secret by the CA;

• Certify upon user request, the CA verifies that the supplicant user u ∈ U possesses

the property p ∈ P whose possession will later be proved during the execution

of the protocol; after a successful check, the CA issues to u the appropriate Cre-

dential, which is made of two separate components: an Identification Handle,

later used for revocation, and the actual Credential. To hand out the Identi-

fication Handle for a given pair (u, p), the CA picks the Identification Handle

xu,p
R← Z∗q , randomly drawn upon each query, and gives it to the supplicant user.

The CA then forms the Credential as a tuple credu,p = 〈Cu,p,1, Cu,p,2, Cu,p,3〉 where

Cu,p,1 = gzw(xu,p+f(p)h(p)), Cu,p,2 = g̃(zw)
−1

and Cu,p,3 = g̃z
−1

, where z ∈ Z∗q is ran-

domly drawn upon each query. To allow the user to verify the goodness of the

Credential, the CA gives to the user gf(p). The user verifies that ê(Cu,p,1, Cu,p,2)

= ê(gxu,p , g̃) · ê(gf(p), H(p));

• Grant upon a user’s request, the CA verifies that – according to the policies of the

system – user u is entitled to verify that another user possesses property p ∈ P.

If the checking is successful, the CA issues the appropriate Matching Reference

matchp = g̃h(p)f(p); to allow the user to verify the goodness of the Credential, the

CA gives to the user gf(p). The user verifies that ê(g,matchp) = ê(gf(p), H(p));

• Revoke if the Credential for property p of user u ∈ U is to be revoked, the

CA adds the so-called Revocation Handle revu,p = g̃xu,p to a publicly available

revocation list Lrev. It is worth noting that the Identification Handle xu,p and

the corresponding Revocation Handle revu,p = g̃xu,p are tightly related;

• Handshake is a probabilistic polynomial-time two-party algorithm executed by

two users; the algorithm is composed of four sub-algorithms:

– Handshake.Init the user picks m
R← Z∗q and produces g̃m;

– Handshake.RandomizeCredentials the user picks r, s
R← Z∗q ; given the Creden-

tial credu,p = 〈Cu,p,1, Cu,p,2, Cu,p,3〉 and the Identification Handle xu,p, the

user produces the tuple
〈
gr, (Cu,p,1)

rs , (Cu,p,2)
s−1

, (Cu,p,3)
s−1
〉

. The user

84

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

also computes K =
(
ê
(
g, g̃m

′
))rxu,p

, where g̃m
′

is the nonce received from

the other party;

– Handshake.CheckRevoked the user parses SH as
〈
gr, (Cu,p,1)

rs , (Cu,p,2)
s−1

,

(Cu,p,3)
s−1
〉

. The user verifies whether SH contains a revoked Credential

by checking if the following identity

ê
(

(Cu,p,1)
rs , (Cu,p,2)

s−1
)

= ê (gr,matchp · rev) (5.1)

is verified with any of the Revocation Handles rev in the list Lrev. matchp is

the Matching Reference the user will use when performing Handshake.Match.

If the check is successful, the user discards the current handshake instance;

– Handshake.Match the users parses SH, the handshake message received from

the remote user, as 〈gr, (Cu,p,1)rs , (Cu,p,2)
s−1

, (Cu,p,3)
s−1
〉

. The user checks

whether

ê
(
g, (Cu,p,3)

s−1
)

= ê
(
W, (Cu,p,2)

s−1
)

(5.2)

and computes

K =

 ê
(

(Cu,p,1)
rs , (Cu,p,2)

s−1
)

ê (gr,matchp)

m

(5.3)

matchp is a Matching Reference;

Let us assume that two users, Alice and Bob, want to perform a Secret Handshake

and share a key if the Handshake is successful. Alice owns the tuple 〈credA,p1 ,matchp2 ,
xA,p1〉 and Bob owns 〈credB,p2 ,matchp1 , xB,p2〉. Figure 5.4 shows how the handshake

is carried out.

At the completion of the protocol, Alice and Bob share the same keypair if and

only if each user’s Credential matches the other user’s Matching Reference. If not, one

of the two keys, or both, will be different. By requiring them to prove to one another

knowledge of both keys simultaneously, either both users learn of a mutual matching,

or they do not learn anything at all. In particular, they do not learn – in case of a

failed handshake – if just one of the two matchings have failed, and if so which one, or

if both did fail.

85

5. REVOCATION IN SECRET HANDSHAKES

Alice : pick r, s,m
R← Z∗q

Alice −→ Bob :
〈
gr, (CA,p1,1)

rs , (CA,p1,2)
s−1

, (CA,p1,3)
s−1

, g̃m
〉

Bob : pick r′, s′,m′
R← Z∗q

Bob −→ Alice :
〈
gr
′
, (CB,p2,1)

r′s′ , (CB,p2,2)
s′−1

, (CB,p2,3)
s′−1

, g̃m
′
〉

Alice : check that Equation 5.2 holds, otherwise abort

Alice : check that Equation 5.1 is not satisfied with any rev ∈ Lrev,
otherwise abort

Alice : compute K1 =
(
ê
(
g, g̃m

′
))rxA,p1

Alice : compute K2 =

 ê
(

(CB,p2,1)
r′s′ , (CB,p2,2)

s′−1
)

ê (gr′ ,matchp2)

m

Bob : check that Equation 5.2 holds, otherwise abort

Bob : check that Equation 5.1 is not satisfied with any rev ∈ Lrev,
otherwise abort

Bob : compute K1 =

 ê
(

(CA,p1,1)
rs , (CA,p1,2)

s−1
)

ê (gr,matchp1)

m′

Bob : compute K2 = (ê (g, g̃m))r
′xA,p1

Alice ←→ Bob: mutual proof of knowledge of K1 and K2

Figure 5.4: Secret Handshake with Dynamic Controlled Matching.

Notice that if a user does not have the correct Matching Reference for the re-

ceived Credential, Handshake.CheckRevoked would fail altogether; however in this case

Handshake.Match would also fail and the receiving user would discard the handshake

instance anyway. It is clear that after revocation, Credentials can be traced only by

users that possess the Matching Reference for the property object of that Credential;

these users were already potentially able to match the given Credential. For other users,

past and future transcripts of handshake instances produced from that Credential are

still anonymous and unlinkable.

5.3.3 Security Analysis

This Section analyzes the protocol presented in the previous Section with respect to the

requirements outlined in Section 5.2.2. Notice that the proofs do not rely on random

oracles, albeit the function f can be mistaken by one: random oracles are functions that

86

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

users of the system (and attackers) can compute on their own, whereas f is comparable

to a master secret that changes for the different properties, whose value is given to

users only to allow them to perform checks on Credentials.

It could be debatable whether or not it is opportune to hand out the value gf(p) for

each property at the time of the execution of Setup amongst the other public parameters,

instead of giving them only upon the execution of Certify and Grant. In any case, from

the security point of view, the adversary has knowledge of all these values in all the

games.

Before proceeding further, we state a well-known hard problem:

Definition 12 (Hardness of the Decisional Diffie-Hellman Problem). We say that the

Decisional Diffie-Hellman Problem (DDH) is hard if, for all probabilistic, polynomial-

time algorithms B,

AdvDDHB := Pr[B(g, ga, gb, gx) = > if x = ab]− 1
2

is negligible in the security parameter. We assume a random choice of g ∈ G2, a,

b ∈ Z∗q; x is equal to ab with probability 1
2 and is otherwise equal to a random value in

Z∗q/{ab} with the same probability.

We also introduce a new intractability assumption.

Definition 13. [Hardness of the SM Problem] Let w, y,m ∈ Z∗q, let g be a generator

of G1 and g̃ be a generator of G2. Let oracle Ow,y(·) take input x ∈ Z∗q and produce

output gzw(x+y), g̃z
−1

and g̃(zw)
−1

where z is randomly drawn from Z∗q upon each oracle

query. We say that the SM Problem is hard if, for all probabilistic, polynomial-time

algorithms A,

AdvSMA := Pr[A(g, gw, g̃, g̃w
−1
, g̃y, g̃m, Ow,y) = a, asw(x∗+y), g̃(sw)

−1
, g̃(s)

−1
, ê (a, g̃)mx∗]

such that x∗ /∈ O, is negligible in the security parameter; a ∈ G1. O is the set of queries

A makes to oracle Ow,y. This probability is taken over random choice of g ∈ G1, g̃ ∈ G2,

and w, y,m ∈ Z∗q.

Intuitively, the assumption tells that it is unfeasible to compute a tuple
〈
gsw(x∗+y),

g̃(sw)
−1
, g̃s

−1
〉

for a new value x∗ and prove knowledge of it, yet having an oracle

that can do so for any query. In demonstrating the complexity assumption, we follow

the approach presented by Victor Shoup in [Sho97] and extensively used by the re-

search community [ACHdM05; BB08; LRSW99]. As an example, the well known SDH

assumption was thus proved by Boneh and Boyen in [BB08].

87

5. REVOCATION IN SECRET HANDSHAKES

In what follows we will provide evidence as to the hardness of the problem intro-

duced in Definition 13, by proving a lower bound on the computational complexity

under the generic group model. The generic group model is a theoretical framework

for the analysis of the success of algorithms in groups where the representation of the

elements reveals no information to the attacker. The most popular is the one presented

by Victor Shoup [Sho97]. In this model, the attacker is not given direct access to group

elements, but rather to the images of group elements under a random one-to-one map-

ping. The only operations the attacker can perform are therefore equality testing by a

bitwise comparison on the images. Group operations can be computed by the attacker

through a series of oracles. It is clear that in this situation, the attacker can gain no

advantage in solving a computational problem from the representation of the group

element.

Internally, the simulator represents the elements of G1 as their discrete logarithms

relative to a chosen generator. To represent the images of the elements of G1 for

the attacker, we use a random one-to-one mapping ξ1 : Z∗q → {0, 1}dlog2qe, where q

is the group order. For instance, the group element ga is represented internally as a,

whereas the attacker is given the external string representation ξ1(a) ∈ {0, 1}dlog2qe. We

similarly define a second mapping ξ2 : Z∗q → {0, 1}dlog2qe to represent G2, and a third

mapping ξT :→ {0, 1}dlog2qe to represent GT . The adversary communicates with the

oracles using the string representation of the group elements exclusively. The adversary

is also given q = |G1| = |G2| = |GT |.

The following theorem establishes the unconditional hardness of the SM problem in

the generic bilinear group model. Our proof uses a technique similar to the one adopted

by Ateniese et al. in [ACHdM05].

Theorem 1. Suppose A is an algorithm that is able to solve the SM problem in generic

bilinear groups of order q, making at most qG oracle queries for the group operations in

G1, G2, and GT , the oracle Ow,y(·) and the bilinear pairing ê, all counted together. Sup-

pose also that the integers w, y,m ∈ Z∗q and the encoding functions ξ1, ξ2, ξT are chosen

at random. Then, the probability ε that A on input (q, ξ1(1), ξ1(w), ξ2(1), ξ2(w
−1), ξ2(y),

ξ2(m)) produces in output (ξ1(r), ξ1(rsw(x∗+y)), ξ2((sw)−1), ξ2((s)
−1), ξT (rx∗m)) with

x∗ not previously queried to Ow,y, is bounded by

ε = O(q2G/q)

88

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

Proof. Consider an algorithm B that plays the following game with A.

B maintains three lists of pairs L1 = {(F1,i, ξ1,i) : i = 1, . . . , τ1}, L2 = {(F2,i, ξ2,i) :

i = 1, . . . , τ2} and LT = {(FT,i, ξT,i) : i = 1, . . . , τT }, such that, at step τ in the game,

τ1 + τ2 + τT = τ + 6. The entries F1,i, F2,i and FT,i are polynomials with coefficients in

Z∗q . The entries ξ1,i, ξ2,i, ξT,i will be all the strings given out to the adversary.

The lists are initialized at step τ = 0 by setting τ1 = 2, τ2 = 4, τT = 0 and assigning

F1,1 = 1, F1,2 = W , F2,1 = 1, F2,2 = W−1 F2,3 = Y and F2,4 = M where W , Y and M

are indeterminants. The corresponding ξ1,. and ξ2,. are set to random distinct strings.

In what follows we describe how B answers A’s query:

Group operations : A may request a group operation in G1 as a multiplication or as

a division. Before answering a G1 query, the simulator B starts by incrementing

the τ1 counter by one. A gives B two operands ξ1,i, ξ1,j with 1 ≤ i, j < τ1,

and a multiply/divide selection bit. To respond, B creates a polynomial F1,τ1 ←
F1,i ± F1,j ; the sign depends on the multiply/divide bit (plus in case of multiply,

minus in case of divide). If the result is identical to an earlier polynomial F1,l

for some l < τ1, the simulator B duplicates its string representation ξ1,τ1 ← ξ1,l;

otherwise, it lets ξ1,τ1 be a fresh random string in {0, 1}dlog2qe, distinct from

ξ1,1, . . . , ξ1,τ1−1. The simulator appends the pair (F1,τ1 , ξ1,τ1) to the list L1 and

gives the string ξ1,τ1 back to A. Group operation queries in G2 and GT are

answered in a similar way, based on the lists L2 and LT respectively.

Pairing : a pairing query consists of two operands ξ1,i and ξ2,j with 1 ≤ i ≤ τ1 and

1 ≤ j ≤ τ2 for the current values of τ1 and τ2. Upon receipt of such a query from

A, the counter τT is incremented. The simulator then computes the product of

polynomials FT,τT ← F1,i · F2,j . If the same polynomial was already present in

LT , i.e., if FT,τT = FT,l for some l < τT , then B simply clones the associated

string ξT,τT ← ξT,l, otherwise it sets ξT,τT to a new random string in {0, 1}dlog2qe,
distinct from ξT,1, . . . , ξ1,τT−1. The simulator then adds the pair (FT,τT , ξT,τT) to

the list LT , and gives the string ξT,τT to A.

Oracle O : let τO be a counter initialized to 0 and O an empty set. At the beginning

of any oracle query, A inputs x ∈ Z∗q ; to start, B adds x to the set O and

increments the counter τ1 and τO by one, and the counter τ2 by two, choosing a

new indeterminant ZτO ; it then sets F1,τ1 ← ZτOW (x+Y); it also sets F2,τ2−1 ←
Z−1τO and F2,τO ← (ZτOW)−1. If the same polynomials were already present in L1

or L2, i.e., if F1,τ1 = F1,l for some l < τ1, or, for j ∈ {0, 1}, F2,τ2−j = F2,l′ for

some l′ < τ2, then B simply clones the associated string ξ1,τ1 ← ξT,l, ξ2,τ2−j ←

89

5. REVOCATION IN SECRET HANDSHAKES

ξ2,l′ ; otherwise it sets the strings ξ1,τ1 and ξ2,τ2−j to distinct random values in

{0, 1}dlog2qe, different from the other strings already contained in the lists. The

simulator then adds the pairs (F1,τ1 , ξ1,τ1) to the list L1 and (F2,τ2−j , ξ2,τ2−j) to

the list L2, giving the strings ξ1,τ1 and ξ2,τ2−j to A.

We assume that the SXDH assumption holds, therefore we do not create any iso-

morphism between G1 and G2 or vice versa.

When A terminates, it returns the tuple 〈ξ1,α, ξ1,β, ξ2,γ , ξ2,δ, ξT,k〉 where 1 ≤ α, β,≤
τ1, 1 ≤ γ, δ ≤ τ2 and 1 ≤ k ≤ τT . Let F1,α, F1,β, F2,γ , F2,δ and FT,k be the cor-

responding polynomials in the lists L1, L2 and LT , and gα, gβ, g̃γ , g̃δ, ê (g, g̃)k the

corresponding elements in G2
1 ×G2

2 ×GT .

In order to exhibit the correctness of A’s answer, B should check that the system

of equation 
(
ê(gβ, g̃γ)

ê(gα, g̃y)

)m
= ê (g, g̃)k

ê (gw, g̃γ)

ê (g, g̃δ)
= 1

(5.4)

(5.5)

is verified. Let us set α = r, k = rx∗m and δ = s−1, for some integers r, x∗, s ∈ Z∗q
unknown to B. If the above system is verified, we can rewrite gα = gr, gβ = grsw(x∗+y),

g̃γ = g̃(sw)
−1

, g̃δ = g̃(s)
−1

, ê (g, g̃)k = ê (g, g̃)rx∗m; if x∗ /∈ O the attacker has produced a

valid answer, according to Definition 13.

In order to verify the system above within the simulation framework, B computes

{
FT,∗ = (F1,β · F2,γ − F1,α · Y)M − FT,K
FT,◦ = F2,γ ·W − F2,δ

(5.6)

(5.7)

To proceed with our demonstration, first of all we show that it is not possible that

FT,∗ = FT,◦ = 0 for every value of W , Y , M and Zi, 1 ≤ i ≤ τO. This result implies

that the success of A in the game must depend on the particular values assigned to W ,

Y , M and Zi.

Let us first observe that the polynomials F1,α, F1,β are by construction formed as

F1,α = α0 + α1W +

τO∑
i=1

(α2,iZiW (xi + Y))

F1,β = β0 + β1W +

τO∑
i=1

(β2,iZiW (xi + Y))

90

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

where xi is the element of Z∗q queried upon the i-th query to the oracle O. The

polynomials F2,γ and F2,δ instead are formed as

F2,γ = γ0 + γ1W
−1 + γ2Y + γ3M +

τO∑
i=1

(γ4,iZ
−1
i + γ5,i(ZiW)−1)

F2,δ = δ0 + δ1W
−1 + δ2Y + δ3M +

τO∑
i=1

(δ4,iZ
−1
i + δ5,i(ZiW)−1)

Plugging these equations back in Equation 5.7, gives us

δ0 + δ1W
−1 + δ2Y + δ3M +

τO∑
i=1

(δ4,iZ
−1
i + δ5,i(ZiW)−1) =

γ0W + γ1 + γ2YW + γ3MW +

τO∑
i=1

(γ4,iZ
−1
i W + γ5,i(Zi)

−1) (5.8)

If the attacker wins the game, Equation 5.8 must be symbolically equal to zero; sim-

plifying all the unique terms, we are left with

δ0 +

τO∑
i=1

(δ4,iZ
−1
i) = γ1 +

τO∑
i=1

(γ5,i(Zi)
−1) (5.9)

from which we conclude that F2,γ = γ1W
−1 +

τO∑
i=1

(γ5,i(ZiW)−1).

Let us now consider Equation 5.6, which can be rewritten as(
γ1β0W

−1 + γ1β1 +

τO∑
i=1

(γ1β2,iZi(xi + Y))+

+

τO∑
i=1

β0γ5,i(ZiW)−1 + β1γ5,iZ
−1
i +

τO∑
j=1

(
β2,jγ5,i(Zi)

−1Zj(xj + Y)
)−

+

(
α0Y + α1WY +

τO∑
i=1

(α2,iZiWY (xi + Y))

))
M = FT,K

(5.10)

If the attacker wins the game, Equation 5.10 must be symbolically equal to zero.

First of all, the right hand of the equation is an element of the group GT ; the

adversary can receive elements in GT only through invocations of the Pairing oracle.

We recall that this oracle returns a product of an element in G1 multiplied by an element

in G2. Second, we notice that each term of the left hand of the equation contains M .

91

5. REVOCATION IN SECRET HANDSHAKES

Therefore, from FT,K we delete all the terms that do not contain M . Then, we simplify

M on both sides, ending up with the following equation(
γ1β0W

−1 + γ1β1 +

τO∑
i=1

(γ1β2,iZi(xi + Y))+

+

τO∑
i=1

β0γ5,i(ZiW)−1 + β1γ5,iZ
−1
i +

τO∑
j=1

(
β2,jγ5,i(Zi)

−1Zj(xj + Y)
)−

+

(
α0Y + α1WY +

τO∑
i=1

(α2,iZiWY (xi + Y))

))
= (5.11)

= k0 + k1W +

τO∑
i=1

(k2,iZiW (xi + Y)) (5.12)

Further more, we simplify all the unique terms, as follows: γ1β0 = 0 since it is the

only term containing W−1; β0γ5,i = 0 since it is the only term containing (ZiW)−1;

β1γ5,i since it is the only term containing Z−1i ; α1 = α2,i = 0 since they are the only

terms containing WY and ZiWY 2 respectively; k1 = k2,i = 0 since the are the only

coefficients of W and of ZiW respectively; finally γ1β2,i = 0 since it is the only term

containing ZiY . Notice also that all the terms β2,jγ5,i must be equal to zero for all

i 6= j since they would contain terms in (Zi)
−1Zj .

We must also simplify the terms in γ1β1: indeed we have previously set the coeffi-

cient β1γ5,i = 0, but we cannot set γ5,i = 0 since this would unduly cancel out terms

in β2,iγ5,i(Zi)
−1Zi(xi + Y) = β2,iγ5,i(xj + Y) which instead can be balanced out with

linear combinations of terms in k0 and α0Y . Therefore the term β1 = 0.

By simplifying these terms, we end up with

β2,iγ5,i(xi + Y)− α0Y = k0 (5.13)

Now, α0 = β2,iγ5,i since they are the only coefficients of Y . Then k0 = β2,iγ5,ixi.

However this is not a valid solution, xi is the i-th value queried to oracle O, and thus

belongs to O. We therefore conclude that it is impossible for the attacker to win the

game for every value of W , Y , M and Zi; instead this depends on a lucky instantiation

of such variables.

The simulator B therefore chooses random values w̄, ȳ, m̄, z̄1, . . . , z̄τO for each of

the variables W , Y , M and Zi. Let us analyze the probability that the attacker has

won the game given the chosen assignment of the variables: this happens if (i) no two

non-identical polynomials in the lists L1, L2 and LT assume the same value and (ii)

if the assignment satisfies FT,∗ = FT,◦ = 0. If (i) is true, B’s simulation was flawed

92

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

because two group elements – that were equal – have been presented as distinct to the

attacker.

Summing up, the probability of success of the attacker is bounded by the probability

that any of the following equations holds:

F1,i(w̄, ȳ, m̄, z̄1, . . . , z̄τO)− F1,j(w̄, ȳ, m̄, z̄1, . . . , z̄τO) = 0, i, j s.t. F1,i 6= F1,j (5.14)

F2,i(w̄, ȳ, m̄, z̄1, . . . , z̄τO)− F2,j(w̄, ȳ, m̄, z̄1, . . . , z̄τO) = 0, i, j s.t. F2,i 6= F2,j (5.15)

FT,i(w̄, ȳ, m̄, z̄1, . . . , z̄τO)− FT,j(w̄, ȳ, m̄, z̄1, . . . , z̄τO) = 0, i, j s.t. FT,i 6= FT,j (5.16)

FT,∗(w̄, ȳ, m̄, z̄1, . . . , z̄τO) = 0 (5.17)

FT,◦(w̄, ȳ, m̄, . . . , z̄τO) = 0 (5.18)

For fixed i, j each non-trivial polynomial 5.14, 5.15, 5.16 has degree at most 1 and

it vanishes with probability ≤ 1/q. Polynomials 5.17 and 5.18 have too degree at

most 1 and vanish with probability ≤ 1/q. We sum over all the (i, j) to bound the

overall success probability ε of the attacker A as ε ≤
(
τ1
2

)
1
q +

(
τ2
2

)
1
q +

(
τT
2

)
1
q + 2

q . Since

τ1 + τ2 + τT ≤ qG + 5, we end up with

ε ≤ (qG + 5)2

2q
+

2

q
= O(q2G/q)

5.3.3.1 Unlinkability of Properties

Consider an adversary A whose goal is to check if two handshake tuples contain the

same property. A can access OSetup, OCertify, OGrant, ORevoke. A is then challenged as

follows: A chooses a property p∗ for which no call to OGrant has been submitted; he is

then given SH1 and SH2 generated by two calls to Matching.RandomizeCredentials and

is required to return true if he can decide that both SH1 and SH2 refer to p∗. To make

the adversary as powerful as possible, the challenger will also give to the adversary

the key that it computes when executing Matching.RandomizeCredentials. We call this

game TraceProperty.

Lemma 6. If an adversary A has a non-null advantage

AdvTracePropertyA := Pr[A wins the game TraceProperty]− 1
2

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve any given instance of the Decisional Diffie-Hellman problem

(DDH).

93

5. REVOCATION IN SECRET HANDSHAKES

Proof. We define B as follows. B is given an instance
〈
g, ga, gb, gσ

〉
of the DDH problem

in G1 and wishes to use A to decide if σ = ab. The algorithm B simulates an envi-

ronment in which A operates, using A’s advantage in the game TraceProperty to help

compute the solution to the DDH problem. In particular, B implements the oracles

OSetup, OCertify, OGrant, ORevoke as follows:

OSetup : B uses g as the one received from the DDH challenge; f(p) is implemented as

follows: on a query for f(p), if p has never been queried before, B picks a random

value rp
R← Z∗q , storing the pair (p, rp) in a table. Then B flips a random biased

coin guess(p) ∈ {0, 1} biased as follows: guess(p) equals 1 with probability δ and

is equal to 0 with probability 1−δ. B answers as follows: if guess(p) = 0, he looks

up rp in the table and answers with rp. Instead, if guess(p) = 1, B answers with

f(p) = brp; finally, B picks and publishes the other public parameters according

to the rules of the protocol;

OCertify : B answers according to the rules of the protocol;

OGrant : the adversary submits a query to receive a Matching Reference for property pi;

assuming that guess(pi) = 0, B answers according to the rules of the protocol;

ORevoke : B answers according to the rules of the protocol;

Setup and Queries The adversary A can interact with the oracles OSetup, OCertify,

OGrant, ORevoke;

Challenge At the end of this phase, A chooses a property p∗ for which no query to

OGrant has been submitted. Let us assume guess(p∗) = 1. B engages in two instances

of Handshake with A; in particular, B receives two nonces g̃m1 and g̃m2 ; B then picks

x1, x2, s1, s2, r
R← Z∗q and p∗

R← P; B generates two handshake tuples as follows:〈
gr, grs1w(x1+brp∗h(p∗)), g̃(s1w)

−1
, g̃(s1)

−1
〉

〈
ga, gas2wx2gσs2wrp∗h(p∗), g̃(s2w)

−1
, g̃(s2)

−1
〉

and also gives A the two keys that are generated by Handshake.RandomizeCredentials,

(ê (g, g̃m1))rx1 and (ê (ga, g̃m2))x2 .

Analysis of A’s answer It is straightforward to verify that, if A wins the game,

B can give the same answer to solve the DDH problem. Indeed, if A wins the game,

he is able to decide if ∃α ∈ Z∗q such that(r(x1 + brp∗h(p∗))− rα)m1 = rm1x1

(ax2 + σrp∗h(p∗)− aα)m2 = am2x2
(5.19)

94

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

If A’s answer is positive, it means that the system of equations is verified. Then

we can solve the first equation as α = brp∗h(p∗), and plugging in the second equation

B can verify that σ = ab, which is the positive answer to the DDH problem. If not, B

can give the negative answer to DDH.

A detailed analysis shows that if guess(p∗) = 1 and guess(p) = 0 for all other

queries to OGrant such that p 6= p∗, then the execution environment is indistinguishable

from the actual game TraceProperty. This happens with probability

Pr[guess(p∗) = 1 and guess(p) = 0 for all p 6= p∗] = δ · (1− δ)Qp (5.20)

where Qp is the number of different properties A queries to the oracle OGrant. By

setting δ ≈ 1
Qp

we know that the probability in 5.20 is greater than 1
e·Qp

. So in conclu-

sion, we can bound the probability of success of the adversary AdvTracePropertyA as

AdvTracePropertyA ≤ e · Qp · AdvDDHB.

5.3.3.2 Unlinkability of Users

Consider an adversary A whose goal is to check if two handshake tuples come from the

same user. Let us first of all notice that there are two values that can deanonymize

a user, the Identification Handle xu,p, and z, the random number drawn at each call

to Certify and used to salt the Credentials. Between the two, xu,p is the only one

that can be traced over two different handshake tuples. Indeed, tracing the value z is

impossible, since over successive handshake tuples, it always appears multiplied by a

different random value.

A can access OSetup, OCertify, OGrant, ORevoke. Eventually A receives two handshake

tuples containing the same property, and returns true if he can decide that upon both

protocol instances he was interacting with the same user. We call this game TraceUser.

There are two separate situations where we want to prove that Unlinkability of

users holds:

• one where a user uses Credentials that have not yet been revoked, for which the

adversary has a corresponding Matching Reference;

• a second situation in which the user uses Credentials that have already been

revoked, in which case Unlinkability of users holds only if the adversary does not

have the corresponding Matching Reference;

95

5. REVOCATION IN SECRET HANDSHAKES

We remind the reader that users are clearly traceable to an adversary who has both

the correct Matching Reference and the Revocation Handle for that Credential.

Therefore we present two separate games, TraceUser1 and TraceUser2: the first

challenges the adversary’s capability to trace a non-revoked user, having the appropriate

Matching Reference for the user’s Credential; the second challenges the adversary’s

ability to trace a revoked user without the appropriate Matching Reference for the

user’s (revoked) Credential.

Lemma 7. If an adversary A has a non-null advantage

AdvTraceUser1A := Pr[A wins the game TraceUser1]− 1
2

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve any given instance of the Decisional Diffie-Hellman problem

(DDH).

Proof. We define B as follows. B is given an instance
〈
g, ga, gb, gσ

〉
of the DDH problem

in G1 and wishes to use A to decide if σ = ab. The algorithm B simulates an envi-

ronment in which A operates, using A’s advantage in the game TraceCredential to help

compute the solution to the DDH problem. In particular, B implements the oracles

OSetup, OCertify, OGrant, ORevoke as follows:

OSetup : B uses g as the one received from the DDH challenge, picks and publishes the

public parameters according to the rules of the protocol;

OCertify : B answers according to the rules of the protocol;

OGrant : B answers according to the rules of the protocol;

ORevoke : B answers according to the rules of the protocol;

Setup and Queries The adversary A can interact with the oracles OSetup, OCertify,

OGrant, ORevoke;

Challenge At the end of this phase, A chooses a property p∗; it is worth noting that

A does not have any restriction on the choice of p∗. B then engages in two instances

of Handshake with A; in particular, B receives two nonces g̃m1 and g̃m2 ; B then picks

r, s1, s2
R← Z∗q and prepares two handshake tuples as follows:〈

gr, grs1w(b+h(p∗)f(p∗)), g̃(s1w)
−1
, g̃(s1)

−1
〉

〈
ga, gs2wσgas2wh(p∗)f(p∗), g̃(s2w)

−1
, g̃(s2)

−1
〉

96

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

and also sends A the two keys that are generated by Handshake.RandomizeCredentials,(
ê
(
gb, g̃m1

))r
and ê (gσ, g̃m2).

Analysis of A’s answer It is straightforward to verify that, if A wins the game, B

can give the same answer to solve the DDH problem. Indeed, if A wins the game, he is

able to tell if both handshake messages contain the same Identification Handle x∗. Let

us assume this is the case. Then, the same Revocation Handle rev∗ = g̃x∗ can be used

to revoke both Credentials. Then, performing a check as described in Equation 5.1, the

following system r(b+ h(p∗)f(p∗))− rh(p∗)f(p∗) = rx∗

σ + ah(p∗)f(p∗)− ah(p∗)f(p∗) = ax∗
(5.21)

should hold.

Then we can solve the first equation as x∗ = b, and plugging in the second equation

B can verify that σ = ab, which is the positive answer to the DDH problem. If not, B

can give the negative answer to DDH.

Now we turn our attention to TraceUser2. This game features an attacker try-

ing to trace users under the following circumstances: the user has Revocation Han-

dles for the Credentials used by the challenger, but does not have the corresponding

Matching References. As a consequence of this last factor, the challenger will not give

the keys generated by Handshake.RandomizeCredentials as it was the case instead in

TraceUser1. The reasons for this are twofold: first of all, as we shall see in Lemma 9,

without Matching Reference an attacker is not able to distinguish the correct key

from a random value. Second, if the attacker was equipped with the handshake tuple

SH, the Revocation Handle and the correct key, tracing would be feasible: indeed we

can rewrite Equation 5.1, the equality whose satisfaction is verified upon execution of

Handshake.CheckRevoked, as

ê
(

(Cu,p,1)
rs , (Cu,p,2)

s−1
)

= ê (gr,matchp) · ê (gr, rev)

ê
(

(Cu,p,1)
rs , (Cu,p,2)

s−1
)

ê (gr,matchp)
= ê (gr, rev) ê

(
(Cu,p,1)

rs , (Cu,p,2)
s−1
)

ê (gr,matchp)

m

= (ê (gr, rev))m

K = (ê (gr, rev))m

97

5. REVOCATION IN SECRET HANDSHAKES

where m is the nonce chosen by the adversary. The last equality shows that, in presence

of the correct key, an adversary can check for which Revocation Handle the equality

holds, thus being able to perform tracing. So it is clear that – in presence of the correct

key and of the Revocation Handle, tracing is possible by definition.

Lemma 8. If an adversary A has a non-null advantage

AdvTraceUser2A := Pr[A wins the game TraceUser2]− 1
2

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve any given instance of the Decisional Diffie-Hellman problem

(DDH).

Proof. We define B as follows. B is given an instance
〈
g, ga, gb, gσ

〉
of the DDH problem

in G1 and wishes to use A to decide if σ = ab. The algorithm B simulates an envi-

ronment in which A operates, using A’s advantage in the game TraceCredential to help

compute the solution to the DDH problem. In particular, B implements the oracles

OSetup, OCertify, OGrant, ORevoke as follows:

OSetup : B uses g as the one received from the DDH challenge; f(p) is implemented as

follows: on a query for f(p), if p has never been queried before, B picks a random

value rp
R← Z∗q , storing the pair (p, rp) in a table. Then B flips a random biased

coin guess(p) ∈ {0, 1} biased as follows: guess(p) equals 1 with probability δ and

is equal to 0 with probability 1−δ. B answers as follows: if guess(p) = 0, B looks

up rp in the table and answers with rp. Instead, if guess(p) = 1, B answers with

f(p) = brp; finally, B picks and publishes the other public parameters according

to the rules of the protocol;

OCertify : B answers according to the rules of the protocol;

OGrant : the adversary submits a query to receive a Matching Reference for property pi;

assuming that guess(pi) = 0, B answers according to the rules of the protocol;

ORevoke : B answers according to the rules of the protocol;

Setup and Queries The adversary A can interact with the oracles OSetup, OCertify,

OGrant, ORevoke;

Challenge At the end of this phase, A chooses a property p∗ for which no query to

OGrant has been submitted; let us assume guess(p∗) = 1. B chooses a user u∗, picks xu∗

98

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

and gives B the Revocation Handle g̃xu∗ ; B then engages in two instances of Handshake

with A by picking r, s1, s2
R← Z∗q and preparing two handshake tuples as follows:〈

gr, grs1w(xu∗+brp∗h(p∗)), g̃(s1w)
−1
, g̃(s1)

−1
〉

〈
ga, gas2wxu∗gσs2wrp∗h(p∗), g̃(s2w)

−1
, g̃(s2)

−1
〉

Analysis of A’s answer It is straightforward to verify that, if A wins the game, B

can give the same answer to solve the DDH problem. Indeed, if A wins the game, he is

able to tell if both handshake messages contain the same Identification Handle x∗. Let

us assume this is the case. Then, the same Revocation Handle rev∗ = g̃x∗ can be used

to revoke both Credentials. Then, performing a check as described in Equation 5.1, the

following system r(xu∗ + brp∗h(p∗))− rbrp∗h(p∗) = rx∗

as2xu∗ + σrp∗h(p∗)− abrp∗h(p∗) = ax∗
(5.22)

should hold.

The system is verified only if σ = ab, which is the positive answer to the DDH

problem. If not, B can give the negative answer to DDH.

A detailed analysis shows that if guess(p∗) = 1 and guess(p) = 0 for all other queries

to oracle OGrant such that p 6= p∗, then the execution environment is indistinguishable

from the actual game TraceUser2. This happens with probability

Pr[guess(p∗) = 1 and guess(p) = 0 for all p 6= p∗] = δ · (1− δ)Qp (5.23)

where Qp is the number of different properties A queries to the oracle OGrant. By

setting δ ≈ 1
Qp

we know that the probability in 5.23 is greater than 1
e·Qp

. So in con-

clusion, we can bound the probability of success of the adversary AdvTraceUser2A as

AdvTraceUser2A ≤ e · Qp · AdvDDHB.

5.3.3.3 Detection Resistance

Let A be an adversary whose goal is to engage in Secret Handshake protocol instances

and detect the other user’s property, without owning the appropriate Matching Refer-

ence. We call detector resistance the resilience to such kind of an attacker.

At first, A can access OSetup, OCertify, OGrant, ORevoke. At the end of the query phase,

A picks a property p∗ for which no call to OGrant has been made. The adversary then

99

5. REVOCATION IN SECRET HANDSHAKES

engages in a protocol execution with the challenger, and asked at the end to distin-

guish the correct key that Handshake.Match would output with the correct Matching

Reference from a random value of the same length. We call this game Detect.

Lemma 9. If an adversary A has a non-null advantage

AdvDetectA := Pr[A wins the game Detect]

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve any given instance of the Decisional Diffie-Hellman problem

(DDH).

Proof. We define B as follows. B is given an instance
〈
g, ga, gb, gσ

〉
of the DDH problem

in G1 and wishes to use A to decide if σ = ab. The algorithm B simulates an environ-

ment in which A operates, using A’s advantage in the game Detect to help compute the

solution to the DDH problem. In particular, B implements the oracles OSetup, OCertify,

OGrant, ORevoke as follows:

OSetup : B uses g as the one received from the DDH challenge; f(p) is implemented as

follows: on a query for f(p), if p has never been queried before, B picks a random

value rp
R← Z∗q , storing the pair (p, rp) in a table. Then B flips a random biased

coin guess(p) ∈ {0, 1} biased as follows: guess(p) equals 1 with probability δ and

is equal to 0 with probability 1 − δ. B answers as follows: if guess(p) = 0, B

looks up rp in the table and answers with f(p) = rp. Instead, if guess(p) = 1,

B answers with f(p) = brp; finally, B picks and publishes the public parameters

according to the rules of the protocol;

OCertify : B answers according to the rules of the protocol;

OGrant : A queries the challenger to obtain a Matching Reference for property pi; as-

suming that guess(pi) = 0, B answers according to the rules of the protocol;

ORevoke : B answers according to the rules of the protocol;

Setup and Queries The adversary A can interact with the oracles OSetup, OCertify,

OGrant, ORevoke;

Challenge At the end of this phase, A chooses a property p∗, such that no

query to the oracle OGrant has been submitted. Let us assume that guess(p∗) = 1:

as a consequence, f(p∗) = brp∗ . B then engages in an instances of Handshake with

100

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

A; in particular, B receives a nonce g̃m; B then picks x, s
R← Z∗q sets r′ = a and

x′ = −brp∗h(p∗) + x+ σa−1rp∗h(p∗) and constructs a handshake message as follows:

gr
′

= ga

gr
′sw(x′+f(p∗)h(p∗)) = gr

′sw(x′+brp∗h(p∗)) = gaswxgσswrp∗h(p∗))

g̃(sw)
−1

g̃s
−1

Finally, A receives the key that Handshake.RandomizeCredentials computes: in order

to compute such key, B assumes that σ = ab, and therefore computes ê (ga, g̃m)x
′

=

ê (ga, g̃m)x. A answers the challenge with a bit b; A wins the game if b = 0 if the key

is a random bitstring, and b = 1 if the key is correct.

Analysis of A’s answer It is straightforward to verify that, if A wins the game,

B can give the same answer to solve the DDH problem. Indeed, if A wins the game

and answers b = 1, it means that the key B generated was correct. Then, the same key

must be computable using Equation 5.3 with the Matching Reference for property p∗,

g̃f(p∗)h(p∗) = g̃brp∗h(p∗).

Then we can write

(ax+ σrp∗h(p∗)− abrp∗h(p∗))m = max

However this equation is satisfied only if σ = ab, which is the positive answer to the

DDH problem. If not, B can give the negative answer to DDH.

A detailed analysis shows that if guess(p∗) = 1 and guess(p) = 0 for all other

queries to OGrant such that p 6= p∗, then the execution environment is indistinguishable

from the actual game Detect. This happens with probability

Pr[guess(p∗) = 1 and guess(p) = 0 for all p 6= p∗] = δ · (1− δ)Qp (5.24)

where Qp is the number of different properties A queries to OGrant oracle. By setting

δ ≈ 1
Qp

we know that the probability in 5.24 is greater than 1
e·Qp

. So in conclusion,

we can bound the probability of success of the adversary AdvDetectA as AdvDetectA ≤
e · Qp · AdvDDHB.

5.3.3.4 Impersonation Resistance

The analysis of the impersonation resistance requirement is slightly more complex than

the analysis of other requirements. Before venturing in the actual analysis, we shall give

101

5. REVOCATION IN SECRET HANDSHAKES

an overview of how we approach it. At first we define a broad game, called Impersonate,

where the attacker has to be able to conduct a successful Secret Handshake for a given

property, having access to an arbitrary number of Credentials that are revoked before

the challenge phase.

Then, we create two sub-games, Impersonate1 and Impersonate2: each game is the

same as Impersonate with an additional requirement that the adversary needs to satisfy.

The additional requirement (namely the satisfaction of an equality) creates a clear cut

between the two games, whose union generates Impersonate. Then we present two

separate proofs for the hardness of the Impersonate1 and Impersonate2 games.

Then the adversary is challenged to engage in the Impersonate game against the at-

tacker. The game is defined as follows: before the beginning of the game, the challenger

flips a coin and based on its outcome, plays either the Impersonate1 or the Impersonate2

game. If the adversary wins the game, the challenger gains an advantage on one of the

two hard problems: which problem depends on the adversary’s behaviour. As the chal-

lenger must commit to one game in advance the advantage that the challenger receives

is decreased by a factor 1
2 .

Now, let us begin with the description of Impersonate. Let A’s goal be the imperson-

ation of a user owning a Credential for a given property. A can access OSetup, OCertify,

OGrant, ORevoke. A eventually decides that this phase of the game is over. The chal-

lenger then revokes each Credential handed out to the attacker in the previous phase.

A then declares p∗ ∈ P which will be the object of the challenge; A is then challenged

to engage in Handshake with the challenger, and has to be able to convince that he

owns a Credential for property p∗. A is then asked to output the key computed. As

mentioned before, we consider a weaker version of Impersonation Resistance than the

one adopted in Section 4.4.2.1, where the adversary was not required to compute the

key but to distinguish it from a random value.

In order to successfully win the game, it must not be possible for the challenger

to abort the handshake due to the fact that the Credentials used by the attacker have

been revoked. We call this game Impersonate.

Now let us show how we construct the two sub-games. At the end of the Query phase

of the Impersonate game, A receives a nonce g̃m and is then asked to produce the hand-

shake tuple 〈gα, gβ, g̃γ , g̃δ〉 and the key ek computed by Handshake.RandomizeCredentials.

102

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

If the attacker is successful, the challenger should be able to compute the same key using

Handshake.Match and the Matching Reference for p∗.

This means that the challenger can check that(
ê(gβ, g̃γ)

ê(gα,matchp∗)

)m
=

(
ê(gβ, g̃γ)

ê(gα, g̃f(p∗)h(p∗))

)m
= ek (5.25)

and that

ê
(
g, g̃δ

)
= ê (gw, g̃γ) (5.26)

Let us set α = r, k = rxu∗,p∗m and δ = s−1, for some integers r, xu∗,p∗ , s ∈
Z∗q unknown to B. Then, from Equation 5.26 we derive that γ = (ws)−1 and from

Equation 5.25 that β = rsw(xu∗,p∗ + f(p∗)h(p∗)).

Recall that the attacker receives a number of Credentials during the query phase.

The attacker can win the game in two ways: (i) forge a brand new Credential or (ii) use

an old Credential yet circumventing the revocation check, notably Equation 5.1 of the

Handshake.CheckRevoked sub-algorithm. Let us set Xu,p = xu,p + f(p)h(p). When the

attacker is challenged, we have seen that he produces the value grsw(xu∗,p∗+f(p∗)h(p∗)) =

grsXu∗,p∗ . If we define the set

QA = {Xu,p ∈ Z∗q : A has received gzwXu,p , g̃(zw)
−1
, g̃z

−1
from a query to Certify}

then (i) implies Xu∗,p∗ /∈ QA and (ii) implies Xu∗,p∗ ∈ QA. Xu∗,p∗ is the value

the attacker uses in the challenge handshake instance. We then define two different

games: Impersonate1, the aforementioned Impersonate game when Xu∗,p∗ /∈ QA, and

Impersonate2 when Xu∗,p∗ ∈ QA.

Lemma 10. If an adversary A has a non-null advantage

AdvImpersonate1A := Pr[A wins the game Impersonate1]

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve a given instance of the SM Problem.

Proof. The challenger B is defined as follows. B receives an instance
〈
g, gw, g̃, g̃w

−1
g̃y,

g̃m, Ow,y〉 of the SM problem and wishes to use A to produce the tuple 〈gr, grsw(x∗+y),
g̃(zw)

−1
, g̃s
−1
, ê (g, g̃)rx∗m〉, such that x∗ has not been queried to O. The algorithm B

simulates an environment in which A operates. In particular, B implements the oracles

OSetup, OCertify, OGrant, ORevoke as follows:

103

5. REVOCATION IN SECRET HANDSHAKES

OSetup : B sets public parameters g, g̃ as the ones received from the challenge. B sets

W ← gw, g̃0 = g̃y. It then picks {yi}ni=1
R← Z∗q and sets g̃1 = g̃y1 , . . . , g̃n = g̃yn . B

then publishes the public parameter according to the rules of the protocol;

OCertify : A queries B for Credentials for an arbitrary number of user ui and property

pi; B answers by picking a random Identification Handle xui,pi
R← Z∗q and by

giving it to A; B then queries the oracle Ow,y providing v =
∑

i∈V (pi)
yi +

xui,pi
f(pi)

as input, and adding the value v to the set O of queries to oracle O.

The output of the oracle is (g
zw(

xui,pi
f(pi)

+y+
∑

i∈V (pi)
yi), g̃(zw)

−1
, g̃z

−1
). B then as-

signs Cui,pi,1 ←
(
g
zw(

xui,pi
f(pi)

+y+
∑

i∈V (pi)
yi)
)f(pi)

= gzw(xui,pi+f(pi)h(pi)), Cui,pi,2 ←

g̃(zw)
−1

, Cui,pi,3 ← g̃z
−1

;

OGrant : A queries B for Matching References for an arbitrary number of properties pi;

B answers with matchpi = g̃f(pi)h(pi), and also gives to A the value gf(pi);

ORevoke : A queries B for an arbitrary number of Revocation Handles for user ui and

property pi; B answers with revui,pi = g̃xui,pi ;

Setup and Queries The adversary A can interact with the oracles OSetup, OCertify,

OGrant, ORevoke;

Challenge A then declares that this phase of the game is over. B therefore revokes

each of the Credentials A requested in the previous phase. A then chooses a property

p∗ ∈ P. B challenges A by sending g̃m and A answers the challenge with the tuple

〈gα, gβ, g̃γ , g̃δ, ek〉.
Analysis of A’s response If A wins the game, B can check that(

ê(gβ, g̃γ)

ê(gα,matchp∗)

)m
=

 ê(gβ, g̃γ)

ê
(
gα, g̃f(p∗)(y+

∑
i∈V (p∗) yi)

)
m

= ek (5.27)

and that

ê
(
g, g̃δ

)
= ê (gw, g̃γ) (5.28)

as mandated by the Handshake.Match sub-algorithm detailed in Section 5.3.2.

Let us set α = r, k = rx∗m and δ = s−1, for some integers r, x∗, s ∈ Z∗q unknown to

B. Then, from Equation 5.28 we derive that γ = (ws)−1 and from Equation 5.27 that

β = rswf(p∗)(
x∗
f(p∗)

+ y +
∑

i∈V (p∗)
yi). Notice that by the definition of the game, the

attacker has not received a Credential containing the term gzwXu∗,p∗ = gzw(x∗+f(p∗)h(p∗))

from a query to the OCertify oracle.

104

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

This implies in turn that the value v∗ = x∗
f(p∗)

+
∑

i∈V (p∗)
yi has never been queried by

the challenger to the oracle Ow,y in the execution of a OCertify query: as a consequence,

v∗ does not belong to the set O. Therefore we conclude that, if A wins the game, B

can provide 〈
(gα)f(p∗) , gβ, g̃γ , g̃δ, ê (g, g̃)k · ê (gα, g̃m)f(p∗)

∑
i∈V (p∗) yi

〉
as an answer to the SM problem.

We now turn our attention to the Impersonate2 game, focusing on an adversary

reusing an already received Credential and yet able to circumvent revocation. Given

that the revocation check involves the Matching Reference for a property, the only way

for the attacker is to use a Credential received for a property – say p◦ – in the attempt

to impersonate a different property – say p∗.

Lemma 11. If an adversary A has a non-null advantage

AdvImpersonate2A := Pr[A wins the game Impersonate2]− 1
2

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve a given instance of the Decisional Diffie-Hellman Problem

(DDH).

Proof. We define B as follows. B is given an instance
〈
g̃, g̃a, g̃b, g̃σ

〉
of the DDH problem

and wishes to use A to decide if σ = ab. The algorithm B simulates an environment

in which A operates. In particular, B implements the oracles OSetup, OCertify, OGrant,

ORevoke as follows:

OSetup : B sets the public parameter g̃ as the ones received from the DDH challenge;

it then picks {yi}ni=0
R← Z∗q and sets g̃0 = (g̃a)y0 , g̃1 = (g̃a)y1 , . . . g̃n = (g̃a)yn ;

notice that with such a setting of parameters, we can write h′(p) = ah(p) where

h(p) = y0 +
∑

i∈V (p) yi; the other parameters are then picked and published

following the rules of the protocol;

OCertify : A queries B for Credentials for an arbitrary number of pairs (u, p) ∈ U× P; B

answers by first of all picking xu,p
R← Z∗q and by giving it to A. Then, the chal-

lenger gives credu,p = 〈Cu,p,1, Cu,p,2, Cu,p,3〉 to A, where Cu,p,1 = g(zw), Cu,p,2 =

g̃(zw)
−1(xu,p+f(p)h′(p)) = g̃(zw)

−1(xu,p+f(p)ah(p)) and Cu,p,3 = g̃z
−1(xu,p+f(p)h′(p)) =

g̃z
−1(xu,p+f(p)ah(p)); A also receives gf(p). This representation of Credentials is

105

5. REVOCATION IN SECRET HANDSHAKES

indistinguishable from the ones mandated by the protocol: indeed notice that we

can set z = z′(xu,p + f(p)h′(p)) and we can rewrite Cu,p,1 = gz
′w(xu,p+f(p)h′(p)),

Cu,p,2 = g̃(z
′w)−1

and Cu,p,3 = g̃z
′−1

which is exactly the way Credentials are for-

mulated according to the algorithm Certify described in Section 5.3.2. B adds to

a list V the tuple (g̃xu,p+h
′(p)f(p), u, p, xu,p) for each query of A and keeps it for

later use.

OGrant : A queries B for Matching References for an arbitrary number of properties p;

B answers with matchp = g̃f(p)h
′(p) = g̃f(p)ah(p); A also receives gf(p);

ORevoke : A queries B for an arbitrary number of Revocation Handles for user ui and

property pi; B answers with revui,pi = g̃xui,pi ;

Setup and Queries The adversary A can interact with the oracles OSetup, OCertify,

OGrant, ORevoke;

Challenge A then declares that this phase of the game is over. B therefore revokes

each Credential requested by A in the previous phase. A then chooses a property

p∗ ∈ P. B challenges A by sending g̃b and A answers the challenge with the tuple

〈gα, gβ, g̃γ , g̃δ, ê (g, g̃)k〉.
Analysis of A’s response If A wins the game, B can check that(

ê(gβ, g̃γ)

ê(gα,matchp∗)

)b
= (5.29)(

ê(gβ, g̃γ)

ê(gα, g̃f(p∗)h′(p∗))

)b
= (5.30)(

ê(gβ, g̃γ)

ê(gα, g̃af(p∗)h(p∗))

)b
= ê (g, g̃)k (5.31)

and that

ê
(
g, g̃δ

)
= ê (gw, g̃γ) (5.32)

as mandated by the Handshake.Match sub-algorithm detailed in Section 5.3.2.

Let us set α = r, k = rx∗b and δ = s−1, for some integers r, x∗, s ∈ Z∗q unknown to

B. Then, from Equation 5.32 we derive that γ = (ws)−1; if we set v∗ = x∗+f(p∗)h
′(p∗),

from Equation 5.31 we can write β = rswv∗.

We know by definition that the attacker has already received Cu◦,p◦,1 = gzwv∗ =

gzw(xu◦,p◦+f(p◦)h
′(p◦)) during the previous query phase. Consequently, the Revocation

Handle revu◦,p◦ = g̃xu◦,p◦ has also been published. B can easily recover u◦ and p◦,

106

5.3 Secret Handshake with Dynamic Controlled Matching and Revocation
Support

since he can check which g̃xu◦,p◦+h
′(p◦)f(p◦) in the list V satisfies the following equality

ê(gβ, g̃γ) = ê(gα, g̃xu◦,p◦+h
′(p◦)f(p◦)); B can then look up the respective xu◦,p◦ .

If p◦ = p∗, then A has lost the game, since a successful answer of the attacker

cannot be revoked by any of the issued Revocation Handles, whereas this Credential

can be revoked with revu◦,p◦ = g̃xu◦,p◦ . Then it must be that p◦ 6= p∗; in this case

x∗ = xu◦,p◦ + f(p◦)h
′(p◦)− f(p∗)h

′(p∗) = xu◦,p◦ + a(f(p◦)h(p◦)− f(p∗)h(p∗)).

It then follows that

ê (g, g̃)k = ê (g, g̃)rb(xu◦,p◦+a(f(p◦)h(p◦)−f(p∗)h(p∗))) =

= ê (g, g̃)rbxu◦,p◦ · ê (g, g̃)rab(f(p◦)h(p◦)−f(p∗)h(p∗))

The challenger is therefore able to compute

ê (g, g̃)rab =

(
ê (g, g̃)k

ê (gα, g̃b)
xu◦,p◦

)(f(p◦)h(p◦)−f(p∗)h(p∗))−1

and can then solve the given DDH instance by checking whether ê (g, g̃)rab = ê (gα, g̃σ).

Now we address the security of impersonation resistance as a whole, by presenting

a Lemma that unifies Impersonate1 and Impersonate2.

Lemma 12. If an adversary A has a non-null advantage

AdvImpersonateA := Pr[A wins the game Impersonate]

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A to gain either an advantage AdvImpersonateA
2 on the Decisional Diffie-Hellman

problem (DDH) or an advantage AdvImpersonateA
2 on the SM Problem.

Proof. At the beginning of the game, the challenger flips a fair coin b ∈ {1, 2} and

starts to play Impersonateb with the adversary. The adversary does not know which

game the challenger plays.

If the adversary wins, the challenger succeeds in obtaining a reduction for at least

one of the two games: which game depends on the behaviour of the attacker; however

the challenger cannot predict this as it must commit to one game in advance, before

knowing the behaviour of the adversary.

Let us assume that the attacker wins with some probability p; then, the advantage

p will be decreased by a factor of 1
2 to turn it into an actual advantage against the

game that has actually been chosen.

Lemmas 10 and 11 tell us that this advantage can be turned into an advantage over

the DDH or SM problems.

107

5. REVOCATION IN SECRET HANDSHAKES

5.4 Secret Handshake with Dynamic Matching and Revo-

cation Support

In this Section we show how the scheme introduced in Section 5.3 can be changed

to support Dynamic Controlled Matching, reusable Credentials and revocation. We

remind the reader that the difference between Dynamic Matching and Dynamic Con-

trolled Matching is that in the former, users can compute Matching References at their

will, whereas in the latter, Matching References are only computable by the certification

entity.

The scheme that we introduce in this Section effectively adds revocation support to

the scheme presented by Ateniese and colleagues in [AKB07].

This scheme is essentially equal to the scheme introduced in Section 5.3, with one

substantial difference: f(p) = 1 for each property p ∈ P. We recall that f(p) was

previously used by the certification authority to prevent users from forging Match-

ing References. Now this is not needed anymore since users must be able to create

Matching References at their will. With this scheme, two users with valid Credentials

can interact expressing wishes on the property certified by the other user’s Credential;

wishes are represented by self-generated Matching References. Both users at the end

of the protocol share a common key pair if they both own Credentials for the property

expected by the other user.

Let us review the algorithms, highlighting the changes with respect to the scheme

in Section 5.3:

• Setup f is implemented by setting f(p) = 1 for all p ∈ P; the rest does not change;

• Certify no changes; in particular Cu,p,1 is still formed as gzw(xu,p+f(p)h(p)); however

in this case, gzw(xu,p+f(p)h(p)) = gzw(xu,p+h(p));

• Grant any user wishing to compute a Matching Reference for property p ∈ P

can compute matchp = g̃h(p)f(p) = g̃h(p) = H(p) = g̃0
∏
i∈V (p) g̃i thanks to the

knowledge of public parameters g̃0 = g̃y0 , g̃1 = g̃y1 , . . . , g̃n = g̃yn ;

• Revoke if the Credential for property p of user u ∈ U is to be revoked, the CA

adds the so-called Revocation Handle revu,p = g̃xu,p+h(p) to a publicly available

revocation list Lrev;

108

5.4 Secret Handshake with Dynamic Matching and Revocation Support

• Handshake is a probabilistic polynomial-time two-party algorithm executed by

two users; the algorithm is composed of three sub-algorithms:

– Handshake.Init no change;

– Handshake.RandomizeCredentials no change;

– Handshake.CheckRevoked the user parses SH as 〈gr, (Cu,p,1)rs , (Cu,p,2)
s−1

,

(Cu,p,3)
s−1
〉

. The user verifies whether SH contains a revoked Credential

by checking if the following identity

ê
(

(Cu,p,1)
rs , (Cu,p,2)

s−1
)

= ê (gr, rev) (5.33)

is verified with any of the Revocation Handles rev in the list Lrev. If the

check is successful, B discards the current handshake instance;

– Handshake.Match no change;

As we can see, Revocation Handles are formed differently, as revu,p = g̃xu,p+h(p).

Consequently, also the Handshake.CheckRevoked algorithm changes. In particular, the

Matching Reference is no longer required to perform the check; in this case, since every

user has the right to match any property, a revoked Credential loses its Unlinkability

to every other user.

5.4.1 Security Analysis

In this Section we will analyse the security of the Secret Handshake scheme introduced

in the previous one. Due to the extreme similarity with the scheme presented in Sec-

tion 5.3, we will not repeat the previous analysis, but we will only highlight the more

significant differences.

5.4.1.1 Detection Resistance and Unlinkability of Properties

Detection resistance and Unlinkability of properties are two strictly related require-

ments. Before their investigation, let us first of all make some general considerations

about the nature of the protocol. At first we shall state two predicates:

P1 := “User A has a Credential for user B’s Matching Reference’s property”

P2 := “User B has a Credential for user A’s Matching Reference’s property”

109

5. REVOCATION IN SECRET HANDSHAKES

The conditions under which users A and B know of a successful Secret Handshake

are P1
⋃

P2. If A has a legitimate Credential for the wish of B (the Matching Reference

generated by B), and guesses correctly the property object of B’s Credential, then A

has legitimately detected B’s property. If A is successful twice, we might say that he

has been able to trace the property of user B over two different protocol instances.

Both situations are acceptable and are indeed a feature of Dynamic Matching.

However it should be clear that this does not in any way imply that a user, by simply

performing Secret Handshake repeatedly, trying all possible Matching References, will

eventually discover another user’s Credential. Indeed the discovery of the remote user’s

property (proposition P2) is subject to the possession of an appropriate Credential for

the remote user’s self-generated Matching Reference (proposition P1).

For these reasons, detection resistance as introduced in Section 5.3.3.3 is no longer

a requirement.

As for Unlinkability of properties, the requirements still stands, but the approach

used to prove it in Section 5.3.3.1 needs to be changed. Indeed, in the TraceProperty

game, the adversary receives the keys that the challenger computes after the execution

of the Handshake.RandomizeCredentials algorithm. The adversary is then challenged to

tell whether or not upon both executions of Secret Handshake, the challenger has used

Credentials for p∗.

The game has to be modified since in the protocol introduced in this Section, the

adversary disposes – by definition – of Matching References for each property. In

presence of a handshake message SH = 〈gr, (Cu,p,1)rs , (Cu,p,2)
s−1

, (Cu,p,3)
s−1
〉

and of

the correct key ê (g, g̃)k, the adversary can mount a dictionary attack and check for

which p ∈ P, the following equation

ê (g, g̃)k =

 ê
(

(Cu,p,1)
rs , (Cu,p,2)

s−1
)

ê (gr,matchp)

m

is satisfied (m is the nonce generated by the attacker for that session of the protocol);

this way, having the correct key, the adversary can easily find out the property contained

in each Secret Handshake instance and compare them, thus systematically winning the

game.

Therefore the adversary cannot be provided with the key. We state once more that

this is not limiting in any way the capabilities of the attacker. Indeed, every user has

110

5.4 Secret Handshake with Dynamic Matching and Revocation Support

always a chance to compute a key and check whether it is the same as the one computed

by the remote user: this happens however under the provision that the user has a

correct Credential for the remote user’s self-generated Matching Reference. If this side

of the handshake succeeds, then the user has a chance of inferring something about his

success in the detection (and consequently, if carried out over multiple instances, in the

linking) of the property object of the remote user’s Credential. In case the mutual proof

of knowledge of the keys is not successful however, the user does not know whether this

is due to the key computed by Handshake.RandomizeCredentials or by Handshake.Match.

Therefore he cannot infer anything about the other user’s property.

To show this, we create a game called TraceProperty′, differing from TraceProperty

because the adversary is not allowed to receive the correct key at the end. In addition,

the adversary also does not receive the Revocation Handle for the Credential, since

otherwise he could infer something by running Handshake.CheckRevoked. Finally, the

adversary cannot submit any choice for the property it will be attempting to trace. To

create the reduction we then use the same strategy adopted by Ateniese and colleagues

in [AKB07] for the proof of Lemma 1.

Lemma 13. If an adversary A has a non-null advantage

TraceProperty′A := Pr[A wins the game TraceProperty′]− 1
2

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve a given instance of the Decisional Diffie-Hellman Problem

(DDH) in G1.

Proof. We define B as follows. B is given an instance
〈
g, ga, gb, gσ

〉
of the DDH problem

in G1 and wishes to use A to decide if σ = ab. The algorithm B simulates an envi-

ronment in which A operates, using A’s advantage in the game TraceProperty to help

compute the solution to the DDH problem. In particular, B implements the oracles

OSetup, OCertify, OGrant, ORevoke as follows:

OSetup : B uses g as the one received from the DDH challenge, picks and publishes the

public parameters according to the rules of the protocol;

OCertify : B answers according to the rules of the protocol;

OGrant : B answers according to the rules of the protocol;

111

5. REVOCATION IN SECRET HANDSHAKES

ORevoke : B answers according to the rules of the protocol;

Setup and Queries The adversary A can interact with the oracles OSetup, OCertify,

OGrant, ORevoke;

Challenge At the end of this phase B engages in two instances of Handshake with

A; in particular, B picks x1, x2, s1, s2, r
R← Z∗q ; B generates two handshake tuples as

follows: 〈
gr, grs1w(x1+b), g̃(s1w)

−1
, g̃s
−1
1

〉
〈
ga, gas2wx2gσs2w, g̃(s2w)

−1
, g̃s
−1
2

〉
Analysis of A’s answer It is straightforward to verify that, if A wins the game,

B can give the same answer to solve the DDH problem.

In addition, we can also show that – upon a failed Secret Handshake execution,

which implies in absence of the correct key, handshake tuples are property-oblivious.

Definition 14 (Property-Obliviousness). A Secret Handshake is property-oblivious if

– at the end of an unsuccessful Secret Handshake– a user does have any information

on the property of the other user.

We now claim that our scheme guarantees property-obliviousness, under the provi-

sion that the adversary does not get any information about the correct key.

Lemma 14. The scheme presented in Section 5.4 guarantees property-obliviousness

under the assumption that the mutual proof of knowledge of the keys does not leak any

information about them.

Lemma 14 tells us that – if the handshake fails – all Credentials are equally likely

to have been used and therefore indistinguishable between one another.

For the proof of this Lemma, we draw inspiration from the work of Nasserian and

Tsudik [NT06] which in turn builds on the paper by Li, Du and Boneh [LDB05]. Before

proving the Lemma, we introduce the following terminology. Two distribution families

D1(t) and D2(t) are statistically indistinguishable if∑
y

∣∣Prx∈D1(k)[x = y]− Prx∈D2(k)[x = y]
∣∣ is negligible in k

where k is the security parameter of our scheme.

112

5.4 Secret Handshake with Dynamic Matching and Revocation Support

Proof. In order to demonstrate this, let us at first list the information that an adversary,

trying to infer something about the property of the remote party, is entitled to get1,

besides the public parameters of the system:〈
gr, grsw(x+h(p)), g̃(sw)

−1
, g̃s
−1
, g̃x+h(p)

〉
Let us now, fixed g ∈ G1, g̃ ∈ G2, r and s ∈ Z∗q and p ∈ P build the two distribution

families

D1(k) =
{
grs(x+h(p)), g̃x+h(p)|x ∈ {1 . . . 2kq}

}
and

D2(k) =
{
grs(x

′), g̃x
′ |x′ ∈ {1 . . . 2kq}

}
Since these values are chosen at random and the two distribution families range

over the same values, the two distributions are statistically indistinguishable.

In more detail, since q is the order of G1, G2 and GT , D1(k) and D2(k) (for a fixed

k) each have q points. The probability difference on any point is at most 1
2kq

, therefore,

the total difference is at most q
2kq

= 1
2k

. Since this quantity is negligible in k, the two

distribution sets are statistically indistinguishable.

5.4.1.2 Unlinkability of Users

In Section 5.3.3.2 we have presented two different scenarios where we want Unlinkability

of users to hold: one where a user uses Credentials that have not yet been revoked and

a second situation in which the user uses Credentials that have already been revoked;

however, due to the changes brought forward in this protocol, we have seen that once

Matching Reference are public, revoked Credential become linkable. Therefore the

second scenario is no longer relevant.

As for the first one, in Section 5.3.3.2 we have presented a game called TraceUser1,

showing that if an adversary that can break Unlinkability of users for non-revoked

Credentials exists, we can use it to build an algorithm that breaks the DDH problem

in G1. To prove the same requirement for the protocol object of this analysis the same

game can be used.

Lemma 15. If an adversary A has a non-null advantage

1Notice that Revocation Handles are included; by including them we are also implying that the

knowledge of Revocation Handles does not in any way help the detection or tracing of properties.

113

5. REVOCATION IN SECRET HANDSHAKES

AdvTraceUser1A := Pr[A wins the game TraceUser1]− 1
2

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve any given instance of the Decisional Diffie-Hellman problem

(DDH).

A proof of this Lemma is straightforward adaptation of the proof of Lemma 7. We

therefore omit it here.

5.4.1.3 Impersonation Resistance

In Section 5.3.3.4 we have introduced a game called Impersonate, where the adver-

sary is challenged to pick a property p∗ ∈ P, engage in a Secret Handshake in-

stance with the challenger, generate a handshake tuple and produce the key that

theHandshake.RandomizeCredentials algorithm would generate on input a Credential

for p∗. In the query phase, the adversary is entitled to ask for arbitrary Credentials.

However, at the end of the query phase, the challenger revokes all Credentials handed

out to the adversary, so the adversary has to be able to produce a handshake tuple for

which Handshake.CheckRevoked does not return true.

Furthermore, we have presented two sub-games challenging different capabilities of

the adversary: in particular Impersonate1 challenges the ability of the adversary to forge

Credentials while Impersonate2 challenges the ability of the adversary to reuse revoked

Credentials yet bypassing revocation.

The second game does not hold anymore for the protocol presented in this Section,

since Matching References are no longer required to perform Handshake.CheckRevoked:

an adversary reusing a revoked Credential would systematically lose the Impersonate

game.

The first game instead holds unmodified.

Lemma 16. If an adversary A has a non-null advantage

AdvImpersonate1A := Pr[A wins the game Impersonate1]

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve a given instance of the SM Problem.

A proof of this Lemma is straightforward adaptation of the proof of Lemma 10. We

therefore omit it here.

114

5.5 Conclusion

5.5 Conclusion

In this Chapter we have addressed the problem of revocation of Credentials in Secret

Handshake. We have presented two schemes: a first one with the same functional re-

quirements as the one introduced in Chapter 4, namely Secret Handshake with Dynamic

Controlled Matching with support for reusable Credentials; in addition, our protocol

brings revocation support based on revocation lists where the certification entity can

publish Revocation Handles. However the introduction of revocation does not hinder

other security requirements, namely Unlinkability of users. Indeed, users are unlinkable

even after revocation; a revoked user loses its Unlinkability after the publication of the

corresponding Revocation Handle, only to users that own Credentials for the particular

property object of the revoked Credential.

Then we have presented a second scheme, similar to the first one but supporting

Dynamic Matching instead of Dynamic Controlled Matching; this scheme effectively

enhances the work of Ateniese and colleagues [AKB07] with revocation support.

The two schemes represent a contribution to the state of the art, as they are the first

ones supporting revocation, reusable Credentials and Secret Handshakes more flexible

than classic Secret Handshake.

In the study of the security of the protocols, we have discovered an interesting new

complexity assumption, the SM Problem, which we have proved secure in the generic

group model. We have proved the security of the schemes presented in the Chapter

by reduction to the new assumption as well as to other well-known hard problems,

without relying on the random oracle model. As we shall see in the next Chapter, the

SM Problem is of independent interest, and can be used in the security analysis of other

schemes.

115

5. REVOCATION IN SECRET HANDSHAKES

116

Chapter 6

Towards Decentralized Secret

Handshakes

6.1 Introduction

In Chapters 4 and 5, we have presented a number of Secret Handshake schemes that

improve the state of the art by introducing Dynamic Controlled Matching and an

approach to support revocation in most Secret Handshake schemes.

One common trait of these schemes, and of all the schemes in the state of the

art reviewed in Chapter 3, is that they all rely on a centralized entity that we called

certification authority, that is in charge of generating public parameters and of handing

over either just Credentials or both Credentials and Matching References.

In this Chapter we investigate further scenarios by relaxing this property. We

present two different solutions: the first one is a modification of the scheme presented

in Chapter 5, whereby Credentials are distributed by multiple, independent CAs that

trust one another but still want to maintain the control over properties falling in their

realm. The second scheme is instead a completely decentralized one, where a set of

users can organize themselves autonomously in order to issue Credentials and be able

to mutually authenticate. The first scheme maintains the characteristics of Dynamic

Controlled Matching, whereas the second one is a classic Secret Handshake scheme,

and hence non-separable.

We will investigate thoroughly the security of the first scheme; as for the second

one instead, we will only informally motivate its security, since its purpose is to serve

117

6. TOWARDS DECENTRALIZED SECRET HANDSHAKES

as building block for the use-case of Chapter 7. Nonetheless, the scheme is built on

well-established cryptographic primitives, whose security has extensively been studied

by the research community.

6.2 Secret Handshakes with multiple CA support

In this Section we present a variation of the scheme that we introduced in Section 5.3;

in the variation, there is no single central CA, but a coalition of CAs. Multiple CAs

may be a requirement when the properties at stake are – for example – membership

to different secret agencies that do not want to delegate the execution of Certify, Grant

and Revoke for security reasons, but still want to be able to conduct Secret Handshakes

involving properties under the control of the various CAs.

Within a multiple CA scenario, a handshake between two users A and B can be

successful if A has a Credential for property p1 issued from CA1 and a Matching

Reference for property p2 issued from CA1 and B has a Credential for property p2

issued from CA1 and a Matching Reference for property p1 issued from CA1. However

a handshake can be successful even in hybrid situations in which for instance A has

a Credential for property p1 issued from CA1 and a Matching Reference for property

p2 issued from CA2 and B has a Credential for property p2 issued from CA2 and a

Matching Reference for property p1 issued from CA1.

6.2.1 Description of the Scheme

Let us review the algorithms, highlighting the changes with respect to the scheme in

Section 5.3:

• CASetup this algorithm corresponds to the general setup of the system, to which

all CAs participate; according to the security parameter k, g, g̃ are selected, where

g and g̃ are random generators of G1 and G2 respectively. Then the valuesW = gw

and g̃w
−1

are chosen, so that the value w is unknown to all CAs1. Then, values

{yi}ni=0
R← Z∗q are randomly drawn and assigned as g0 ← gy0 , g1 ← gy1 , . . . , gn ←

gyn . Notice that with these parameters, H(p) is computed as g0
∏
i∈V (p) gi = gh(p).

1The CAs can achieve this for instance by using an external dealer or by engaging in a secure

multi-party computation.

118

6.2 Secret Handshakes with multiple CA support

The system’s parameters are {q,G1,G2, g, g̃,W, g0, . . . , gn}; the values y0, . . . , yn

and g̃w
−1

are kept secret among the CAs;

• Setup this algorithm corresponds to the setup of a single CA; upon execution of

this algorithm, the CA picks tCA ∈ Z∗q and publishes TCA = g̃tCA ; finally, the CA

maintains its own function fCA(p);

• Certify this algorithm is executed by a given CA when a user u ∈ U queries that

CA for a Credential for property p ∈ P; if p falls within the set of properties that

the queried CA is responsible for, the queried CA verifies that the supplicant

user u ∈ U possesses the property p ∈ P; after a successful check, the CA issues

to u the appropriate Credential, which is made of two separate components:

an Identification Handle, later used for revocation, and the actual Credential.

To hand out the Identification Handle for a given pair (u, p), the CA picks the

Identification Handle xu,p
R← Z∗q , randomly drawn upon each query, and gives it

to the supplicant user. The CA then forms the Credential as a tuple credu,p =

〈Cu,p,1, Cu,p,2, Cu,p,3〉 where Cu,p,1 = gzw(xu,p+tCAfCA(p)h(p)), Cu,p,2 = g̃(zw)
−1

and

Cu,p,3 = g̃z
−1

, where z ∈ Z∗q is randomly drawn upon each query. To allow the

user to verify the goodness of the Credential, the CA gives to the user gfCA(p)

and g̃tCAh(p). The user first verifies that ê (H(p), TCA) = ê
(
g, g̃tCAh(p)

)
; if this

first verification succeeds, the user verifies that ê(Cu,p,1, Cu,p,2) = ê(gxu,p , g̃) ·
ê(gfCA(p), g̃tCAh(p));

• Grant this algorithm is executed by a given CA when a user u ∈ U queries that

CA for a Matching Reference for property p ∈ P; the CA verifies that – according

to the policies of the CA – the supplicant user is entitled to verify that another

user possesses property p ∈ P. If the checking is successful, the CA issues the

appropriate Matching Reference matchp = g̃tCAfCA(p)h(p); to allow the user to

verify the goodness of the Credential, the CA gives to the user gfCA(p) and g̃tCAh(p).

The user first verifies that ê (H(p), TCA) = ê
(
g, g̃tCAh(p)

)
; if this first verification

succeeds, the user verifies that ê(g,matchp) = ê(gfCA(p), g̃tCAh(p));

The algorithms that have not been listed stay the same.

Let us describe a practical scenario to understand the scheme better: let us assume

that two national CAs, CA1 and CA2, are issuing Credential and Matching References

119

6. TOWARDS DECENTRALIZED SECRET HANDSHAKES

to justice enforcement officials of their respective countries. CA1 can therefore for

instance issue Credentials for “case agent XYZ” or “case supervisor XYZ”; the same

can be done by CA2. Then, if agents assigned to the same case need to cooperate on an

international investigation, they can receive Matching References from the CA of the

other country, making them able to run a Secret Handshake, authenticate and secure

their communications.

Notice that both CAs can generate Credentials for the same property “case agent

XYZ”; however, thanks to the separate functions fCA and the different values TCA,

none of the CAs can generate Credentials (Matching References) that would match

Matching References (Credentials) associated with properties under the jurisdiction of

another CA.

6.2.2 Security Analysis

In this Section we address the security analysis of the scheme. Throughout our analysis,

we shall consider two separate types of adversary: a first type is a common user of

the system. For this type of attacker we assume that certification entities cannot

be compromised: this means that the adversary will not receive the secret system

parameters g̃w
−1
, y0, . . . , yn and the CA-specific parameters tCA and fCA(p).

A second type of adversary is represented by a malicious CA, whose objective is to

successfully engage in a Secret Handshake and carry out detection and impersonation

for properties under the control of another CA; this type of adversary has access to all

the information available to CAs, but clearly not to CA-specific information such as

tCA and fCA(p).

6.2.2.1 Security against adversary type I

In Section 5.3.3 we have studied the security of the scheme upon which the present

scheme is built, against this type of adversary. As a consequence, we will not present the

full analysis again but only explain how it can be adapted to fit the scheme introduced

in this Section.

Here below, we list each of the games used in the proofs of security of the scheme

in Section 5.3 and highlight how they can be adapted to the scheme presented in this

Section:

120

6.2 Secret Handshakes with multiple CA support

• TraceProperty: this game addresses an attacker willing to trace the same prop-

erties over multiple handshake instances; the reduction provided in the game

leverages on the fact that the CA can choose arbitrary values for f(p); tracking

the same value over multiple handshake instances is equivalent to solving the

DDH problem. Given that also in the present scheme each CAs can choose arbi-

trary values for fCA(p), the same game and the same reduction can be used to

prove the fulfillment of the Unlinkability of properties requirement;

• TraceUser1: this game challenges the adversary’s capability to trace a non-revoked

user, having the appropriate Matching Reference for the user’s Credential; the

reduction leverages on the fact that the only value that can be traced upon

multiple executions of the protocol to the same user is xu,p; this value can be

chosen arbitrarily by the CA and tracing it upon multiple executions of Secret

Handshake is equivalent to solving the DDH problem. The same game and the

same reduction can be used to prove the fulfillment of this requirement;

• TraceUser2: this game challenges the adversary’s ability to trace a revoked user

without the appropriate Matching Reference for the user’s (revoked) Credential;

indeed the check that deanonymizes a revoked user can only be executed if a user

holds a Matching Reference for the property object of the revoked Credential;

the reduction once more leverages on the fact that the CA can choose arbitrary

values for f(p), feature that has not changed in this scheme; if an attacker able to

win this game exists, we can use its advantage to break the DDH problem. Given

that also in the present scheme each CAs can choose arbitrary values for fCA(p),

the same game and the same reduction can be used to prove the fulfillment of the

Unlinkability of properties requirement;

• Detect: this game addresses an adversary whose goal is to engage in Secret Hand-

shake protocol instances and detect the other user’s property, without owning

the appropriate Matching Reference; the detection is successful if the adversary

is able to distinguish the correct key from a random string; the reduction once

more leverages on the fact that the CA is free to pick arbitrary values for f(p);

if the attacker is successful in distinguishing the key, the challenger can solve

the DDH problem. Given that also in the present scheme each CAs can choose

121

6. TOWARDS DECENTRALIZED SECRET HANDSHAKES

arbitrary values for fCA(p), the same game and the same reduction can be used

to prove the fulfillment of the detector resistance requirement;

• Impersonate1: this game addresses the resistance of the scheme to an attacker

that tries to conduct a successful Secret Handshake for a given property, having

access to an arbitrary number of Credentials that are however revoked before the

challenge phase: in addition, it is assumed that the attacker will forge a brand

new Credential in his impersonation attempt. In Section 5.3.3 we have introduced

a new hard problem, the SM problem, and given evidence of its intractability; we

have then been able to demonstrate that the challenger can set up an environment

where the advantage that an attacker has against the Impersonate1 game can be

used to solve arbitrary instances of the SM problem. The changes that have been

brought forward in this scheme change the nature of the reduction: indeed the

values g̃0, . . . , g̃n have now become g0 = gy0 , . . . , gn = gyn , so the value g̃y cannot

be assigned to g̃0; however the challenger is still free to simulate the values TCA

as (g̃y)tCA ; the challenger can then pick random values for fCA(p) and y0, . . . , yn;

then the challenger can answer all the queries of the adversary, in particular, the

challenger can answer queries as if coming from different CAs. At the end of the

challenge phase the challenger revokes all Credentials issued; the adversary is then

challenged to pick a CA and a property and produce a Credential for that prop-

erty; that Credential will be formed as
〈
gr, grswx, g̃(sw)

−1
, g̃s
−1
〉

; the constraint is

that the challenger has not issued the adversary the tuple
〈
gzwx, g̃(zw)

−1
, g̃z

−1
〉

as a result of a Certify query; the challenger can therefore play the same game

with the adversary to prove the scheme’s resistance to the same type of attack;

• Impersonate2: this game focuses on an adversary trying to conduct a successful

Secret Handshake for a given property; the adversary can receive an arbitrary

number of Credentials that are revoked before the challenge phase: the additional

assumption is that during the challenge phase, the adversary will reuse one of the

Credentials received during the query phase, and is nonetheless able to circumvent

the revocation checks. The reduction leverages on the fact that if the adversary

reuses one of the Credentials received during the challenge phase and is yet able

to circumvent revocation, it must be that it is using it for a different property; if

so, then the key the adversary generates must contain the term tCAif(p◦)h(p◦)−

122

6.2 Secret Handshakes with multiple CA support

tCAjf(p∗)h(p∗), where p◦ is the original property for the Credential and p∗ is the

property the adversary has picked for the challenge; CAi and CAj are any two

(not necessarily distinct) CAs. Then, the challenger can set all the elements TCA

as functions of g̃a (notice that in Section 5.3.3 this was done by setting g̃0, . . . , g̃i

as function of g̃a; this is however no longer possible given that these elements have

been replaced by g0, . . . , gn) and send the nonce g̃b during the challenge phase

and use the adversary to solve the DDH in G2. The same game can be played

against an adversary of this scheme and the same reduction can be used;

• Impersonate: this game is required to unite the two different games Impersonate2

and Impersonate2 and prove that the scheme is resistant to impersonation attacks

regardless of the strategy used by the adversary; in order to use this approach,

it needs to be shown that the criteria as the one used to create the two separate

games creates a clear cut between the two, such that no additional strategy exists.

We can use the same criteria used in Section 5.3.3.4: Impersonate1 requires the

adversary to produce a handshake tuple containing a Credential that has never

been issued before by any CA; Impersonate2 instead requires the adversary to

reuse a Credential that has at some point been issued by one CA. In particular

on the last point, the Credential must have been issued for some property p◦ by

some CA CA◦ but can be reused either for a different property p∗ for any CA

(even CA◦) or for a different CA CA∗ for any property (even p◦). The used

criterion creates two games whose union is the original game; as a conclusion, the

same game can be adapted to the same end to prove that the scheme presented

in this Section fulfills the requirement of resistance to impersonation attacks;

6.2.2.2 Security against adversary type II

It remains to be shown that colluding CAs cannot forge Credentials and Matching

References for a target CA∗. In the rest of this Section we will tackle the analysis of the

security against this other type of adversary, by presenting two games, CAImpersonate

and CADetect, similar to the aforementioned Impersonate and Detect games, with the

difference that the adversary is now another CA; the adversary then also obtains the

values g̃w
−1

and y0, . . . , yn. In particular, the challenger will run the oracle OCASetup for

the attacker and provide the output to the adversary: the adversary is therefore free

123

6. TOWARDS DECENTRALIZED SECRET HANDSHAKES

to either generate and maintain its own CAs, or to invoke the OSetup oracle and have

the challenger generate a CA under its control. The adversary will eventually attempt

at impersonation or detection of a property under the control of the CA controlled by

the challenger.

CA Detection Resistance Let A be a malicious CA whose goal is to use the ad-

vantage held in the role of CA to engage in Secret Handshake protocol instances and

attempt at the detection of a property whose Matching References are issued by an-

other CA, without owning the appropriate Matching Reference. We call CA detector

resistance the resilience to this type of attacker. We assume – with no loss in generality

– that there are only two CAs in the system, the adversary and the one simulated by

the challenger.

At first, A can access OCASetup, OSetup, OCertify, OGrant, ORevoke. At the end of the

query phase, A decides a property p∗, under the control of the CA simulated by the

challenger, for which no call to OGrant has been made. A is then challenged to engage

in a protocol execution with the challenger, and asked at the end to distinguish the

correct key that Handshake.Match would output with the correct Matching Reference

from a random value of the same length. We call this game CADetect.

Lemma 17. If an adversary A has a non-null advantage

AdvCADetectA := Pr[A wins the game CADetect]

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve any given instance of the Decisional Diffie-Hellman problem

(DDH).

Proof. We define B as follows. B is given an instance
〈
g, ga, gb, gσ

〉
of the DDH problem

in G1 and wishes to use A to decide if σ = ab. The algorithm B simulates an environ-

ment in which A operates, using A’s advantage in the game Detect to help compute

the solution to the DDH problem. In particular, B implements the oracles OCASetup,

OSetup, OCertify, OGrant, ORevoke as follows:

OCASetup : B uses g as the one received from the DDH challenge; the other parameters are

generated according to the rules of the protocol;

124

6.2 Secret Handshakes with multiple CA support

OSetup : fB(p) is implemented as follows: on a query for fB(p), if p has never been queried

before, B picks a random value rp
R← Z∗q , storing the pair (p, rp) in a table. Then

B flips a random biased coin guess(p) ∈ {0, 1} biased as follows: guess(p) equals

1 with probability δ and is equal to 0 with probability 1−δ. B answers as follows:

if guess(p) = 0, B looks up rp in the table and answers with fB(p) = rp. Instead,

if guess(p) = 1, B answers with fB(p) = brp; the other parameters are generated

according to the rules of the protocol;

OCertify : B answers according to the rules of the protocol;

OGrant : A queries B to receive a Matching Reference for property pi; assuming that

guess(pi) = 0, B can answer according to the rules of the protocol;

ORevoke : B answers according to the rules of the protocol;

Setup and Queries The adversary A can interact with the oracles OCASetup, OSetup,

OCertify, OGrant, ORevoke;

Challenge At the end of this phase, A chooses a property p∗, such that no

query to the oracle OGrant has been submitted. Let us assume that guess(p∗) = 1:

as a consequence, f(p∗) = brp∗ . B then engages in an instances of Handshake with

A; in particular, B receives a nonce g̃m; B then picks x, s
R← Z∗q sets r′ = a and

x′ = x+ σa−1rp∗h(p∗)tB− brp∗h(p∗)tB and constructs a handshake message as follows:

gr
′

= ga

gr
′sw(x′+f(p∗)h(p∗)tB) = gr

′sw(x′+brp∗h(p∗)tB) = gaswxgswσrp∗h(p∗)tB

g̃(sw)
−1

g̃s
−1

tB is the value used by B to generate TB. A receives the key generated by the algorithm

Handshake.RandomizeCredentials: in order to compute such key, B assumes that σ = ab,

and therefore computes ê (ga, g̃m)x
′

= ê (ga, g̃m)x. A answers the challenge with a bit

b; A wins the game if b = 0 if the key is a random bitstring, and b = 1 if the key is

correct.

Analysis of A’s answer It is straightforward to verify that, if A wins the game,

B can give the same answer to solve the DDH problem. Indeed, if A wins the game

and answers b = 1, it means that the key B generated was correct. Then, the same key

must be computable using Equation 5.3 with the Matching Reference for property p∗,

g̃f(p∗)h(p∗)tB .

125

6. TOWARDS DECENTRALIZED SECRET HANDSHAKES

Then we can write

(ax+ σrp∗h(p∗)tB − abrp∗h(p∗)tB)m = max

However this equation is satisfied only if σ = ab, which is the positive answer to the

DDH problem. If not, B can give the negative answer to DDH.

A detailed analysis shows that if guess(p∗) = 1 and guess(p) = 0 for all other

queries to OGrant such that p 6= p∗, then the execution environment is indistinguishable

from the actual game Detect. This happens with probability

Pr[guess(p∗) = 1 and guess(p) = 0 for all p 6= p∗] = δ · (1− δ)Qp (6.1)

where Qp is the number of different properties A queries to the oracle OGrant. By

setting δ ≈ 1
Qp

we know that the probability in 6.1 is greater than 1
e·Qp

. So in con-

clusion, we can bound the probability of success of the adversary AdvCADetectA as

AdvCADetectA ≤ e · Qp · AdvDDHB.

CA Impersonation Resistance To address the analysis of this requirement, we fol-

low the same strategy adopted in Section 5.3.3.4; in particular, we define two sub-games,

CAImpersonate1 and CAImpersonate2 and then join them together under a broader

CAImpersonate game.

Let A be a malicious CA whose goal is the impersonation of a user owning a

Credential for a given property, under the control of another CA. A can access OCASetup,

OSetup, OCertify, OGrant, ORevoke. We assume – with no loss in generality – that there are

only two CAs in the system, the adversary and the one simulated by the challenger.

A eventually decides that this phase of the game is over. The challenger then

revokes each Credential handed out to the attacker in the previous phase. A then

declares a property p∗ ∈ P under the control of the CA simulated by the challenger,

which will be the object of the challenge; the adversary A is then challenged to engage

in Handshake with the challenger, and has to be able to convince that he owns a non-

revoked Credential for property p∗. A is then asked to output the key computed. In

order to successfully win the game, it must not be possible for the challenger to abort

the handshake due to the fact that the Credentials used by the attacker have been

revoked. We call this game CAImpersonate.

To create the first sub-game, CAImpersonate1, we also assume that the attacker will

forge a brand new Credential in the challenge phase.

126

6.2 Secret Handshakes with multiple CA support

Lemma 18. If an adversary A has a non-null advantage

AdvCAImpersonate1A := Pr[A wins the game CAImpersonate1]

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve a given instance of the SM Problem.

Proof. We define the challenger B as follows. B is given an instance
〈
g, gw, g̃, g̃w

−1
, g̃y,

g̃m, Ow,y〉 of the SM problem and wishes to use A to produce the tuple 〈gr, grsw(x∗+y),
g̃(sw)

−1
, g̃s

−1
, ê (g, g̃)rx∗m〉, such that x∗ has not been queried to O. The algorithm B

simulates an environment in which A operates. In particular, B implements the oracles

OCASetup, OSetup, OCertify, OGrant, ORevoke as follows:

OCASetup : B sets public parameters g, g̃, gw, g̃w
−1

as the ones received from the challenge;

OSetup : B sets TB as g̃y; the other parameters are generated according to the rules of

the protocol;

OCertify : A queries B for Credentials for an arbitrary number of user ui and property

pi; B answers by picking a random Identification Handle xui,pi
R← Z∗q and by

giving it to A; B then queries the oracle Ow,y providing v =
xui,pi

fB(pi)h(pi)
as in-

put, and adding the value v to the set O of queries to oracle O. The output

of the oracle is

〈
g
zw
(

xui,pi
fB(pi)h(pi)

+y
)
, g̃(zw)

−1
, g̃z

−1

〉
. B then assigns Cui,pi,1 ←(

g
zw
(

xui,pi
fB(pi)h(pi)

+y
))fB(pi)h(pi)

= gzw(xui,pi+yfB(pi)h(pi)), Cui,pi,2 ← g̃(zw)
−1

, Cui,pi,3

← g̃z
−1

; to allow the user to verify the goodness of the Credential, the CA gives

to the user gfB(pi) and g̃yh(pi);

OGrant : A queries B for Matching References for an arbitrary number of properties pi;

B answers with matchpi = g̃yfB(pi)h(pi); to allow the user to verify the goodness

of the Credential, the CA gives to the user gfB(pi) and g̃yh(pi);

ORevoke : A queries B for an arbitrary number of Revocation Handles for user ui and

property pi; B answers with revui,pi = g̃xui,pi ;

Setup and Queries The adversary A can interact with the oracles OCASetup, OSetup,

OCertify, OGrant, ORevoke;

Challenge A then declares that this phase of the game is over. B therefore revokes

each of the Credentials A requested in the previous phase. A then chooses a property

127

6. TOWARDS DECENTRALIZED SECRET HANDSHAKES

p∗ ∈ P. B challenges A by sending g̃m and A answers the challenge with the tuple

〈gα, gβ, g̃γ , g̃δ, ek〉.
Analysis of A’s response If A wins the game, B can check that(

ê(gβ, g̃γ)

ê(gα,matchp∗)

)m
=

(
ê(gβ, g̃γ)

ê
(
gα, g̃yfB(p∗)h(p∗)

))m = ek (6.2)

and that

ê
(
g, g̃δ

)
= ê (gw, g̃γ) (6.3)

as mandated by the Handshake.Match sub-algorithm detailed in Section 5.3.2.

Let us set α = r, k = rx∗m and δ = s−1, for some integers r, x∗, s ∈ Z∗q unknown

to B. Then, from Equation 6.3 we derive that γ = (sw)−1 and from Equation 6.2 that

β = rsw(x∗ + yfB(p∗)h(p∗)). Notice that by the definition of the game, the attacker

has not received a Credential containing the term gzwXu∗,p∗ = gzw(x∗+yfB(p∗)h(p∗)) from

the challenger as answer to a query to the OCertify oracle.

This implies in turn that the value v∗ = x∗
fB(p∗)h(p∗)

has never been queried by the

challenger to the oracle Ow,y in the execution of a OCertify query: as a consequence, v∗

does not belong to the set O. Therefore we conclude that, if A wins the game, B can

provide 〈
(gα)fB(p∗)h(p∗) , gβ, g̃γ , g̃δ, ê (g, g̃)k

〉
as an answer to the SM problem.

We now turn our attention to the CAImpersonate2 game, focusing on a malicious

CA attempting to succeed in the impersonation of a user owning a credential for a

given property p∗, under the control of the CA managed by the challenger. We also

introduce an additional constraint on the impersonation strategy: we assume that the

adversary will be reusing an already revoked Credential received from another CA

and yet able to circumvent revocation. Given that the revocation check involves the

Matching Reference for a property, the only way for the attacker to succeed is to use a

Credential received for a property – say p◦ – in the attempt to impersonate a different

property – say p∗.

The malicious CA A can access OCASetup, OSetup, OCertify, OGrant, ORevoke. We assume

– with no loss in generality – that there are only two CAs in the system, the adversary

and the one simulated by the challenger.

128

6.2 Secret Handshakes with multiple CA support

Lemma 19. If an adversary A has a non-null advantage

AdvCAImpersonate2A := Pr[A wins the game CAImpersonate2]− 1
2

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve a given instance of the Decisional Diffie-Hellman Problem

(DDH).

Proof. We define B as follows. B is given an instance
〈
g̃, g̃a, g̃b, g̃σ

〉
of the DDH problem

and wishes to use A to decide if σ = ab. The algorithm B simulates an environment

in which A operates. In particular, B implements the oracles OCASetup, OSetup, OCertify,

OGrant, ORevoke as follows:

OCASetup : B sets the public parameter g̃ as the ones received from the DDH challenge; the

other parameters are generated according to the rules of the protocol;

OSetup : B sets TB = g̃a; the other parameters are then picked and published following

the rules of the protocol;

OCertify : A queries B for Credentials for an arbitrary number of pairs (u, p) ∈ U × P;

B answers with credu,p = 〈Cu,p,1, Cu,p,2, Cu,p,3〉 where Cu,p,1 = gzw, Cu,p,2 =

g̃(zw)
−1(xu,p+afB(p)h(p)) and Cu,p,3 = g̃z

−1(xu,p+afB(p)h(p)); to allow the user to verify

the goodness of the Credential, the CA gives to the user gfB(p) and g̃ah(p); this

representation of Credentials is indistinguishable from the ones mandated by the

protocol: indeed notice that we can set z = z′(xu,p + afB(p)h(p)) and we can

rewrite Cu,p,1 = gz
′w(xu,p+afB(p)h(p)), Cu,p,2 = g̃(z

′w)−1
and Cu,p,3 = g̃z

′−1
which

is exactly the way Credentials are formulated according to the algorithm Certify

described in Section 5.3.2. B adds to a list V the tuple (g̃xu,p+ah(p)fB(p), u, p, xu,p)

for each query of A and keeps it for later use;

OGrant : A queries B for Matching References for an arbitrary number of properties p;

B answers with matchp = g̃afB(p)h(p); to allow the user to verify the goodness of

the Credential, the CA gives to the user gfB(p) and g̃ah(p);

ORevoke : A queries B for an arbitrary number of Revocation Handles for user ui and

property pi; B answers with revui,pi = g̃xui,pi ;

Setup and Queries The adversary A can interact with the oracles OCASetup, OSetup,

OCertify, OGrant, ORevoke;

129

6. TOWARDS DECENTRALIZED SECRET HANDSHAKES

Challenge A then declares that this phase of the game is over. B therefore revokes

each Credential requested by A in the previous phase. A then chooses a property

p∗ ∈ P. B challenges A by sending g̃b and A answers the challenge with the tuple

〈gα, gβ, g̃γ , g̃δ, ê (g, g̃)k〉.
Analysis of A’s response If A wins the game, B can check that(

ê(gβ, g̃γ)

ê(gα,matchp∗)

)b
= (6.4)(

ê(gβ, g̃γ)

ê(gα, g̃afB(p∗)h(p∗))

)b
= ê (g, g̃)k (6.5)

and that

ê
(
g, g̃δ

)
= ê (gw, g̃γ) (6.6)

as mandated by the Handshake.Match sub-algorithm detailed in Section 5.3.2.

Let us set α = r, k = rx∗b and δ = s−1, for some integers r, x∗, s ∈ Z∗q unknown to

B. Then, from Equation 6.6 we derive that γ = (ws)−1; if we set v∗ = x∗+afB(p∗)h(p∗),

from Equation 6.5 we can write β = rsv∗.

We know by definition that the attacker has already received Cu◦,p◦,1 = gzwv∗ =

gzw(xu◦,p◦+afB(p◦)h(p◦)) during the previous query phase. Consequently, the Revocation

Handle revu◦,p◦ = g̃xu◦,p◦ has also been published. B can easily recover u◦ and p◦, since

he can check which element g̃xu◦,p◦+ah(p◦)fB(p◦) within the list V satisfies the following

equality ê(gβ, g̃γ) = ê(gα, g̃xu◦,p◦+ah(p◦)fB(p◦)), and then look up the respective xu◦,p◦ .

If p◦ = p∗, then A has lost the game, since a successful answer of the attacker

cannot be revoked by any of the issued Revocation Handles, whereas this Credential

can be revoked with revu◦,p◦ . Then it must be that p◦ 6= p∗; in this case x∗ = xu◦,p◦ +

afB(p◦)h(p◦)− afB(p∗)h(p∗).

It then follows that

ê (g, g̃)k = ê (g, g̃)rb(xu◦,p◦+afB(p◦)h(p◦)−afB(p∗)h(p∗))

The challenger is therefore able to compute

ê (g, g̃)rab =

(
ê (g, g̃)k

ê (gr, g̃b)
xu◦,p◦

)(fB(p◦)h(p◦)−fB(p∗)h(p∗))−1

and can then solve the given DDH instance by checking whether ê (g, g̃)rab = ê (gα, g̃σ).

130

6.3 Secret Handshakes with Ad-Hoc Certification

To conclude the analysis of impersonation resistance by adversary type II, we in-

troduce a final lemma that merges the two games CAImpersonate1 and CAImpersonate2

engaging the attacker in the CAImpersonate game where the challenger gets an advan-

tage in solving a hard problem independently of the strategy of the adversary.

Lemma 20. If an adversary A has a non-null advantage

AdvCAImpersonateA := Pr[A wins the game CAImpersonate]

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A to gain either an advantage AdvCAImpersonateA
2 on the Decisional Diffie-Hellman

problem (DDH) or an advantage AdvCAImpersonateA
2 on the SM Problem.

A proof of this Lemma is a straightforward adaptation of the proof of Lemma 12,

which we therefore omit here.

6.3 Secret Handshakes with Ad-Hoc Certification

In this Section we present a Secret Handshake scheme where Credentials and Matching

References are not generated centrally by one (or a coalition of) CAs, but where instead

the task of generating Credentials and Matching References is shared among users in

a completely decentralized way. The resulting scheme is non-separable, and does not

support reusable Credentials. As a result of non-separability, the scheme only supports

matching within the same group. The main idea behind the scheme is that, if a new

user is endorsed by t existing group members out of the total n group members (t and

n being parameters of the system), he is then able to obtain a Credential certifying

that he is a group member too.

The scheme is based on secret sharing and threshold cryptography, concepts first

introduced by Shamir [Sha79] and independently by Blakley [Bla79]. Threshold cryp-

tography is based on the main idea of sharing “something” (such as for instance a secret

value, or something more complex such as the power of generating a signature) among

n users, in a way that only t of them, cooperating, can obtain it, but no subset of t− 1

can.

Using this scheme, as we shall see in the rest of this Section, an initial set of users

(group managers) can spontaneously form a group; a consensus of at least t managers

131

6. TOWARDS DECENTRALIZED SECRET HANDSHAKES

has the capability to appoint new managers and to appoint simple group members.

Group members can simply authenticate as such, but cannot issue new Credentials.

In Section 6.3.5 we will sketch the security analysis of the scheme, without going

into the details. The reason for this choice is that this scheme only intends to be a

preliminary effort towards Secret Handshakes with ad-hoc certification and to serve as

a building block to support the use-case scenario presented in Chapter 7. Nonetheless,

the scheme is built on solid primitives such as threshold cryptography and OSBEs,

whose security has already been extensively studied in the literature.

6.3.1 Preliminaries

Secret sharing allows a set of n parties to possess shares of a secret value, such that any t

shares can be used to reconstruct the secret, yet any t−1 shares provide no information

about it. Secret sharing was first proposed by Shamir [Sha79] and independently by

Blakley [Bla79]. This initial idea has been extended in a number of works [DJ97; Fel87;

HJKY95; Ped91b; Ped91a]. For the objectives of our scheme, we will use two different

algorithms: Share [Ped91b; Ped91a], used by n users to share a random secret without

a dealer, so that t are in principles able to reconstruct it; and Redistribute [DJ97], used

by t shareholders to compute n′ new, unrelated shares of the same secret, so that t′

new shareholders can reconstruct the secret. In both algorithms, the secret is actually

never reconstructed, and – since there is no dealer – none of the shareholders knows

it. We call Γ
(n,t)
P the access structure wherein a secret is shared among a population

of users in the set P, with |P| = n so that any subset B ∈ Γ
(n,t)
P , with |B| = t can

reconstruct that secret.

Share : this algorithm is executed by each Pi belonging to an authorised set B ∈ Γ
(n,t)
P

with cardinality t. Each Pi picks a random ri
R← Zq, forms a random polynomial

fi(u) = ri + ai,1u + . . . + ai,t−1u
t−1 and sends fi(j) mod q to each Pj ∈ P/Pi;

the (unknown) shared secret is R =
∑

j∈P rj . Every Pi ∈ P computes its share

of the secret Ri =
∑

j∈B fj(i); additionally, each Pi broadcasts gri mod p; this

way, everybody can compute gR mod p;

Redistribute : this algorithm is executed by each Pi belonging to an authorized set

B ∈ Γ
(n,t)
P with cardinality t. The objective is to generate new shares for the

new access structure Γ
(n′,t′)
P′ . Each Pi computes a random polynomial formed as

132

6.3 Secret Handshakes with Ad-Hoc Certification

fi(u) = Ri + ai,1u + . . . + ai,t′−1u
t′−1, where Ri is the local share of the secret

possessed by Pi; each Pi sends fi(j) mod q to each Pj ∈ P′/Pi; then, each Pi can

locally generate its new share R′i by Lagrange interpolation;

Using these two algorithms, we can generate threshold signatures. At first we

describe a variant [PK96] of the famous DSS signature scheme [BP]. Let the secret

signing key be x ∈ Zq and the public key be gx mod p. The scheme has two algorithms:

Sign : given the message m and a random number e
R← Zq, compute the signature

(w, v) such that w = (ge mod p) mod q and v = wx+ h(m)e mod q;

Verify : (w, v) is a valid signature on the message m if the following equality w =(
gvh(m)−1

(gx)−wh(m)−1

mod p
)

mod q holds;

A threshold signature scheme [Boy86; Des87; DF89] leverages on the aforementioned

secret sharing techniques in order to share the secret key x among n parties, thus

distributing the signing capabilities over n parties, so that any subset of t can jointly

compute a signature, whereas no t − 1 subset can. In [PK96], Park and Kurosawa

propose a threshold version of the aforementioned DSS signature variant. The variant

assumes that the Share algorithm has been executed to create an access structure Γ
(n,t)
P

and that any principal in P has a share xi of the (unknown) private key x. In addition,

the public key gx is publicly known. The Verify algorithm stays the same, whereas the

Sign algorithm is modified as follows:

Sign : this algorithm is executed by each Pi belonging to an authorized set B ∈ Γ
(n,t)
P

with cardinality t; each Pi has a local share xi of the secret signing key x. All

the Pi engage in the Share algorithm, generating the value ge mod q and a local

share ei of the (unknown) random value e; then, each Pi sends the value vi =

gexi + h(m)ei mod q to the requester of the signature, along with the value ge

mod q; the first part of the signature is w = ge mod q; given the set of shares

{vi, i ∈ B}, the second part of the signature v can be computed through Lagrange

interpolation;

As we can see, the Share algorithm is executed twice, once prior to signing to generate

the public key and shares of the private key, and a second time, to generate the first

part of the signature and shares of its discrete log.

133

6. TOWARDS DECENTRALIZED SECRET HANDSHAKES

Now we introduce the final building block of our scheme, Oblivious Signature-Based

Envelopes (OSBEs). OSBEs have been introduced by Li, Du and Boneh in [LDB05].

An OSBE scheme allows two parties to share a key if a predefined party among the two

possesses a signature on an agreed-upon message. Nasserian and Tsudik have presented

in [NT06] – among others – an OSBE scheme based on the DSS variant mentioned in

the previous Section.

At first a message m is chosen; the OSBE round happens between a party P1 who

might have a signature (w, v) on m and P2. The OSBE round proceeds as follows:

OSBERound : P1 sends w to P2; P2 generates r
R← Zq, sends gr to P1 and computes

K2 =
(
(gx)wwh(m)

)r
; P1 computes K1 = (gr)v; K1 = K2, i.e. P1 and P2 will

share a key if P1’s signature on m was correct;

6.3.2 Syntactic Definition

In this Section we first give an informal definition of the operations of the scheme, and

then define its syntax.

A secret group starts with the invocation of Setup by the initial set of n group

managers. At the end of the algorithm, the group managers have picked a group

message that will be used later on, they have agreed on a known public key and they

have distributed secret shares of an (unknown) private key, representing the group

managership token. Notice that the actual private key is unknown; it could be known

if at least t group managers colluded and reciprocally revealed their shares, however

the threshold t can be set in order to discourage such attempts. In situations where

hierarchy of group managers is important, each group managers can be supplied a

different number of shares according to their importance.

The algorithm UpdateManagers can be invoked by at least t group managers to

redistribute different shares of the same private key to a different set of group managers,

fixing a new threshold t′. The reasons for invoking the UpdateManagers are mainly

twofold: (i) if the group grows, new group managers need to be appointed and therefore

receive shares of the private key; (ii) when a group of (less then t) managers needs to be

revoked1, t other group managers can generate a different set of shares, not related with

1Notice that revoking group managership to t group managers or more is not feasible since in

principles they can reconstruct the group secret key; this situation can be thwarted by appropriately

setting t.

134

6.3 Secret Handshakes with Ad-Hoc Certification

the old set, and distribute the new shares to all managers but the ones whose manager

rights need to be revoked, thus effectively preventing the latter from further executing

group manager tasks. Regular invocations of UpdateManagers can be scheduled so that

new shares are proactively being distributed and the population of group managers

can be both purged of elements that are no longer trustworthy and enriched with new

trusted ones.

t group managers can also issue group membership Credentials, that users can use

as Credentials in the Secret Handshake. To this end, t group managers jointly engage in

the execution of GrantMembership, issuing to the new member a signature on the group

message that verifies under the group public key, representing the group membership

Credentials. Once group members receive their membership tokens (i.e. Credential),

they can perform a Secret Handshake, using the Handshake algorithm.

Notice that the policy of a group could be that each new group member automati-

cally becomes a group manager as well; this could be enforced by accompanying each

invocation of GrantMembership with an invocation of UpdateManagers, equipping the

new user with both group membership and managership Credentials.

Let us now present the scheme through a syntactic definition of its algorithms:

• Setup(k) → (PKG, SKG,Γ
(n,t)
P ,MG) is a probabilistic polynomial-time algorithm

executed by a group of n managers, taking a security parameter k as input;

the managers agree on a message MG, produce a public key PKG and an access

structure Γ
(n,t)
P to the (unknown) secret key SKG;

• UpdateManagers(B ∈ Γ
(n,t)
P) → (Γ

(n′,t′)
P′) is a probabilistic polynomial-time algo-

rithm executed by authorized set of managers B ∈ Γ
(n,t)
P with cardinality t; the

algorithm generates a new access structure Γ
(n′,t′)
P′ ;

• GrantMembership(B ∈ Γ
(n,t)
P) → (σ) is a probabilistic polynomial-time algorithm

executed by authorized set of managers B ∈ Γ
(n,t)
P with cardinality t; the algo-

rithm generates a signature σ on the message MG, under the public key PKG;

• Handshake is a probabilistic polynomial-time two-party algorithm executed by

two users, ui and uj ; the algorithm is composed of two sub-algorithms:

135

6. TOWARDS DECENTRALIZED SECRET HANDSHAKES

– Handshake.RandomizeCredentials(σ) → (SH, state) takes as input the signa-

ture σ and produces the Secret Handshake message SH; it also creates the

internal state state;

– Handshake.Match(σ, PKG, SH,MG, state)→ (K1,K2) takes as input the sig-

nature σ, the public key, SH, the Secret Handshake message received from

the other user, the local state, the group message MG; the algorithm outputs

a pair of keys K1 and K2;

The algorithm operates as described in Figure 6.1

uj : Handshake.RandomizeCredentials(σj)→ (SHj , statej)

ui : Handshake.RandomizeCredentials(σi)→ (SHi, statei)

ui −→ uj : SHi

uj −→ ui : SHj

ui : Handshake.Match(σi, PKG, SHj ,MG, statei)→ (K1,i,K2,i)

uj : Handshake.Match(σj , PKG, SHi,MG, statej)→ (K1,j ,K2,j)

Figure 6.1: The Handshake algorithm executed by two users ui and uj .

K1,j = K2,i and K1,i = K2,j are equal, provided that both ui and uj have signatures

on MG.

6.3.3 The Scheme

In this Section we present a practical scheme based on the cryptographic building blocks

introduced in Section 6.3.1. The scheme is composed by the following algorithms:

• Setup this algorithm is executed by a set of n group initiators; each group ini-

tiator jointly engages in the Share algorithm, forming the access structure Γ
(n,t)
P ,

computing the group public key PKG = gx and shares of the private key SKG = x

that we represent as SKi
G = xi; the public parameters are the group public key

PKG = gx and a message MG; SKi
G represents the group managership Credential;

• UpdateManagers this algorithm is executed by a set of t group managers; each

group manager jointly engages in the Redistribute algorithm, forming a new access

structure Γ
(n′,t′)
P′ computing new shares of the private key SKi

G = xi and giving

them to the new set of group managers;

136

6.3 Secret Handshakes with Ad-Hoc Certification

• GrantMembership this algorithm is executed by a set of t group managers out of

the n total; each group manager checks the requesting users’ conformity to the

group join policy; after a successful check, each of the t group managers engages in

the Sign algorithm, forming a new signature on message MG, that verifies correctly

under the group public key PKG; the signature is then issued to the supplicant

user; the signature represents the group membership Credential;

• Handshake this algorithm is executed by two group members that want to mu-

tually authenticate as members of the group; the algorithm is composed of two

sub-algorithms:

– Handshake.RandomizeCredentials the user has a signature (w, v) on MG; the

user picks r
R← Zq and sends the pair (w, gr);

– Handshake.Match the user receives (w′, gr
′
); the user has a signature (w, v)

on MG; the user computes K1 =
(

(gx)w
′
w′h(MG)

)r
and K2 = (gr

′
)v where

gx is the group public key PKG, MG is the message of the group and r is the

random value picked upon the execution of Handshake.RandomizeCredentials;

Let us assume that two users ui and uj hold signature σi = (wi, vi) and σj =

(wj , vj) respectively. The two users can engage in a Secret Handshake scheme as

shown in Figure 6.2.

ui −→ uj wi, g
ri

uj −→ ui wj , g
rj

ui computes K1,i =
(

(gx)wj w
h(MG)
j

)ri
and K2,i = (grj)vi

uj computes K1,j =
(

(gx)wi w
h(MG)
i

)rj
and K2,j = (gri)vj

Figure 6.2: The Handshake algorithm executed by two users ui and uj .

K1,j = K2,i and K1,i = K2,j are equal, provided that both ui and uj have

signatures on MG.

137

6. TOWARDS DECENTRALIZED SECRET HANDSHAKES

6.3.4 A word on Revocation

The existence of Credentials comes along with the requirement for revocation. The

revocation of group managership Credentials should be treated differently from the

revocation of simple group membership ones.

The fact that single group manager Credentials fall into the hand of an attacker

is not so dangerous, thanks to the use of threshold cryptography: an attacker would

indeed need to get hold of at least t group managership Credentials, and since t is

a parameter of the system, this threshold can be set to meet the desired degree of

security. The most suitable solution to counter the theft of group manager Credentials

is therefore a proactive strategy: managership Credentials can be periodically updated

by invoking UpdateManagers so as to make sure that the probability that an attacker

gets hold of at least t valid managership Credentials is arbitrarily low.

As for group membership Credentials, revocation is required when either a group

member got his membership token stolen or when he no longer qualifies for membership.

The loss of a group membership Credential is somewhat thornier then the loss of group

managership Credentials, since group membership Credentials can be used directly to

authenticate to another group member.

There are two possible ways in which revocation of group membership Credentials

can be achieved: one, suggested by Boneh and Franklin in [BF03a], consists in period-

ically updating MG. For example, concatenating the current year to MG = “group1”

would make sure that only group members owning a signature on the message “group1

|| 2010” are able to successfully perform a Secret Handshake. At the expiration date,

a group member simply needs to apply for GrantMembership and, if it is still eligible,

get a new signature for the next time period, in this case, for the next year.

The second approach for revocation is a reactive one, similar to the one proposed

in [BDS+03]. This approach is based on the fact that upon execution of the Secret

Handshake, users exchange part of their group membership Credential, in particular,

the first component w of their signature (w, v). w is formed by the t group managers

that engage in the GrantMembership, who know this value. Consequently, should this

Credential be revoked, the t group managers can just forge a new signature on the

message “w is a revoked group membership token” and broadcast it to all group

members.

138

6.3 Secret Handshakes with Ad-Hoc Certification

6.3.5 Sketch of the Security Analysis

The scheme presented in the previous Section leverages on well-established primitives,

such as secret sharing, threshold signatures and Oblivious Signature-Based envelopes.

The security of these primitives has extensively been studied by the research community.

We therefore do not present formal proofs of security for the presented scheme; instead,

based on the security of the building blocks, we present arguments supporting the

security of the overall scheme.

Let us focus our analysis on three main typologies of adversary: passive adver-

saries, whose objective is to link users and group membership by observing multiple

Secret Handshake executions; active outsiders, who attempt to engage in Secret Hand-

shake without appropriate Credentials; and active insiders, whose aim is to engage in

authentication with Credentials bypassing revocation.

Let us start with the requirements of Unlinkability of users and properties (in this

case, group membership); Unlinkability of group membership is guaranteed assuming

that the proof of knowledge of the computed key pair does not reveal anything about

their value in case of failure. The security derives from the fact that the only group-

wide value x, present in public key, private key and its shares, is not exchanged during

the Secret Handshake execution.

As for Unlinkability of users, our scheme suffers from the same shortcomings of

Balfanz’s scheme [BDS+03], in that the scheme supports this security property only

if users are provided with a number of one-time-use signature pairs (w, v), and none

of them are ever reused. In addition, the t group managers that participated in the

generation of the signature can deanonymize the bearer of the signature since they have

generated its randomizer.

The goal of an active outsider is to authenticate as a group member without owning

a membership token. Such an adversary has a number of options to achieve the goal:

tricking group managers into issuing them a group membership token is not feasible,

since it would require tricking more then t managers, whereas t can be made big enough

to counter such attempts; collecting t shares of the private key is not feasible both for

the fact that t can be set arbitrarily big and due to the fact that shares can be proac-

tively revoked; finally, group membership tokens are DSS signatures, whose security

has been studied extensively in the literature [BP]; this signature scheme guarantees

139

6. TOWARDS DECENTRALIZED SECRET HANDSHAKES

resistance to existential forgery, therefore an active outsider has no possibility of forg-

ing membership tokens. Without a valid Credential, users cannot engage in successful

authentication; this follows from the property of semantic security against the receiver,

which is guaranteed by OSBEs [NT06].

Active insiders have similar goals as active outsiders, with the difference that they

dispose of a number of valid Credentials; this fact can be modeled with an oracle that

generates a number of signatures on MG, with the attacker then trying to generate a new

signature with a different randomizer (thus circumventing revocation). However, the

same considerations mentioned for active outsiders apply here: resistance to existential

forgery includes this oracle, and therefore its existence does not impact the security of

the scheme; the same applies for the semantic security against the receiver of OSBEs.

6.4 Conclusion

The focus of this Chapter has been the study of Secret Handshake schemes that do not

rely on a centralized certification entity; to this end, we have presented a first scheme

whereby a coalition of multiple, independent CAs can associate: each CA maintains

proof and verification control over the properties falling under its realm. Users can

conduct successful Secret Handshakes even in hybrid scenarios, with Credentials and

Matching References from different CAs. The scheme supports Secret Handshake with

Dynamic Controlled Matching. We have studied the security of the scheme, by lever-

aging on the security of the scheme introduced in Section 5.3, and by introducing

new security proof to show that colluding CAs cannot forge Credentials nor Matching

References for another CA.

In the second part of the Chapter we have presented a scheme that only sup-

ports classic Secret Handshakes, wherein, however, Credentials can be formed in an

ad-hoc fashion by group members themselves. The scheme builds on top of some well-

established cryptographic primitives such as secret sharing, threshold signatures and

oblivious signature-based envelopes.

140

Part II

Use Cases

141

Chapter 7

Secret Interest Groups in Social

Networks

7.1 Introduction

In this Chapter we present the first framework that allows the creation of Secret Interest

Groups (SIGs) in Online Social Networks (OSNs); SIGs are self-managed groups formed

outside of the social network, around secret, sensitive or private topics. Members

exchange Credentials that can be used inside the social network to authenticate upon

friendship requests or to secure user-generated content. To this end we leverage the

cryptographic algorithms presented in Section 6.3 to build a practical scheme, and we

describe a java implementation of the framework for Facebook.

In the sequel of this Chapter we first study the operational and security requirements

of a generic SIG framework; then, we describe the implementation of the SIG framework

suited to the Facebook OSN platform. To the best of our knowledge this work represents

the first effort towards a solution for this interesting problem.

7.2 Problem Statement and Motivation

Ever received a friendship request on Facebook reading ”Hi, I’m John Smith, add me

as a friend, we were classmates at university“, remaining clueless about who this person

is? Or ever been told that there is a profile under your name on a given social network,

except you have never created such profile? If you are avid social network users, the

143

7. SECRET INTEREST GROUPS IN SOCIAL NETWORKS

answer to the first question is most likely yes, and a good percentage will answer yes

to the second question too.

Indeed Online Social Networks (OSN) are becoming one of the most prominent

communication technologies. Platforms as Facebook now count millions of users that

are sharing information every day. Since the content is in many cases hosted on the

OSN provider, OSN users can be profiled and offered detailed advertisement to support

the OSN provider’s revenues from advertisement.

A problem which is particularly felt among social network users is identity theft

and identity spoofing [CT09; Pir08]. The root of the problem is that in many OSNs

there is little or no verification that a person that joins the social network is really who

he or she claims to be. This shortcoming needs to be combined to a second one: social

network users base the decision on whether to accept a friendship request on name,

pictures and fragments of text, information that is often easily retrievable elsewhere

on the Internet. It is therefore relatively simple [BSBK09] for an attacker to set-up a

profile on an OSN, either impersonating a legitimate party or based on an imaginary

identity, and then to convince other users to accept friendship request, in order to have

access to their private information that is shared with friends.

To improve the security of this process, users could be asked to provide Credentials

along with the friendship request. However to be meaningful, Credentials cannot be

self-generated, but need to be generated and maintained after verification by a third

party: this task is cumbersome and expensive and on the one hand, it is unrealistic

to expect a central entity (the social network provider for example) to attend to it for

free, and on the other hand, users are not likely to pay for such service.

A viable solution consists on users creating ad-hoc, trusted groups outside of the

social network, issuing group membership Credential and presenting such Credentials

upon friendship invitations within the social network; the same happens with friendship,

which is formed outside of the social network and then leverages on the social network

to foster communications between friends.

A natural evolution of the aforementioned trusted friends groups are Secret Interest

Groups (SIG), user-created groups with particular attention to confidential or simply

privacy-sensitive topics. Indeed users of online social networks are often also exchanging

personal and sensitive material; moreover, OSNs are more and more the theater of

political, religious debate, often used as means to exchange confidential material that

144

7.3 Design of the SIG Framework

cannot go through official channels as it has been the case for instance in Iran during

the recent post-electoral turmoils [TW09].

Our goal in this Chapter is therefore the creation of a framework that supports

the formation and evolution of Secret Interest Groups. With our framework, users are

able to handle the joining and leaving of members, to revoke or grant administration

privilege to members, and to grant Credentials that members can use to secure their

relationship with other members in a social network. The design of the framework

raises two challenges: the framework should (i) suit the requirements of ad-hoc groups,

namely, it should not require a centralized entity but operate in a distributed fashion

and (ii) it should be possible to implement it in a real OSN, with all the constraints

thereof, for instance, the scarcity of direct connections between users, communication

patterns centralized at the OSN servers and the fact that users are not necessarily

simultaneously online.

The SIG framework that we have designed and implemented, supports the afore-

mentioned technical requirements along with the high security requirements akin to

secret groups. These groups are secret in the sense that membership to a SIG is a sen-

sitive information that users are reluctant to expose publicly. A SIG can be for instance

centered around religious, political, sexual interests, such that users are very interested

to interact with other users that share the same interest, but extremely reluctant to

admit publicly that they belong to such an interest group. This notwithstanding, a SIG

can be centered around less secret topics, that still represent privacy-sensitive topics

requiring a certain degree of security or privacy. The proposed framework therefore

addresses the more complex case of secret groups, but can be applied to simple private

user groups too.

7.3 Design of the SIG Framework

The SIG framework can be split into two main parts: OSN external and OSN internal.

As the names suggest, the main difference is that some of the algorithms of the SIG

framework will operate outside of the social network, independently of it, while other

algorithms will be executed in the social network, using the social network itself as a

data transport medium, in order to secure further communications among the social

network users.

145

7. SECRET INTEREST GROUPS IN SOCIAL NETWORKS

OSN external algorithms deal with the creation and maintenance of the Secret

Interest Group outside of the social network: as real friendship happens outside of

the social network and is then used to create some links inside of it, a secret group is

created outside of the social network and it is used to secure friendship links established

within. OSN internal algorithms instead deal with authentication, handshaking and

encryption of content among users of the social network, using the social network as a

data transport medium for cryptographic messages.

7.3.1 OSN external

All OSN external algorithms must take into account that the SIG is an ad-hoc group.

We will therefore adopt three design guidelines: (i) there should be no central entity,

(ii) any entitled user should be able to act as a central entity and (iii) algorithms

should be “thresholdized”, in the sense that to be performed successfully they need

the cooperation of at least a minimum number of entitled users. Respecting these

guidelines results in the role of the central entity being split and spread among entitled

users.

We assume that the creation of a new SIG group is the task of an initial set of SIG

managers, that creates the group and handles the joining of the first SIG members.

The initial set of SIG managers may reserve the ability of handling the joining of other

users to themselves only, or may endorse other users with this capability as well. The

difference between SIG managers and SIG members is substantially that SIG managers

are normal SIG members who are also responsible for appointing new SIG managers and

to allow new members to join the SIG. From this, we derive the first two requirements

of SIG Join:

• RExt1: at any point in time, the set of SIG managers must be non-empty;

• RExt2: only a subset of SIG managers can appoint new SIG managers;

To enhance the security of SIGs, we require that one SIG manager alone is not able

to perform either tasks: both procedures require instead a minimum number of SIG

managers to be involved in their execution.

146

7.3 Design of the SIG Framework

• RExt3: appointing new SIG managers and handling the joining of new members

are distributed tasks, that no SIG manager alone can handle; instead, a joint

effort of a minimum number of t SIG managers is required;

Prior his enrollment in the SIG through a join operation, a user must undergo

offline verification carried out by a SIG manager; the purpose of this verification is

to ensure that all members are consistent with the SIG join policy. This procedure is

group-specific and requires different controls depending on the nature of the SIG: for

example, in a SIG revolving around political militancy, party membership, background

check or face-to-face interview could be the check that a user is required to pass before

being admitted in the group; for a SIG representing a project consortium, it may

be instead sufficient to send the membership Credentials using the consortium email

address. The same must be true for SIG managers.

• RExt4: SIG managers will admit new SIG members or new SIG managers only

after checking their compliance to the SIG join policy;

SIG members and SIG managers receive membership Credentials and managership

Credentials to certify their roles. An additional requirement aims at making sure that

these Credentials cannot be forged or modified:

• RExt5: no coalition of less then t SIG members or SIG managers is able to forge

a new Credential (both membership or managership);

The existence of Credentials comes along with the requirement for revocation. We

will treat the revocation of SIG managership Credential differently from simple SIG

membership Credentials. Credential revocation can be performed based on either re-

active techniques or proactive ones. The proactive technique consists of embedding

time-limits in the Credentials, or forcing periodic updates of the Credentials with short

lifetime. The reactive technique singles out revoked Credentials by publishing a revo-

cation handle for each revoked Credential to an authenticated public list.

The fact that a SIG manager Credential falls into the hand of an attacker is not

so dangerous, thanks to requirement RExt3: an attacker would indeed need to get

hold of at least t SIG managership Credentials, and since t is a parameter of the

system, this threshold can be set based on the desired degree of security. The most

147

7. SECRET INTEREST GROUPS IN SOCIAL NETWORKS

suitable solution to counter the theft of SIG manager Credentials is therefore a proactive

strategy: managership Credentials can be periodically updated so as to make sure that

the probability that an attacker gets hold of at least t valid managership Credentials is

arbitrarily low.

As for SIG membership Credentials, revocation is required when either a SIG mem-

ber got his membership token stolen or when he no longer qualifies for membership. The

loss of a SIG membership Credential is more critical then the loss of SIG managership

Credentials, since SIG membership Credentials can be used directly to authenticate to

another SIG member or to access content of a SIG member, as we shall see in the next

Section; therefore a reactive revocation approach is required. Promptly detecting that

a Credential has fallen in the hands of an attacker is a vital requirement: for stolen

Credentials this is quite straightforward, since the legitimate user that suffered the

theft can realize it and report it (the situation is a bit more complex in case Creden-

tials are stolen due to a virus/trojan compromising the system but leaving the attacker

unaware, but this aspect is out of the scope of this thesis). Much more complex is

the case of detecting a once legitimate user betraying his allegiance to the SIG and

colluding with an attacker, or becoming one himself: however this aspect is orthogonal

to our work and represents a separate area of research. We therefore assume that the

following assumption holds:

• RExt6: stolen SIG membership Credentials or Credentials belonging to a user

that has become malicious are eventually detected as such;

Notice that Credential theft or an insider becoming malicious are very different

issues from identity theft and identity spoofing, against our scheme offers a protection.

Indeed the latter are attacks that are very simple to mount, requiring to fake a real user

profile with some publicly available data, and to lure some individual into believing

that he is interacting with the legitimate user. The former instead requires to steal

Credentials that are kept secret and can be very well protected, or to convince a user –

who initially was granted membership to the SIG – to betray his allegiance to the SIG.

7.3.2 OSN internal

A SIG member eventually wants to add another alleged SIG member to his list of

friends through the standard social network invitation process, exchange content or

148

7.3 Design of the SIG Framework

chat in a secure way with that member, both operations that occur within the social

network. Two main algorithms are therefore required: mutual authentication of two

SIG members and encryption of content for fellow SIG members. The first requirement

is then straightforward:

• RInt1: only a legitimate SIG member can successfully authenticate to another

SIG member or receive content from the latter;

Keeping in mind that SIGs are by definition secret or privacy sensitive, the invitation

process is crucial, because during the invitation process, a legitimate member (the

inviter, the invitee or both) does not yet know whom he is interacting with. Indeed,

sending a friendship request on the grounds of common SIG membership would imply

admitting to belong to the SIG for the inviter; accepting the request would mean

the same for the invitee. Inviter and invitee have no incentive in disclosing their SIG

membership unless they can be sure that they are interacting with another SIG member.

Such authentication problem can be solved by Secret Handshakes. Upon handshake

between two SIG members, due to the nature of SIGs, users are reluctant to disclose

their affiliation to the SIG: they want to do so just when they are sure to be interacting

to another legitimate SIG member. From this observation, we derive the following

requirement:

• RInt2: when two OSN users are trying to authenticate as SIG members, either

both learn that they both belong to the SIG or they do not learn anything at all;

This implies that proof of membership and verification of membership happen simulta-

neously and atomically. Revocation should respect this requirement, in that revocation

of a SIG membership Credential should prevent its owner from both proving or verifying

membership to the SIG.

7.3.3 Security and Adversarial Model

There are mainly four different actors in our SIG framework: the OSN provider, the

OSN user who is not a SIG member, the OSN user who is a simple SIG member and

finally the OSN user who is a SIG manager. Each of these actors have different goals

and different capabilities.

149

7. SECRET INTEREST GROUPS IN SOCIAL NETWORKS

The OSN provider can be modeled as a Dolev-Yao [DY83] type of intruder: although

unlikely to meddle with the users’ content, the OSN provider effectively controls the

network and in theory has the possibility to read, modify and drop each and every

message that is being exchanged in the OSN. In reality, the OSN provider is more

likely to behave as a Honest-But-Curious adversary, whose goal is to perform data-

mining and to profile users so as to gather data that – depending on the regulations of

the country where the OSN provider has its legal body – can be sold to third parties, or

to simply use this information to offer specific ads to users thus gaining revenues from

advertising. From the point of view of a SIG, the OSN provider is interested in passive,

monitoring attacks, such as discovering whether a user is part of a SIG, in discovering

the nature of a SIG and the type of content that is being protected before exchange

among SIG members. The OSN provider can of course spawn fake OSN users, but

cannot become a SIG member since SIG membership is given only after compliance

check with the SIG join policy (RExt4). The main goals of this type of attacker are

therefore linking different users to the same SIG, thus creating a list of SIG members;

also, tracing the same member over multiple executions of SIG related operations.

Simple OSN users can also be modeled as Dolev-Yao intruders for the following

reason: the OSN provider (a Dolev-Yao attacker by definition) can both spawn OSN

users or collude with real OSN users. Thus, the objectives of misbehaving simple OSN

users are similar to the OSN provider, with the addition of active attacks, where the

attacker engages in the authentication protocol with legitimate SIG users with the

objective of masquerading as a legitimate SIG user.

A SIG manager/member has already access to the information a simple OSN

user/OSN provider is looking for. Under the assumption that the revocation mech-

anisms hold, a SIG member/manager that loses or maliciously gives away Credentials

will eventually be caught. The goal of such type of attacker is therefore to generate

fresh SIG membership Credentials to circumvent revocation, or to appoint new SIG

managers without the consent of a majority of managers.

7.4 The SIG Framework

In order to build a scheme that satisfies the aforementioned requirements, we leverage

on a number of well established cryptographic primitives, introduced in Section 6.3.1.

150

7.4 The SIG Framework

In this Section we describe our SIG framework based on the algorithms described in

Section 6.3.3.

The SIG starts with the invocation of Setup by the initial set of n SIG managers, the

SIG initiators. At the end of the algorithm, the SIG managers have picked a message

that will be used later on for the handshake between two users on the social network,

they have agreed on a known public key and they have distributed secret shares of

an (unknown) private key, representing the SIG managership token. Notice that the

actual private key is unknown; it could be known if at least t SIG managers colluded

and reciprocally revealed their shares, however the threshold t can be set accordingly

in order to discourage such attempts. In situations where hierarchy of SIG managers is

important, each SIG managers can be supplied a different number of shares according

to their importance.

The algorithm UpdateManagers can be invoked by at least t SIG managers to redis-

tribute different shares of the same SIG private key to a different set of SIG managers,

fixing a new threshold t′. The reasons for invoking the UpdateManagers are mainly

twofold: (i) if the group grows, new SIG managers need to be appointed and therefore

receive shares SKi
SIG of the private key; (ii) when a group of (less then t) SIG man-

agers needs to be revoked1, t other SIG managers can generate a different set of shares,

not related with the old set, and distribute the new shares to all managers but the

ones whose manager rights need to be revoked, thus effectively preventing the latter

from further executing SIG manager tasks. Regular invocations of UpdateManagers can

be scheduled so that new shares are proactively being distributed and the population

of SIG managers can be both purged of elements that are no longer trustworthy and

enriched with new trusted ones.

t SIG managers can also issue SIG membership tokens, that users can use to authen-

ticate on the social network. To this end, t SIG managers execute GrantMembership,

issuing to the new SIG member a signature representing the SIG membership token.

Once group members receive their membership tokens, they can interact more securely

on the social network platform, using the following algorithms:

1Notice that revoking the SIG managership of t SIG managers or more is not feasible since in

principle they can reconstruct the SIG secret key SKSIG; nonetheless, this can be prevented by setting

t with a value that is sufficiently large.

151

7. SECRET INTEREST GROUPS IN SOCIAL NETWORKS

EncryptForSIGMember : this algorithm is executed by a SIG member (sender) that

wants to encrypt some content prior to its publication on the social network

platform, to be received by a second SIG member (receiver); receiver and sender

engage in the OSBERound algorithms, acting as P1 and P2 respectively; output

of OSBERound is a key that the sender will use to encrypt the content before

its publication on the social network. Only if the receiver is a legitimate SIG

member, will he be able to reconstruct the key and therefore decrypt the content

of the message;

SIGMembersHandshake : this algorithm is executed by two SIG members that want to

authenticate to one another as members of the SIG; the two members engage in an

execution of Handshake, at the end of which, each party obtains two keys; the two

parties then have to prove one another knowledge of both keys simultaneously; if

this is successful, the Handshake is successful;

EncryptForSIGMember can be used for instance when trying to send a message or to

post some content that is stored in the OSN servers and displayed to the recipient upon

its access to the OSN; SIGMembersHandshake instead is the ideal candidate for securing

the friendship invitation process in the OSN, but can also be used to secure synchronous

events like chat sessions. For clarity’s sake, SIGMembersHandshake is summarized in

Figure 7.1: two users, U1 (holding the signature (w1, v1)) and U2 (holding the signature

(w2, v2)) engage in two OSBERound sessions establishing two keys each. Then, they

engage in a challenge-response protocol to prove to one another knowledge of the keys

thus computed: as an example for the latter, we have decided to use a challenge-

response protocol similar to the one used in Kerberos [NT94], with the addition that

E is an authenticated encryption mode of operation for cryptographic block ciphers,

such as OCB [RBBK01] (Offset Codebook Mode): this way U1, upon receipt of the last

message, is already able to tell whether he is interacting with a legitimate SIG member.

7.5 Implementation in Facebook

In this Section we describe the implementation of a working proof-of-concept of the

SIG framework. We have chosen to focus our implementation efforts only to the OSN

internal part, and have picked Facebook as our target OSN. These choices are motivated

152

7.5 Implementation in Facebook

U1 −→ U2 w1 = ge1 , gr1

U2 −→ U1 gr2 , w2 = ge2

U1 computes K1 =
(

(gx)w2 w
h(MSIG)
2

)r1
K ′1 = (gr2)v1 and k1 = H(K1||K ′1)

U2 computes K ′2 =
(

(gx)w1 w
h(MSIG)
1

)r2
K2 = (gr1)v2 and k2 = H(K2||K ′2)

U2 −→ U1 Ek2(N)

U1 −→ U2 Ek1(N + 1)

Figure 7.1: SIGMembersHandshake and relative challenge-response upon friendship invi-

tation.

by the fact that the implementation of the OSN external algorithms does not raise any

interesting challenge; the choice of Facebook as OSN platform is motivated by its

popularity, which could ease the acceptance and spreading of our SIG framework.

The OSN internal part of our SIG framework has been implemented as a java http

proxy. The intended use case is the following: a SIG member runs the proxy, which

intercepts only requests toward Facebook servers. The proxy modifies requests and

responses, running the Secret Handshake protocol upon membership invitation and

chat events; notification of the success or failure of the protocol is provided to the user

through modifications of the html that is displayed in the browser. Among the features

that still need to be implemented, on which we are concentrating our efforts, the two

most prominent ones are the encryption of messages and a feasibility study for the

porting of the software to a standard Facebook application.

The main challenge in implementing the OSN internal algorithms as part of a real

social network, is that users of a social network are not always online, and cannot

communicate directly, whilst the Secret Handshake protocol – for instance – is an

interactive protocol. The challenge is therefore to adapt an interactive protocol to a

non-interactive environment. In the sequel of this Section we will therefore describe in

details how the proxy operates upon a friendship invitation event at both the inviter

and the invitee.

In Figure 7.2 we can see how the proxy operates upon a friendship request, triggered

by message 1. The message is not forwarded immediately to the Facebook servers;

instead the proxy looks up the profile of the invitee, extracting from the “About me”

153

7. SECRET INTEREST GROUPS IN SOCIAL NETWORKS

Figure 7.2: Operations of the proxy upon a friendship request.

154

7.5 Implementation in Facebook

field of the profile (as can be seen in Figure 7.3) the invitee’s handshake (messages 2

and 3).

Figure 7.3: “About Me” section of a profile containing the first round of the handshake.

Then the proxy creates its own handshake message, derives the key which is used to

encrypt a random nonce N. Handshake message and encrypted nonce are then serialized,

base64’ed, and included as a POST parameter “message” of message 1. This parameter

usually contains the message that a user can send upon a friendship invitation to the

invitee, as shown in Figure 7.4.

Figure 7.4: Message sent upon friendship invitation from the inviter to the invitee.

The resulting message is finally forwarded to the Facebook servers (message 4).

Let us assume that the invitee eventually accepts the request; the inviter is notified

in a number of ways depending on whether he is online or not at the moment of the

acceptance: the proxy intercepts this event in all its possible forms; as an example, in

message 5 and 6, the browser is notified through the response to an infinite javascript

loop that originates AJAX requests to fetch the updates. As can be seen, the confir-

mation message is not sent back directly to the browser. Instead, the proxy searches in

the Facebook inbox for a message from the invitee with the response to the challenge

(messages 7 to 10). If none is found or the message (after base64 decoding and deseri-

alization) cannot be decrypted to be N + 1, then the standard acceptance of message 6

155

7. SECRET INTEREST GROUPS IN SOCIAL NETWORKS

Figure 7.5: Operations of the proxy upon a friendship response.

156

7.5 Implementation in Facebook

is forwarded back to the client; otherwise a modified confirmation message that high-

lights the SIG membership of the invitee, like the one of message 12, is fed back to the

browser.

Figure 7.5 shows instead how the proxy operates on the invitee’s side. At first,

the proxy publishes the invitee’s handshake message in the “About me” section of the

invitee’s profile (messages 1 and 2). The operations begin with the client visiting the

page with the pending requests (message 3). The page is fetched and the message that

the inviter has included in the invitation is decoded and deserialized to the handshake

message and the inviter’s challenge M . Then the proxy, using the handshake message

that had been serialized an base64’ed in the “About me” section of the profile (message

4), derives the key and attempts the decryption of M into N ; since the encryption

scheme – AES OCB – provides authenticity, a successful decryption implies that the

inviter is a certified SIG member. In this case, the html that is sent back to the client

(message 5) is modified so as to notify that one of the inviters is a SIG member. At

this point, the user may decide to accept a friendship request. If so, the acceptance

message is not forwarded right away; first, a Facebook message is composed, with the

string “AAAProxy” as subject, and with the encryption of N + 1 in the body (message

6). Facebook uses captcha to prevent proxies like ours from performing automated

actions (message 7); the proxy cannot clearly solve the captcha challenge, but can

nevertheless forward the request back to the client to have it solved instead. The

message, with the solution to the captcha is then sent to the Facebook server (message

8). Upon receipt of the confirmation (message 9), the proxy finally accepts the original

friendship request and forwards the response of the server back to the client (messages

10 to 12). Right after the friendship acceptance has been sent, the steps of messages

1 and 2 are repeated, thus creating a new handshake message to be used for a new

request. An arbitration protocol needs to be devised in case two invitations use the

same handshake message.

7.5.1 What still needs to be implemented

There are several missing features in our framework, which we list in this Section.

First of all, we have not implemented the EncryptForSIGMember algorithm: this

algorithm could be used for instance to encrypt Facebook mails that are exchanged

between users. However, encrypting messages posted on user’s Walls would require a

157

7. SECRET INTEREST GROUPS IN SOCIAL NETWORKS

different algorithm. Indeed Facebook mails can be modeled as one-to-one communi-

cations, whereas a post on a Wall follows a one-to-many pattern, and would require a

different type of algorithm.

The SIGMembersHandshake algorithm can however be used to encrypt a different

type of communications, namely chat events: indeed a chat is a synchronous one-to-

one communication, perfectly suited to be secured by running a Secret Handshake first,

agreeing on a key and using it to encrypt the sentences that are exchanged between

the two users.

Another aspect that may require improvement is that simple base64 encoding is

used to exchange cryptographic messages on Facebook. This choice gives raise to two

issues: first, the OSN provider may refuse to be used to exchange binary unintelligible

information over fields that are meant to exchange short text strings. If our framework

were to become popular, Facebook would most certainly attempt to stop it by banning

profiles that misuse these fields. Second, the fact that a user publishes base64’ed strings

in the About Me section of his profile, may raise suspicions on the fact that the user

may be a member of some group, although it can be showed that from an information

security perspective, the information published therein does not leak any information

on group membership. These two problems may be solved by using a different way

of encoding the binary information, perhaps one that maps binary data to a plausible

text in some language.

Finally, the way our application reacts to a successful or unsuccessful handshake can

be extended. Indeed, in its current state, the application reacts as follows: the invitee is

the first one to know if the inviter is a SIG member. The choice whether to accept or not

the friendship is however still in the hands of the user. On the other hand, the inviter

knows whether the invitee is a SIG member or not only after the friendship has been

confirmed by the invitee. Potentially, a malicious invitee disposes of a window of time

in order to access the inviter’s profile regardless of its membership. The application can

be improved as follows: the inviter sets the access rights for the (still unverified) invitee

to a very minimum. Then, when the friendship has been confirmed and the application

receives a response as to the invitee’s membership, the application can either cancel

the newly established friendship in case of a negative response, or enhance the access

rights for the (now verified) group member.

158

7.6 Conclusion

7.6 Conclusion

In this Chapter we have focused on the problem of securing user interaction in online

social network, mainly through the creation of self-managed user groups that hand

out Credentials to their members. Then, secret-handshake based authentication and

content encryption are used in the social network. To this end we have defined a set

of requirements, sketched a security model, presented a framework of cryptographic

protocols and introduced a proof-of-concept java implementation, working in the ever

growing Facebook platform.

The step from design to implementation has raised interesting challenges. Indeed

the protocol that we have presented may guarantee a degree Unlinkability of Users by

exchanging one-time Credentials; the ad-hoc and threshold nature of the protocol can

make this approach realistic, since it could be assumed that at any point in time, at

least t SIG managers are available and able to supply new Credentials. However, if we

desire to use Facebook as a data transport medium for cryptographic messages, linking

is by definition possible since upon joining the Facebook network, users are assigned

a univocal profile identifier, which is carried at any message exchange. It is therefore

interesting to notice that a protocol that in theory preserves a security property loses

it once it is implemented on a given platform.

This work is also relevant for another aspect: it constitutes a significant real-life

application for Secret Handshakes. It could be debatable that not every Secret Interest

Group requires such high security requirements, but certainly – seeing how Facebook

and other OSNs are becoming the arena for exchange of very sensitive and private

information – we expect that this requirement will arise, and our scheme represents a

first step towards meeting this requirement.

159

7. SECRET INTEREST GROUPS IN SOCIAL NETWORKS

160

Chapter 8

RFID-Based Supply Chain

Partner Authentication

8.1 Introduction

The growing use of Radio Frequency IDentification (RFID) in supply chains brings

along an indisputable added value from the business perspective, but raises a num-

ber of new interesting security challenges. One of them is the authentication of two

participants of the supply chain that have possessed the same tagged item, but that

have otherwise never communicated before. The situation is even more complex if we

imagine that participants to the supply chain are business competitors.

In this Chapter we present a novel cryptographic scheme that solves this problem.

In our solution, users exchange tags over the cycle of a supply chain and, if two entities

have possessed the same tag, they can agree on a secret common key they can use

to protect their exchange of sensitive business information. No rogue user can be

successful in a malicious authentication, because it would either be traceable or it

would imply the loss of a secret key, which provides a strong incentive to keep the tag

authentication information secret and protects the integrity of the supply chain. The

protocol presented in this Chapter shares some similarities with Secret Handshakes.

We provide game-based security proofs of our claims, without relying on the random

oracle model.

161

8. RFID-BASED SUPPLY CHAIN PARTNER AUTHENTICATION

8.2 Motivation

Radio Frequency IDentification (RFID) is a modern technology that supports tracking

and tracing of tagged items in supply chains. Each item is equipped with an RFID tag

that carries a unique identifier. This tag can be read via radio frequency communication

and multiple tags can be read at once.

There are active and passive RFID tags. Active RFID tags have their own power

supply while passive tags solely operate on the power of the signal emitted by the reader.

The reader is a special device that can interoperate with the tags and read the identifiers

stored in their memory. More complex and powerful tags can store information in

memory and even perform simple cryptographic operations such as hashing.

A major application of RFID is supply chain management [WB08; BWL06; AM05].

In the supply chain each item can now be tracked using its unique identifier. The

benefit of this tracking and tracing technology unleashes its true potential, when the

supply chain partner share their event data. An event happens when a tag is read. At

its most basic level this generates a tuple

〈organization, identifier, timestamp〉

This tuple is usually augmented with additional information, such as reader identifier,

type of event (e.g. receiving, shipping, unpacking, etc.), and additional fields depending

on the type of event.

Companies are interested in sharing information linked to events for many reasons:

first, a consumer may be interested in knowing the steps that the product he purchased

has gone through. A company may need to recall flawed products and be interested in

knowing the list of retailers that have actually sold them. Results from collaborative

research projects such as Bridge or Ko-RFID [Kon] show that companies are reluctant

to reveal their participations to a supply chain for a number of different reasons, such

as fear of espionage or because it could possibly be embarrassing to reveal participation

to the production of a severely flawed product recalled from the market. As a result,

information is stored safely by each partner and willingly disclosed only after successful

authentication.

In order to share the data linked with events, companies connect to a global network,

currently being standardized by the EPCglobal consortium. This network contains a

162

8.2 Motivation

discovery service, which stores all companies that have event data for a specific tag. In

order to retrieve all information about a tag, one contacts the discovery service with

its request which then returns the list of all companies that handled the product. Then

one can contact each company individually and ask to retrieve its event data.

The main challenge with this system, is that on the one hand companies have an

incentive to share this information so as to facilitate their business, on the other, this

information is highly confidential and (possibly competing) companies are reluctant

to trust one another. Therefore, a big concern is the possibility of espionage of a

competitor’s supply chain [SS08], carried out for instance by retrieving the event data

about items in a competitor’s supply chain.

Imagine two companies – which might have never communicated before – that con-

tact each other with the help of the discovery service and need to mutually authenticate:

the only thing they have ever had in common is that they have both been in possession

of the same tag at some point. These companies need to prove to each other that they

have possessed the same tag.

There are a number of attacks that might happen in this scenario:

1. An impostor might request information about tags he has never possessed, for

example in order to track the supply chain of his competitor.

2. A malicious company might supply rogue information about tags he had never

possessed, for instance so as to hide the origin of counterfeited products.

A simple solution to this problem is to store a shared secret on the tag, so that

everyone who possessed that tag knows it and can use it to secure subsequent commu-

nications.

Unfortunately, this solution has many disadvantages. First, there is no incentive

for someone who possessed the item to preserve the shared secret, since the disclosure

of the secret cannot be traced back to him. Second, the tag could be maliciously read

by an outsider who does not legitimately belong to the supply chain.

Therefore, in order to have a secure solution to the problem at hand, we need to

develop a scheme more complex than a simple shared secret-based mechanism.

163

8. RFID-BASED SUPPLY CHAIN PARTNER AUTHENTICATION

8.2.1 Overview of the Solution

In this Chapter we present a novel scheme that solves the aforementioned problem.

The intuition is that the information stored on the tag is tied to an identity. Only

the holder of the trapdoor information (that identity’s private key) can actually prove

possession of the tag. The information stored on the tag is updated as the tag changes

possession; the update is performed through the help of a trusted third party (TTP).

The involvement of the TTP makes it possible to trace the item throughout the supply

chain.

Our solution overcomes the disadvantages of the simple solution. If someone il-

legitimately requests information for a tag, he can be exposed by the TTP. On the

other hand, impersonation is possible only if a party’s private trapdoor is exposed. A

supply chain partner that wants to let another party authenticate, must then decide to

either be traceable or to reveal his secret key and relinquish all the business sensitive

information to him.

An interesting property of our solution, is that RFID can be effectively used together

with complex cryptographic primitives: indeed, tags just act as carrier of cryptographic

envelopes, that are then used off-the-tag to perform complex security protocols. Our

technology already works with the simplest tags specified by the EPCglobal standard

(class 1 tags). The sole requirement is that tags must be able to store the minimum

amount of information required to perform the cryptographic operations. Tags do not

necessarily need to be rewritable: one could simply replace the old tag with a new

tag containing the new information: the decreasing price of hardware can justify this

choice.

8.3 Related Work

The security of RFID-based systems has been object of intense research over the past

few years, given the many threats related to the adoption of this technology [Jue06].

Many papers have focused on privacy-related issues [GJP05; LK06; JW07]. RFID

authentication protocols have received a lot of attention as well [YP08]. An interesting

key distribution application for RFID using advanced cryptography has been presented

in [JPP08]. Its main advantage is the use of aggregate packaging along the supply

chain while maintaining user’s privacy. However, to the best of our knowledge, our

164

8.4 Supply Chain Partner Authentication

scheme is among the first works that address secure interaction among participants of

an RFID-enhanced supply chain.

8.4 Supply Chain Partner Authentication

Assume Trent is a trusted third party that supports users in updating the information

stored on the tag as the tag changes of possession. Then our supply chain partner

authentication consists of the following algorithms or protocols.

Setup: Trent publishes some public parameters about the system known to every

participant.

Register: A new company Alice wants to join the supply chain and is contacting

Trent to register. They setup public/private information tied to Alice’s identity. Trent

returns to Alice her public and private information.

Initialize: Alice just created a new item and attached a tag to it. She creates the

secret information on the tag. She does so without Trent’s intervention.

Ship: Alice intends to ship the item to Bob and contacts Trent seeking for his sup-

port. Trent receives from Alice the information that Alice read from the tag, computes

the updated information for Bob and delivers it back to Alice.

Receive: Bob receives the item and stores its information, so that he can later

authenticate request for event data.

Authenticate: Alice and Bob want to mutually authenticate on the grounds of

having owned the same tag. They exchange random challenges to salt the instance of

the protocol, and mutually verify whether the other has owned the same tag. Afterward,

they share a key which they use to protect subsequent communications.

8.4.1 Preliminaries

Given a security parameter k, let (G1, ∗) and (G2, ∗) be two groups of order p for some

large prime p, where the bitsize of p is determined by the security parameter k. Our

scheme uses a computable, non-degenerate bilinear map ê : G1 × G1 → G2 for which

the Computational Diffie-Hellman Problem (CDH) problem is assumed to be hard. In

what follows, we denote Z∗q = {1, . . . , p− 1}.
Our solution uses Identity-based Encryption as a building block. Identity-based

encryption (IBE) was introduced in [Sha84] as an alternative to public-key encryption.

165

8. RFID-BASED SUPPLY CHAIN PARTNER AUTHENTICATION

In IBE any string can be used as an encryption key, e.g. one can encrypt an e-mail

using the recipient’s e-mail address. The recipient then obtains the decryption key (for

his identity) from a trusted third party after successful authentication.

The procedures of an IBE scheme are

• Setup: The TTP publishes public parameters.

• Encrypt: transforms a plain text using an arbitrary string as key into a cipher-

text.

• Get Decryption Key: The TTP issues a decryption key for an identity.

• Decrypt: transforms the ciphertext using the decryption key into its original

plaintext again.

The first practical IBE scheme was presented in [BF03b]. It is based on cryp-

tographic pairings and is proved IND-ID-CCA secure under the bilinear decisional

Diffie-Hellman assumption in the random oracle model.

In our scheme every party has an identity; following the Alice and Bob convention,

we refer to a message encrypted for Alice as IBEA(m). We will treat identity based

encryption as a building block and will build our scheme independently on top of it.

Finally we describe the hash function that is used in the scheme that we present.

Our construction leverages on the work proposed by Boneh and Boyen in [BB04] and

later improved by Waters in [Wat05].

Let g
R← G1; let us also choose n+ 1 random values u0, u1, . . . , un

R← Z∗q ; we assign

U0 = gu0 , U1 = gu1 , . . . , Un = gun . If v ∈ {0, 1}n is an n-bit string, let us define

h(v) = u0 +
∑

i∈V ui ∈ Z∗q , where V ⊆ {1, . . . , n} is the set of indexes i for which the

ith bit of v is equal to 1. We also define H(v) = U0
∏
i∈V Ui = gh(v) ∈ G1.

With such an approach, we can represent in G1 strings of size n, or alternatively,

strings of arbitrary length, pre-processed with a hash function whose block size is n.

8.4.2 The Scheme

In this Section we present a solutions to the problem presented in this Chapter. We

describe the implementation of the algorithms and protocols that we introduced in the

last Section. RFIDAuth consists of the following algorithms:

166

8.4 Supply Chain Partner Authentication

• Setup

According to the security parameter k, Trent chooses (p, G1,G2, g, ê), where g is

a random generator of G1. He also picks u0, u1, . . . , un
R← Z∗q and assigns U0 =

gu0 , U1 = gu1 , . . . , Un = gun . Finally, he picks α
R← Z∗q and sets S = gα and S′ =

gα
−1

. The system’s public parameters are params = {p,G1,G2, g, S, S
′, ê, U0, . . . ,

Un}. The values u0, u1, . . . , un and α are instead kept in Trent’s secret storage.

Trent finally initializes an IBE scheme and distributes its public parameters to

every user in the system.

• Register

Alice wants to register with Trent to enter the supply chain partner network.

She just needs to prove her identity to Trent, and then she receives from Trent

the secret key associated with her identity. In addition, she receives the value

IA = H(A)α which she stores secretly.

• Initialize

Alice wants to initialize a new tag. She chooses a random value ttag
R← Z∗q and she

computes X1 = Sttag IA
r, X2 = gr. Alice stores the pair (X1, X2) corresponding

to Alice’s Credentials that certify her possession of the tag; Alice also stores a

witness value W = H(A)r, whose role will be clearer later on. Alice should

destroy ttag immediately. Notice that the Initialize phase does not require the

intervention of Trent.

• Ship

Alice intends to ship the item with the tag to Bob. Alice contacts Trent and

indicates her intention by sending the tag’s ID, A, B, the pair (X1, X2) and

the witness W , read from the tag upon reception. We remind the reader that

X1 = Sttag IA
r, X2 = gr and W = H(A)r. Thanks to the witness values, Trent

can check whether ê(W, g) = ê(H(A), X2), thus making sure that the tuple really

corresponds to the identity of Alice. Trent in turn picks s
R← Z∗q and computes

X ′1 =
X1

Wα
IB

s = Sttag IB
s

X ′2 = gs

W ′ = H(B)s

167

8. RFID-BASED SUPPLY CHAIN PARTNER AUTHENTICATION

Then, Trent gives back the pair (X ′1, X
′
2) and the corresponding witness W ′ to

Alice. Upon receipt, Alice overwrites the old tuple with the new tuple on the tag.

For tracking purposes, Trent can compute Sttag =
X1

Wα
and store the triple

〈Sttag , A,B〉 in his database. The identifier Sttag is unique per tag and is never

changed, such that the TTP can build a complete forwarding pedigree of the tag.

Trent can then clearly identify any party divulging authentication information if

an impostor for a tag is identified.

A −→ T tag ID, A, B, Sttag IA
r, gr and H(A)r

T −→ A Sttag IB
s, gs and H(B)s

Figure 8.1: Ship Protocol.

• Receive

Bob receives a tag and reads the pair (X1, X2) and the witness W . Bob checks

whether ê(W, g) = ê(H(B), X2), to verify if the received tuple was indeed destined

to his identity. If he ships the item further, he applies the ship protocol. Otherwise

he stores the pair (X1, X2) in his database, associating it with the ID of the tag,

to be used later on for authentication.

• Authenticate

Let us assume Bob and Alice want to authenticate, proving to one another that

they have possessed a given tag. Let us assume that Bob initiates the handshake

by sending the tag identifier to Alice. Notice that both Alice and Bob possess

the pairs (X1, X2) stored upon Receive; let us add the subscript A (resp B) to

identify Alice’s (resp. Bob’s) tuple.

Alice picks a random nonce nA ∈ Z∗q , and then computes IBEB(H(B)nA , (S′)nA)

and sends it to Bob. Similarly Bob picks a random nonce nB ∈ Z∗q and computes

the pair IBEA(H(A)nB , (S′)nB) and sends it back to Alice.

If both Alice and Bob have taken part to the supply chain for the product iden-

168

8.5 Security Analysis

tified by the tag, they can derive a common shared key,

K =

(
ê(X1A, (S

′)nB)

ê(H(A)nB , X2A)

)nA

=

(
ê(Sttag IA

r , (S′)nB)

ê(H(A)nB , gr)

)nA

= ê(g, g̃)ttagnAnB

=

(
ê(Sttag IB

s , (S′)nA)

ê(H(B)nA , gs)

)nB

=

(
ê(X1B, (S

′)nA)

ê(H(B)nA , X2B)

)nB

thus proving to each other that they have legitimately handled the tag. In order

to seal the handshake, they can use any challenge-response protocol known in the

literature in order to prove to one another knowledge of the shared key without

leaking it.

B −→ A ID

A −→ B IBEB(H(B)nA , (S′)nA)

B −→ A IBEA(H(A)nB , (S′)nB)

A ←→ B challenge-response based on K

A ←→ B data exchange protected with K

Figure 8.2: Handshake.

Subsequent communications are protected using K to setup a secure channel.

8.5 Security Analysis

In this Section we analyze the security of the presented scheme. An authentication and

key agreement scheme calls for a proof showing that no attacker can fool a legitimate

user into thinking that he is somebody and that he has owned a given tag.

We therefore present a single game where we prove that an attacker is not able to

impersonate any other user: this includes protection from forgery, illegitimate shipping

and attacks to the authentication and key agreement scheme. In the security proofs we

do not rely on the random oracle model [BR93].

In our scheme every ship event needs the involvement of the TTP and the security

proofs confirm that this is unavoidable. Our scheme allows therefore complete tracing

169

8. RFID-BASED SUPPLY CHAIN PARTNER AUTHENTICATION

of the shipping events. Trent can thus built an entire shipping graph for each item. No

participant outside of that graph can perform a successful handshake.

This fact has an interesting consequence: if an unauthorized party is successful in

an illegitimate handshake, he could be blamed, and the TTP could also trace which

participant leaked the information. Therefore there is a strong incentive not to disclose

the information on the tag on purpose and the entire supply chain is tightly controlled.

Let us at first state a well-known hard problem upon which the security of our scheme

is based.

Definition 15 (Hardness of the Bilinear Decisional Diffie-Hellman Problem). The

Bilinear Decisional Diffie-Hellman Problem (BDDH) is hard if, for all probabilistic,

polynomial-time algorithms B,

AdvBDDHB := Pr[B(g, ga, gb, gc, gx) = > if x = abc]− 1
2

is negligible in the security parameter.

This probability is taken over random choice of g ∈ G1, a, b, c ∈ Z∗q . x is equal to

abc with probability 1
2 and is equal to a random number otherwise. This complexity

assumptions is well known in the cryptographic community, and has been used in the

proofs of many cryptographic schemes, for instance [CPP05].

8.5.1 Security of RFIDAuth

In this Section we investigate the security of the RFIDAuth protocol. Let us first of all

analyze a simple attack and show how the scheme prevents it. A user could eavesdrop

the communications that occur upon the Ship protocol, or just simply get hold of a

tag and extract the pair (X1, X2), and try to use that tuple to engage in a successful

handshake with a legitimate participant.

The scheme leverages on Identity Based Encryption to prevent this type of attack:

it is clear that – since handshake challenges are destined to a user and encrypted under

the public key of his identity – mere eavesdropping of tag information will not help to

break the secrecy of the challenge sent, and therefore every attack of this kind is vain.

We do not need to prove this, as we assume the existence of a perfect IBE scheme that

does not leak any information.

Nonetheless, in order to show that the scheme is sound, we present in the next

Section the security proof of resistance to impersonation, wherein we “switch off” IBE

170

8.5 Security Analysis

(or similarly, we give all the private keys to the attacker). What we prove, in short,

is that with all the information in the hands of the adversary but the one associated

with a challenge tag and a challenge user, the adversary is not able to impersonate the

latter. This game is broad enough as to include privacy of the key exchange from an

eavesdropper, collusion of several participants, forgery of rogue tag information and so

forth.

8.5.1.1 Impersonation Resistance

Consider an adversary A that has as its goal to run a successful handshake – thus

convincing another user that he has actually owned a tag – without disposing of the

legitimate information. In particular, A does not have the pair (X1v∗ , X2v∗) for a given

user v∗ and a given tag, both object of the challenge.

A is allowed to freely perform all the algorithms of the protocol. Then the simulator

B Initializes a challenge tag, and yet the adversary is able to get the information to

perform a successful handshake for that tag as any user of his choice (except the one

object of the challenge).

Finally, the attacker picks a challenge user v∗ and is required to run a successful

handshake, convincing the simulator that he is user v∗ having owned the challenge tag.

In particular, at the end of the game, the attacker is required to output the key K. We

call this game Impersonate.

Lemma 21. If an adversary A has a non-null advantage

ImpersonateA := Pr[A wins the game Impersonate]

then a probabilistic, polynomial time algorithm B can create an environment where it

uses A’s advantage to solve a given instance of the Bilinear Decisional Diffie-Hellman

Problem (BDDH).

Proof. We define B as follows. B is given a random instance (g, ga, gb, gc, gx) of the

BDDH problem and wishes to use A to check whether x = abc. The algorithm B

simulates an environment in which A operates.

Setup The simulator B sets an integer m = 4q where q is an upper bound on the

number of identities that the adversary will consider throughout his queries to the

various protocols. B then chooses k
R← {0, n} and chooses two random vectors

171

8. RFID-BASED SUPPLY CHAIN PARTNER AUTHENTICATION

X = {xi}ni=1
R← {0,m − 1}n and Y = {yi}ni=1

R← Z∗np . Following Boneh and

Boyen [BB04] and Waters [Wat05], we define the functions F (v) = (p −mk) +

x0 +
∑

i∈V xi, J(v) = y0 +
∑

i∈V yi and K(v) as

K(v) =

0, if x0 +
∑

i∈V xi = 0 mod m;

1, otherwise;

The simulator sets g as the one received from the BDDH challenge; the the

simulator sets U0 = (gb)p−km+x0gy0 and Ui = (gb)xigyi ; he then picks α
R← Z∗q ,

sets S = gα and S′ = gα
−1

and publishes the public parameters according to the

rules of the protocol. Notice that now, H(v) = U0
∏
i∈V Ui = gbF (v)+J(v), where

V is the set of indexes i for which the ith bit of the string at hand equals to 1.

Queries First of all, the attacker receives all IBE private keys: this way, the protection

of IBE is disabled. In the rest of this proof therefore, we omit the notation

IBE·(·).

The attacker can Register at his will as any identity vi he chooses, different from

v∗, receiving from Trent the value Ivi .

A can Initialize any tag as any user of his choice. We remind the reader that he can

perform this operation autonomously without the involvement of the simulator.

Upon execution of the Ship protocol, the attacker A sends to B the ID of a tag,

two identities vi and vj , the pair (X1 = Sttag Ivi
r, X2 = gr) and the witness

W = H(vi)
r. B computes


X ′1 =

X1

Wα
Ivj

s = Sttag Ivj
s

X ′2 = gs

W ′ = H(vj)
s

as mandated by the Ship protocol, and sends the pair (X ′1, X
′
2) and the witness

W ′ back to A.

Finally, A can perform the receive protocol by simply storing the received tuple

and associating it with the tag id.

B then Initializes a new tag, which will be the object of the challenge. A is then

entitled to receive – for any user vi of his choice – the information necessary to

run a successful handshake as that user, i.e. the pair (X1, X2). A therefore sends

172

8.6 Conclusion

vi to B. If K(vi) = 0, B aborts and outputs a random guess. If not, B picks a

r
R← Z∗q and computes



X1 =

(
(ga)

−J(vi)

F (vi)
(
(gb)F (vi)gJ(v)

)r)α
= gαab

(
gbF (vi)+j(vi)

)αr̃
= Sab Ivi

r̃

X2 = (ga)
−1

F (vi) gr = gr̃

where r̃ = r − a/F (vi). Notice that with the pair (X1, X2), the attacker can

perform any handshake he wants, but cannot perform the ship protocol due to

the missing witness W .

Challenge The attacker A then chooses an identity v∗ he has not queried before; if

x0 +
∑

i∈V xi 6= km the simulator aborts and submits a random guess. Otherwise

we have F (v∗) = 0 mod p, which means that H(V∗) = gJ(v∗). B then sends as

challenge the pair (H(v∗)
c = (gc)J(v∗), S′c) according to the description of the

handshake protocol. A answers with (H(vi)
r, S′r), and then outputs the key K.

Analysis of A’s response If A has won the game, K = ê(g, g)abcr. Therefore, B

can solve the BDDH problem by checking whether ê
(
gx, (S′r)α

−1
)

= K holds.

A detailed analysis of the probability that B does not need to abort has been

presented in [Wat05] and we therefore omit it here.

8.6 Conclusion

In this Chapter, we have presented a novel scheme to replace shared secrets when for-

warding items tagged with RFID. Our scheme discourages disclosure of authentication

information by tying it to a secret key or identity. Either one discloses the secret key

or forwards the information according to the protocol specification, but if one does so,

he is traceable by a trusted third party.

We have presented a protocol implementing this scheme and proved it secure in a

game-based security definition based on common security assumptions. Our scheme can

be applied even to the simplest tags if the information is sent along over the network.

173

8. RFID-BASED SUPPLY CHAIN PARTNER AUTHENTICATION

Our scheme presents a novel approach to the problem that reaches beyond current

security applications in securing the integrity of supply chains. We anticipate that, due

to its simplicity in application and strong security guarantees, our scheme has wide

applications in securing RFID-supported supply chains. Future work is to incorporate

its security into the query answer of the discovery service.

174

Chapter 9

Conclusion and Future Work

In this Chapter we first review the work presented in this thesis. Then we describe few

topics that we could not address in this manuscript or that could have been addressed

in more details. Finally, we outline possible directions for future work.

9.1 Summary

A Secret Handshake is a protocol wherein two users disclose information about them-

selves to one another; this information exchange happens only under certain provisions,

for instance, under the provision that the remote user is a member of the same group as

the local one. On the contrary, if the provisions are not satisfied, it is required that no

information is leaked as to the reason why the protocol failed. Additional requirements

are that protocol instances should not be linkable to a common user or to a common

certified information, such as a group or a property.

We start off with a study of the family of Secret Handshake protocols: from this

study, many security and functional requirements can be derived. From a mapping be-

tween the latter and the various protocols in the state of the art, a number of unexplored

combinations and, consequently, of missing protocols can be derived.

These initial considerations guide the first part of our work. At first we intro-

duce the concept of Dynamic Controlled Matching, whereby users possessing different

properties can perform a successful Secret Handshake round; however the protocol is

successful only if each user has the right to match the other user’s property. The central

authority that generates the cryptographic tokens used in the execution of the protocol,

175

9. CONCLUSION AND FUTURE WORK

Credentials and Matching References, retains the control over the matching ability of

users. Dynamic Controlled Matching not only presents a solution that completes the

range of existing Secret Handshake protocols, but it is also a generalization of other

Secret Handshake schemes, namely of classic Secret Handshakes, wherein users can

only match within a common group or property, and Secret Handshakes with Dynamic

Matching, where users can match properties different from their own, and have the

freedom to choose among properties they intend to match.

We then address the interesting topic of revocation of Credentials in Secret Hand-

shake schemes. This topic proves to be particularly challenging for the following reason:

one of the requirements of Secret Handshake schemes is Unlinkability of users. Accord-

ing to this security requirements, no adversary should be able to trace the same user

over multiple Secret Handshake executions. Revocation however requires means of

pinning Credentials to single users and labeling them so that – once they need to be

revoked – the label can be revealed and interaction with such Credentials can be re-

fused. However this approach in principles violates the requirement of Unlinkability of

users. To solve this problem we present two schemes that bring revocation support to

Secret Handshake with Dynamic Controlled Matching and to Secret Handshake with

Dynamic Matching.

We then consider another problem, namely the role of a certification entity in Secret

Handshake protocols. When introducing Dynamic Matching and Dynamic Controlled

Matching, we are confronted with a scenario where a single centralized entity hands

out Credentials for different groups or different properties. However in some cases

this is not realistic, and different groups require different certification entities. To this

end we create a scheme where a federation of independent CAs can administer such a

scenario: each CA collaborates with the others but retains the control over properties

falling under its control. Successful handshakes are possible also in hybrid scenarios,

with users having Credentials and Matching References from different CAs. We also

consider a different scenario where the role of the certification entity is distributed

among all users of the scheme, thus actually eliminating such entity: new Credentials

can be generated by a consensus of users vouching in for new users.

After these rather theoretical contributions, we have focused our attention on real-

world use cases. At first we have presented a framework that users of an online social

network can adopt to create spontaneous secret group. Users can then leverage on

176

9.2 What is missing?

group Credentials in order to secure their interactions over the social network. We

have also described some of the challenges that we have faced when implementing part

of this framework to suit an online social network platform, namely Facebook. Finally,

we have presented an authentication scheme that members of a supply chain can adopt

to mutually authenticate on the grounds of having performed some work over an item

at some point during the lifecycle on the supply chain. The Credentials that are used

during the authentication phase are exchanged using simple RFID tags.

9.2 What is missing?

This thesis has produced contributions both from the more abstract perspective of new

cryptographic protocols and through solutions to real-world use-cases. However, there

are still some topics that could not be addressed or that could have been treated in

more details. We discuss some of these in the reminder of this Section.

The security proofs that we have presented for the protocols introduced in Chap-

ters 4, 5 and in Section 6.2 studies the security of isolated protocol instances. An

interesting model suggested by Jarecki and colleagues in [JKT08] that we have not

considered is the so called arbitrary composition model, where the adversary can ini-

tiate arbitrary concurrent Secret Handshake instances and reveal the outcome of some

of them.

Another aspect that we have not investigated thoroughly is the security of the

scheme introduced in Section 6.3, namely, the Secret Handshake scheme with ad-hoc

group creation.

As for the second part of the thesis, in Chapter 7 we have only been able to im-

plement the friendship invitation process, leaving several features – such as the secure

publication of content – unimplemented. In addition, the implementation is only at

proof-of-concept phase; in particular, several aspects can be improved, namely the ex-

changed cryptographic material may be better disguised in order to avoid the simple

suspicion that a user might be a member of some group based on the publication of

unintelligible information on the “About me” section of their profile.

177

9. CONCLUSION AND FUTURE WORK

9.3 Future Work

Finally, we give an overview of the possible lines of research that could be carried out

based on the results presented in this thesis.

One limitation of all the protocols that we have presented in this thesis is that

only one attempt to a matching is possible. There are however situations in which this

could be a strong limitation. Imagine scenario where a distributed workflow has to be

conducted secretly and reaches a point where, in order to continue, it needs to interact

with somebody possessing either one of two properties. This could be generalized to

allow for Secret Handshake schemes where user can conduct a successful matching of

arbitrarily complex logical conjunctions and disjunctions of properties possessed by

the remote party. Through standard Secret Handshake this could only be possible

by iteratively retrying after a failed handshake, requiring possibly O(n2) attempts for

a simple conjunctive query. A major piece of future work would be to improve this

situation devising a protocol to address this problem.

Another interesting aspect is the following: throughout our work we have introduced

the concept of Dynamic Controlled Matching; we have thus effectively decoupled the

rights to prove and to verify. The right to prove is embodied in the Credential, whereas

the right to verify is represented by the possession of a Matching Reference, handed

out by the certification entity. In the thesis we have shown how it is possible to

revoke the right to prove, i.e. to revoke Credentials. However we have not addressed

the topic of revocation of Matching References. This aspect seems to be particularly

challenging because in all the protocols that we have shown, Matching References are

always only used locally, so once a user has received them, it is extremely difficult to

forbid their use later on. A simple solution would be a complete rekeying, whereby the

secret associated with the old property are changed; however, in the present schemes,

this would invalidate all Credentials and Matching References for that property. It is

likely that a possible solution would involve either an active CA participating in every

instance of Secret Handshake, or an epoch-based revocation mechanism for Matching

References or conducting the matching as a two-party computation, by sending both

Credentials and Matching References to the other party.

Finally, an option that we did not pursue is the possibility of achieving Secret Hand-

shakes using cryptographic accumulators; given an updated version of an accumulator

178

9.3 Future Work

containing all the identifiers of users having valid Credentials for a given property,

users can achieve one side of a Secret Handshake by conducting a zero-knowledge proof

that an identifier belongs to the accumulator. Turning this into a complete Secret

Handshake seems a promising direction for research.

179

9. CONCLUSION AND FUTURE WORK

180

References

[ACHdM05] G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros. Practical

group signatures without random oracles, 2005.

[AKB07] Giuseppe Ateniese, Jonathan Kirsch, and Marina Blanton. Secret hand-

shakes with dynamic and fuzzy matching. In NDSS, 2007.

[AM05] A. Asif and M. Mandviwalla. Integrating the supply chain with rfid: A

technical and business analysis. In Communications of the Association for

Information Systems, vol. 15, pages 393–427, 2005.

[Aso98] N. Asokan. Fairness in electronic commerce. PhD thesis, Waterloo, Ont.,

Canada, Canada, 1998.

[BA93] Josh Benaloh and Giordano Automation. One-way accumulators: A de-

centralized alternative to digital signatures. pages 274–285. Springer-

Verlag, 1993.

[Bag06] Walid Bagga. Policy-based cryptography : theory and applications. PhD

thesis, PhD Thesis, 12 2006.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based

encryption without random oracles. In EUROCRYPT, pages 223–238,

2004.

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles

and the sdh assumption in bilinear groups. J. Cryptology, 21(2):149–177,

2008.

181

REFERENCES

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions

for message authentication. In CRYPTO, pages 1–15, 1996.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Re-

lations among notions of security for public-key encryption schemes. In

CRYPTO, pages 26–45, 1998.

[BDS+03] Dirk Balfanz, Glenn Durfee, Narendar Shankar, Diana K. Smetters, Jes-

sica Staddon, and Hao-Chi Wong. Secret handshakes from pairing-based

key agreements. In IEEE Symposium on Security and Privacy, pages 180–

196, 2003.

[BF03a] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the

weil pairing. SIAM J. Comput., 32(3):586–615, 2003.

[BF03b] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the

weil pairing. SIAM J. Comput., 32(3):586–615, 2003.

[BG85] Robert W. Baldwin and Wayne C. Gramlich. Cryptographic protocol for

trustable match making. Security and Privacy, IEEE Symposium on, 0:92,

1985.

[Bla79] G.R. Blakley. Safeguarding cryptographic keys. In AFIPS Conference

Proceedings, volume 48, pages 313–317, 1979.

[BM93] Steven M. Bellovin and Michael Merritt. Augmented encrypted key ex-

change: A password-based protocol secure against dictionary attacks and

password file compromise. In ACM Conference on Computer and Com-

munications Security, pages 244–250, 1993.

[BMP00] Victor Boyko, Philip D. MacKenzie, and Sarvar Patel. Provably secure

password-authenticated key exchange using diffie-hellman. In EURO-

CRYPT, pages 156–171, 2000.

[Boy86] C. Boyd. Digital multisignatures. Cryptography and Coding, 1986.

[BP] Ronald H. Brown and Arati Prabhakar. Digital signature standard (dss).

182

REFERENCES

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated

key exchange secure against dictionary attacks. In EUROCRYPT, pages

139–155, 2000.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A

paradigm for designing efficient protocols. In ACM Conference on Com-

puter and Communications Security, 1993.

[BSBK09] Leyla Bilge, Thorsten Strufe, Davide Balzarotti, and Engin Kirda. All

your contacts are belong to us: automated identity theft attacks on social

networks. In WWW, pages 551–560, 2009.

[BWL06] Ygal Bendavid, Samuel Fosso Wamba, and Louis A. Lefebvre. Proof of

concept of an rfid-enabled supply chain in a b2b e-commerce environment.

In ICEC ’06: Proceedings of the 8th international conference on Electronic

commerce, pages 564–568, New York, NY, USA, 2006. ACM.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle

methodology, revisited. J. ACM, 51(4):557–594, 2004.

[CJT04] Claude Castelluccia, Stanislaw Jarecki, and Gene Tsudik. Secret hand-

shakes from ca-oblivious encryption. In ASIACRYPT, pages 293–307,

2004.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and appli-

cation to efficient revocation of anonymous credentials. In Proceedings of

Crypto 2002, volume 2442 of LNCS, pages 61–76. Springer-Verlag, 2002.

[Cob07] Cobis Consortium. Collaborative business items: chemical drums use-case.

http://www.cobis-online.de/files/live.stream.wvx, 2007.

[CPP05] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public trace-

ability in traitor tracing schemes. In EUROCRYPT, pages 542–558, 2005.

[CT09] Blog on Data Security CryptoBlog and Information Theory. Social

networks and social security numbers. http://cryptoblog.wordpress.

com/2009/07/08/social-networks-and-social-security-numbers/,

2009.

183

http://www.cobis-online.de/files/live.stream.wvx
http://cryptoblog.wordpress.com/2009/07/08/social-networks-and-social-security-numbers/
http://cryptoblog.wordpress.com/2009/07/08/social-networks-and-social-security-numbers/

REFERENCES

[Des87] Yvo Desmedt. Society and group oriented cryptography: A new concept.

In CRYPTO, pages 120–127, 1987.

[DF89] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In CRYPTO,

pages 307–315, 1989.

[DH03] W. Diffie and M. Hellman. New directions in cryptography. Information

Theory, IEEE Transactions on, 22(6):644–654, January 2003.

[DJ97] Yvo Desmedt and Sushil Jajodia. Redistributing secret shares to new

access structures and applications, 1997.

[DY83] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key pro-

tocols. IEEE Transactions on Information Theory, 29(2):198–207, 1983.

[Eur07] Europol and Eurojust and Thomas Van Cangh and Abdelkrim Boujraf.

Wp3-cs2: The Eurojust-Europol Case Study. http://www.r4egov.eu/

resources, 2007.

[fac] Facebook. http://www.facebook.com/.

[Fel87] Paul Feldman. A practical scheme for non-interactive verifiable secret

sharing. In FOCS, pages 427–437, 1987.

[GJP05] S.L. Garfinkel, A. Juels, and R. Pappu. Rfid privacy: an overview of

problems and proposed solutions. Security & Privacy, IEEE, 3(3):34–43,

May-June 2005.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-

plexity of interactive proof systems. SIAM J. Comput., 18(1):186–208,

1989.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all

np-statements in zero-knowledge, and a methodology of cryptographic

protocol design. In CRYPTO, pages 171–185, 1986.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield

nothing but their validity for all languages in np have zero-knowledge

proof systems. J. ACM, 38(3):691–729, 1991.

184

http://www.r4egov.eu/resources
http://www.r4egov.eu/resources
http://www.facebook.com/

REFERENCES

[GPW+04] Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and Sheuel-

ing Chang Shantz. Comparing elliptic curve cryptography and rsa on

8-bit cpus. In CHES, pages 119–132, 2004.

[HJKY95] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung.

Proactive secret sharing or: How to cope with perpetual leakage. In

CRYPTO, pages 339–352, 1995.

[HMV03] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to El-

liptic Curve Cryptography. Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2003.

[Hoe08] Jaap-Henk Hoepman. Private handshakes. CoRR, abs/0804.0074, 2008.

[JKT06] Stanislaw Jarecki, Jihye Kim, and Gene Tsudik. Authentication for para-

noids: Multi-party secret handshakes. In ACNS, pages 325–339, 2006.

[JKT08] Stanislaw Jarecki, Jihye Kim, and Gene Tsudik. Beyond secret hand-

shakes: Affiliation-hiding authenticated key exchange. In CT-RSA, pages

352–369, 2008.

[JL07] Stanislaw Jarecki and Xiaomin Liu. Unlinkable secret handshakes and

key-private group key management schemes. In ACNS, pages 270–287,

2007.

[JN03] Antoine Joux and Kim Nguyen. Separating decision diffie-hellman from

computational diffie-hellman in cryptographic groups. J. Cryptology,

16(4):239–247, 2003.

[JPP08] Ari Juels, Ravikanth Pappu, and Bryan Parno. Unidirectional key distri-

bution across time and space with applications to rfid security. In USENIX

Security Symposium, 2008.

[Jue06] Ari Juels. RFID Security and Privacy: A Research Survey. IEEE Journal

on Selected Areas in Communications, 24(2):381–394, February 2006.

185

REFERENCES

[JW07] Ari Juels and Stephen A. Weis. Defining strong privacy for rfid. Perva-

sive Computing and Communications Workshops, 2007. PerCom Work-

shops ’07. Fifth Annual IEEE International Conference on, pages 342–

347, March 2007.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,

48(177):203–209, 1987.

[Kon] Konstantin Tarmyshov. Ko-RFID Teilprojekt 4: Providermodelle und

Integration von RFID in ERP-gestëtzte Infrastrukturen.

[LDB05] Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious signature-based

envelope. Distributed Computing, 17(4):293–302, 2005.

[LK06] Hyangjin Lee and Jeeyeon Kim. Privacy threats and issues in mobile

rfid. Availability, Reliability and Security, 2006. ARES 2006. The First

International Conference on, pages 5 pp.–, April 2006.

[LRSW99] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf.

Pseudonym systems. In Selected Areas in Cryptography, pages 184–199,

1999.

[Mea86] Catherine Meadows. A more efficient cryptographic matchmaking protocol

for use in the absence of a continuously available third party. In IEEE

Symposium on Security and Privacy, pages 134–137, 1986.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In CRYPTO,

pages 417–426, 1985.

[MOV93] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing

elliptic curve logarithms to logarithms in a finite field. IEEE Transactions

on Information Theory, 39(5):1639–1646, 1993.

[MvOV96] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook

of Applied Cryptography. CRC Press, 1996.

[NT94] B.C. Neuman and T. Ts’o. Kerberos: an authentication service for

computer networks. Communications Magazine, IEEE, 32(9):33–38, Sep

1994.

186

REFERENCES

[NT06] Samad Nasserian and Gene Tsudik. Revisiting oblivious signature-based

envelopes. In Financial Cryptography, pages 221–235, 2006.

[Ped91a] Torben P. Pedersen. Distributed provers with applications to undeniable

signatures. In EUROCRYPT, pages 221–242, 1991.

[Ped91b] Torben P. Pedersen. A threshold cryptosystem without a trusted party.

In EUROCRYPT, volume 547, pages 522–526. Springer-Verlag, 1991.

[Pfi97] Birgit Pfitzmann. Collision-free accumulators and fail-stop signature

schemes without trees. pages 480–494. Springer-Verlag, 1997.

[PG99] Henning Pagnia and Felix C. Gärtner. On the impossibility of fair ex-

change without a trusted third party. Technical Report TUD-BS-1999-02,

Darmstadt University of Technology, March 1999.

[PH08] Andreas Pfitzmann and Marit Hansen. Anonymity, unlinkability, unde-

tectability, unobservability, pseudonymity, and identity management – a

consolidated proposal for terminology. http://dud.inf.tu-dresden.de/

Anon_Terminology.shtml, February 2008. v0.31.

[Pir08] Chris Pirillo. Pownce: Social networks aren’t

identity networks. http://chris.pirillo.com/

pownce-social-networks-arent-identity-networks/, 2008.

[PK96] Choonsik Park and Kaoru Kurosawa. New elgamal type threshold digital

signature scheme. 1996.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. Ocb:

A block-cipher mode of operation for efficient authenticated encryption.

pages 196–205. ACM Press, 2001.

[RSA83] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method

for obtaining digital signatures and public-key cryptosystems (reprint).

Commun. ACM, 26(1):96–99, 1983.

[SG08] Ji Sun Shin and Virgil D. Gligor. A new privacy-enhanced matchmaking

protocol. In NDSS, 2008.

187

http://dud.inf.tu-dresden.de/Anon_Terminology.shtml
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml
http://chris.pirillo.com/pownce-social-networks-arent-identity-networks/
http://chris.pirillo.com/pownce-social-networks-arent-identity-networks/

REFERENCES

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,

1979.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In

CRYPTO, pages 47–53, 1984.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.

In EUROCRYPT, pages 256–266, 1997.

[SS08] B. Dos Santos and L. Smith. Rfid in the supply chain: panacea or pan-

dora’s box? Communications of the ACM, 51(10), 2008.

[TW09] Robert Tait and Matthew Weaver. How neda soltani became the face

of iran’s struggle. http://www.guardian.co.uk/world/2009/jun/22/

neda-soltani-death-iran, 2009.

[Ver05] Damien Vergnaud. Rsa-based secret handshakes. In WCC, pages 252–274,

2005.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles.

In EUROCRYPT, pages 114–127, 2005.

[WB08] Samuel Fosso Wamba and Harold Boeck. Enhancing information flow in

a retail supply chain using rfid and the epc network. J. Theor. Appl.

Electron. Commer. Res., 3(1):92–105, 2008.

[wik10] Wikipedia, the free encyclopedia. http://www.wikipedia.org, 2010.

[XY04] Shouhuai Xu and Moti Yung. k-anonymous secret handshakes with

reusable credentials. In ACM Conference on Computer and Communi-

cations Security, pages 158–167, 2004.

[YP08] Y. Yousuf and V. Potdar. A survey of rfid authentication protocols.

Advanced Information Networking and Applications - Workshops, 2008.

AINAW 2008. 22nd International Conference on, pages 1346–1350, March

2008.

[ZN01] Kan Zhang and Roger Needham. A private matchmaking protocol. http:

//citeseer.nj.nec.com/71955.html, 2001.

188

http://www.guardian.co.uk/world/2009/jun/22/neda-soltani-death-iran
http://www.guardian.co.uk/world/2009/jun/22/neda-soltani-death-iran
http://www.wikipedia.org
http://citeseer.nj.nec.com/71955.html
http://citeseer.nj.nec.com/71955.html

Appendices

189

Appendix A

Résumé en Français

A.1 Introduction

Le travail de cette thèse a été motivé par une analyse des cas d’utilisation présentés

par les Cobis projet européen dans [Cob07]. Dans un des scénarios du projet, des

barils contenant des produits chimiques sont stockés dans un entrepôt, mais les règles

de sécurité imposent des restrictions sur la disposition de ces barils. Par exemple,

des barils contenant des produits chimiques réactifs ne peuvent pas être stockés à

proximité les uns des autres: une petite fuite de produits chimiques pourrait avoir des

conséquences potentiellement désastreuses.

La solution élaborée est d’équiper chaque baril avec un dispositif sans fil. Chaque ap-

pareil échange des informations en clair sur le contenu du baril: cela permet d’effectuer

des inférences sur la disposition des barils et de prendre des contre-mesures en cas de

combinaisons interdites.

L’évaluation du risque de ces scénarios montre de nombreuses lacunes: la vérification

des produits chimiques complémentaires est possible uniquement si le contenu des barils

est diffusé en clair. Le fait que les transmissions soient en clair peut toutefois mener à

des attaques liées au terrorisme ou à l’espionnage industriel.

Beaucoup de solutions cryptographiques peuvent être considérées pour résoudre ce

problème: une étude des solutions possibles montre qu’elles sont très semblables mais

qu’elles présentent toutefois des différences subtiles. L’objectif de cette thèse est donc

l’analyse de la famille de ces protocoles, appelées Poignées de Main Secrètes.

191

A. RÉSUMÉ EN FRANÇAIS

A.2 Poignées de Main Secrètes

Une Poignée de Main Secrète est une forme distincte de poignée de main exprimant

l’appartenance au club, groupe ou confrérie [wik10]. Habituellement, une Poignée de

Main Secrète s’effectue en menant la poignée de main d’une manière spéciale afin d’être

reconnaissable comme telle par les autres membres tout en paraissant normale pour des

non-membres. La nécessité d’un tel échange secret initial est motivée par l’existence

dans la société de rassemblements de personnes autour de sujets sensibles et donc secrets

par nature.

Vu le rôle très important des communications électroniques dans notre société, il

est naturel de s’attendre à ce que la discipline de l’informatique saisisse l’essence des

Poignées de Main Secrètes et crée des protocoles qui peuvent être exécutées automa-

tiquement par des appareils électroniques. Plus précisément, étant donné le caractère

secret et sensible des scénarios motivant ces protocoles, il est naturel de s’attendre à ce

qu’ils soient des protocoles cryptographiques.

A.2.1 Scénarios

Dans cette section nous présentons des différents scénarios où les protocoles pour la

Poignée de Main Secrète peuvent être requis.

Considérons un agent secret en mission, ayant besoin de s’authentifier auprès d’un

autre agent ou d’un serveur appartenant au service de renseignements. Les agents sont

tenus de suivre la politique du service de renseignements de ne jamais divulguer leur

Titres de Preuve, sauf s’ils sont certains d’être en relation avec des collègues membres

du service de renseignements. Une conséquence intéressante des interactions suivants

cette politique est une impasse: aucun des agents n’accepte de révéler ses Titres de

Preuve en premier, et par conséquent la communication s’arrête.

Nous allons maintenant tourner notre attention vers un utilisateur, Alice, qui vit

dans un pays où les mérites en matière de droits de l’homme sont plus que douteux.

Elle est membre d’un mouvement pro-démocratie. Les membres de ce mouvement se

réunissent périodiquement de façon secrète; souvent, Alice rencontre également des

nouveaux membres qu’elle n’a jamais rencontré auparavant. Lorsque cela se passe,

Alice a naturellement peur d’avoir affaire à des membres de la police secrète de cet

état, dont le but est de découvrir les membres du mouvement pro-démocratie et les

192

A.3 La Poignée de Main Secrète

arrêter. Néanmoins, les membres légitimes ont besoin d’interagir entre eux afin de

poursuivre les activités du mouvement.

Considérons maintenant les forces de police d’une fédération d’états, qui ont be-

soin de coopérer entre eux afin de résoudre des affaires pénales transfrontalières. Les

règlements de la fédération définissent des processus officiels qui doivent impérativement

être suivis par les agents de police: ces processus décrivent notamment comment les

institutions doivent coopérer dans chaque cas particulier. Par exemple, un membre des

forces de police d’un État doit coopérer avec le membre correspondant des forces de

police d’un autre État, pour enquêter sur un scandale interne présumé. Les deux agents

peuvent avoir besoin de se rencontrer secrètement, et de s’authentifier à la volée. Les

deux vont certainement être réticents à divulguer leur affiliation.

Imaginons maintenant un consortium de projet dont les membres veulent devenir

amis sur un réseau social et utiliser l’infrastructure du réseau social comme un outil

de collaboration. Les membres du consortium nécessitent des moyens pour sécuriser

le processus d’invitation: cela aide à éviter des faux négatifs, refuser la demande d’un

membre du consortium légitime, ou des faux positifs, accepter l’invitation d’un utilisa-

teur non autorisé et par conséquent interagir avec lui. Le consortium du projet peut

bien exiger ces garanties pour se protéger contre l’espionnage industriel.

Ces différents scénarios montrent certaines exigences communes: dans chacun de ces

exemples, les utilisateurs sont intéressés à s’engager dans un protocole d’authentification

et à révéler leur allégeance, à condition que cela ne se fasse que lorsque l’utilisateur

espéré est au bout du fil: un agent secret dans le premier exemple, un membre du

mouvement pro-démocratie dans le second, un fonctionnaire de justice de l’état prévu

dans le troisième et un membre du consortium dans le dernier. Si ces conditions ne

s’appliquent pas, les utilisateurs exigent qu’aucune information ne soit divulguée.

A.3 La Poignée de Main Secrète

Les Poignées de Main Secrètes consistent en deux utilisateurs qui s’engagent dans un

protocole avec l’objectif d’échanger des informations sur une propriété. Il y a deux

actions que chaque utilisateur effectue au cours d’une Poignée de Main Secrète: une

preuve et une vérification. La preuve est le moyen de convaincre l’autre utilisateur que

l’on possède la propriété qui est l’objet de la poignée de main. La vérification à son

193

A. RÉSUMÉ EN FRANÇAIS

tour, consiste à vérifier que l’autre partie possède effectivement la propriété l’objet de

la poignée de main.

L’objectif principal des Poignées de Main Secrètes peut donc être défini comme suit:

Définition 1 (Poignée de Main Secrète). Une Poignée de Main Secrète est un pro-

tocole dans lequel deux utilisateurs ui et uj appartenant à un univers d’utilisateurs

U s’authentifient comme possesseurs d’une propriété commune p∗ appartenant à un

univers de propriétés P.

Un protocole simple pour atteindre cet objectif est illustré en Figure A.1. Les

utilisateurs ui et uj reçoivent une valeur secrète Kp∗ associée à la propriété p∗. Les

deux utilisateurs échangent deux valeurs aléatoires ni et nj . Après l’échange, chaque

utilisateur peut calculer k = MACKp∗ (ni||nj), en utilisant un code d’authentification

de messages comme [BCK96]; les deux utilisateurs calculeront la même valeur k seuls

si les deux possèdent la même valeur secrète Kp∗ .

ui −→ uj ni

uj −→ ui nj

uj ←→ ui démontrer la connaissance de k = MACKp∗ (ni||nj)

Figure A.1: Un protocole simple pour la Poignée de Main Secrète.

Tout d’abord, nous pouvons voir que le résultat de ce protocole est une valeur,

k. Les deux utilisateurs peuvent obtenir la preuve et la vérification de la propriété

p∗ avec une preuve de connaissance de la valeur k. Cette valeur peut éventuellement

être utilisée par les deux utilisateurs pour calculer une clé utilisée pour sécuriser les

communications suivantes.

Une limitation du protocole exposé en Figure A.1 est que les actions de preuve et de

vérification ne peuvent pas être séparées, car les deux sont accomplies en même temps

par la preuve de la connaissance de k; à son tour, k est une fonction des valeurs aléatoires

ni et nj et de Kp∗ : donc, dans le protocole simple de la Figure A.1, la connaissance

de Kp∗ donne en même temps le droit de prouver et de vérifier la propriété p∗. Nous

définissons maintenant le concept de séparabilité:

Définition 2 (Séparabilité). Un protocole pour la Poignée de Main Secrète est séparable

si la capacité de prouver peut être accordée sans la possibilité de vérifier (et vice versa).

194

A.3 La Poignée de Main Secrète

Selon la Définition 2, le protocole décrit dans la Figure A.1 est non-séparable. La

séparabilité se traduit notamment dans le fractionnement des secrets associés à une

propriété – comme Kp∗ dans notre exemple précédent – en deux composantes distinctes:

Titres de Preuve et Titres de Vérification . Les Titres de Preuve accordent le droit de

prouver à un autre utilisateur la possession d’une propriété. Les Titres de Vérification

accordent la possibilité de vérifier si un autre utilisateur possède une propriété. Main-

tenant que nous avons officiellement présenté les Titres de Preuve et les Titres de

Vérification, nous pouvons souligner le fait que, dans les protocoles pour Poignées de

Main Secrètes, seuls les détenteurs légitimes des Titres de Preuve devraient être en

mesure de prouver la possession d’une propriété, et que seuls les porteurs légitimes des

Titres de Vérification devraient être en mesure de vérifier la possession d’une propriété.

Nous pouvons donc affiner la Définition 1 comme suit:

Définition 3 (Poignée de Main Secrète). Une Poignée de Main Secrète est un pro-

tocole dans lequel deux utilisateurs ui et uj appartenant à un univers d’utilisateurs

U s’authentifient comme possesseurs d’une propriété commune p∗ appartenant à un

univers de propriétés P. L’authentification réussit si les deux utilisateurs possèdent les

Titres de Preuve et Titres de Vérification légitimes pour la propriété p∗.

La légitimité des Titres de Preuve et des Titres de Vérification dépend de la façon

particulière dont ils sont générés. En effet, des politiques différentes de génération des

Titres de Preuve et des Titres de Vérification jouent un rôle crucial sur le contrôle sur

“qui peut prouver la possession d’une propriété” et sur “qui peut vérifier la possession

d’une propriété”. Nous appellerons ces deux concepts contrôle de preuve et contrôle de

vérification.

Par exemple, si une autorité de certification génère des Titres de Preuve et les

donne seulement à des utilisateurs sélectionnés, il conserve le contrôle sur la capacité

de prouver. La même chose se produit pour les Titres de Vérification.

A.3.1 Anonymat et “Unlinkability”

Dans cette section, nous étudions la quantité des informations divulguée à un obser-

vateur dans l’exécution d’un protocole pour Poignée de Main Secrète. D’abord, nous

présentons quelques définitions, prises de [PH08].

195

A. RÉSUMÉ EN FRANÇAIS

Définition 4 (Anonymat). L’Anonymat d’un utilisateur signifie que l’utilisateur n’est

pas identifiable dans l’ensemble des utilisateurs.

Définition 5 (“Unlinkability”). “Unlinkability” de deux ou plusieurs points d’intérêt

(comme, par exemple, sujets, messages, actions, ...) du point de vue d’un observateur

signifie que dans le système l’observateur ne peut distinguer de manière suffisante si

ces points d’intérêt sont liés ou non.

D’abord, nous notons que l’Anonymat se rapporte toujours aux utilisateurs et à leur

identifiants, alors que l’“Unlinkability” se rapporte à des objets d’intérêt général, qui ne

sont pas nécessairement limités aux utilisateurs. Cependant, nous nous concentrons sur

les utilisateurs. L’ensemble des utilisateurs est constitué par l’univers des utilisateurs U

que nous avons introduit dans la Définition 1. Nous disons qu’un protocole de Poignée

de Main Secrète garantit l’Anonymat si les identifiants des utilisateurs concernés ne

sont pas révélées au sein de son exécution. L’“Unlinkability” des utilisateurs se rapporte

plutôt à la capacité d’un observateur de relier le même utilisateur à plusieurs instances

de Poignée de Main Secrète. Afin de rendre l’observateur aussi puissant que possible,

nous supposons que l’observateur est l’un des deux utilisateurs du protocole. Nous

pouvons donc dire qu’un protocole de Poignée de Main Secrète garantit l’“Unlinkability”

des utilisateurs si – après l’exécution de deux instances distinctes de Poignée de Main

Secrète– un observateur n’est pas capable de dire s’il est en interaction avec le même

utilisateur ou avec deux utilisateurs différentes.

Nous allons maintenant tourner notre attention vers l’“Unlinkability” des propriétés.

Suivant la même approche, nous disons qu’un protocole de Poignée de Main Secrète

garantit l’“Unlinkability” des propriétés si – après l’exécution de deux instances dis-

tinctes de Poignée de Main Secrète– un observateur n’est pas capable de dire s’il est en

interaction avec des utilisateurs détenant des Titres de Preuve pour la même propriété

ou avec des utilisateurs détenant des Titres de Preuve pour des propriétés différentes;

cela est nécessaire seulement dans le cas où la Poignée de Main Secrète a échoué, car

en cas de succès, la vérification des propriétés est possible par définition.

A.3.2 Sur l’équité dans les protocoles pour Poignée de Main Secrète

Nous introduisons maintenant la notion d’équité selon la définition de Asokan [Aso98]

et nous essayons de comprendre ses relations avec les protocoles pour la Poignées de

Main Secrètes.

196

A.3 La Poignée de Main Secrète

Définition 6 (Equité). Un protocole d’échange garantit l’équité si, à la fin du protocole,

soit chaque utilisateur reçoit l’élément qu’il attend, soit aucun des deux utilisateurs ne

reçoit d’information.

Pour les protocoles pour la Poignée de Main Secrète, cette définition se traduit

avec l’exigence que soit les utilisateurs apprennent qu’ils possèdent tous les deux une

propriété commune, ou ils n’apprennent rien du tout. Comme nous l’avons vu, la

preuve de connaissance de la clé calculée est ce qui permet aux utilisateurs d’apprendre

si la poignée de main a réussi. Par conséquent, l’équité ne peut être atteinte que si les

utilisateurs peuvent exécuter un protocole qui leur permet d’échanger – avec équité –

les résultats d’une preuve de connaissance des deux valeurs, par exemple un protocole

défi-réponse.

Malheureusement, un résultat de Pagnia et Gärtner [PG99] montre que l’équité

dans les protocoles d’échange est impossible à atteindre sans un tiers de confiance. Les

protocoles pour Poignée de Main Secrète peuvent cependant parvenir à une forme plus

limitée d’équité. D’abord nous définissons le prédicat suivant:

P := “les deux participants au protocole de Poignée de Main Secrète possèdent la

propriété objet de la poignée de main”

Nous pouvons alors introduire la notion d’équité dans les protocoles pour Poignée de

Main Secrète:

Définition 7 (Equité dans les protocoles pour Poignée de Main Secrète). Après une

exécution complète ou incomplète d’un protocole pour Poignée de Main Secrète, soit au

moins une partie apprend le prédicat P, ou personne n’apprend rien au delà de qP.

avec qP nous entendons la négation du prédicat P.

La définition 7 reconnâıt le manque d’équité dans les protocoles pour Poignée de

Main Secrète, mais elle limite seulement à des circonstances limitées l’avantage que l’un

des deux utilisateurs, padv, peut avoir. En effet, padv peut apprendre P seulement s’il

possède la propriété objet de la poignée de main. padv ne peut sinon apprendre que

qP.

A.3.3 Récapitulation des exigences

Nous récapitulons ici les exigences principales que nous avons identifiés dans cette

section:

197

A. RÉSUMÉ EN FRANÇAIS

• Séparabilité traite de la possibilité d’accorder le droit de prouver séparément du

droit de vérifier, et vice versa.

• Contrôle de preuve se rapporte à l’entité qui peut accorder le droit de prouver la

possession d’une propriété.

• Contrôle de vérification se rapporte à l’entité qui peut accorder le droit de vérifier

la possession d’une propriété.

• Anonymat nécessite qu’un utilisateur – après une exécution de Poignée de Main

Secrète– ne soit pas identifiable parmi les autres utilisateurs.

• “Unlinkability” des utilisateurs exige qu’un observateur ne puisse pas lier deux

exécutions de Poignée de Main Secrète à un seul utilisateur.

• “Unlinkability” des propriétés exige qu’un observateur ne puisse pas lier deux

exécutions de Poignée de Main Secrète à une seule propriété.

• Equité est garantie par la Poignée de Main Secrète si, après l’exécution du proto-

cole, un seul, ou les deux utilisateurs découvrent soit que les deux possèdent les

Titres de Preuve correspondant aux Titres de Vérification de l’autre utilisateur,

ou personne n’apprend rien.

A.4 Protocoles

La première partie de cette thèse contient des contributions en termes de nouveaux

protocoles cryptographiques, blocs de construction génériques qui peuvent être utilisés

pour répondre à plusieurs scénarios de Poignée de Main Secrète.

A.4.1 Poignée de Main Secrète avec Vérification Dynamique Contrôlée

Dans les protocoles de Poignée de Main Secrète qui permettent la Vérification Dy-

namique Contrôlée, les utilisateurs sont tenus de posséder Titres de Preuve et Titres de

Vérification délivré par une autorité de certification de confiance afin d’être en mesure

de prouver et de vérifier la possession d’une propriété donnée. Par conséquent, l’autorité

de certification conserve le contrôle sur qui peut prouver quoi et qui peut vérifier quels

Titres de Preuve. Cependant la vérification est dynamique, en ce qu’elle n’est pas

198

A.4 Protocoles

limitée à une seule propriété, par opposition aux approches proposées dans [BDS+03;

Ver05; SG08; Mea86; XY04].

Soulignons d’abord que ce nouveau protocole est d’une utilité pratique évidente. Par

exemple, il répond aux besoins identifiés par le projet de l’UE R4EGov [Eur07]. Dans un

des cas d’utilisation du projet, les forces de justice de l’UE coopèrent entre elles afin de

résoudre des affaires pénales transfrontalières. Les réglementations de l’UE définissent

des processus officiels qui doivent impérativement être suivis par les agents de police: en

particulier, ces processus décrivent comment les institutions doivent coopérer sur chaque

cas particulier. Au cours d’une collaboration, par exemple, un membre du Ministère

de la Défense Français doit coopérer avec un membre du Bundesnachrichtendienst, le

service de renseignement Allemand, pour enquêter sur un scandale interne. Les deux

agents peuvent avoir besoin de se rencontrer secrètement, et de s’authentifier à la volée.

Les deux sont certainement réticents à divulguer leur affiliation et leur but à d’autres

personne.

Il est évident qu’ils ne peuvent pas utiliser des Poignées de Main Secrètes simples:

en effet, ces dernières ne permettent d’effectuer des vérifications qu’au sein de la même

organisation. Les poignées de main avec Vérification Dynamique ne fournissent pas non

plus une solution adaptée au problème. La liberté de choisir la propriété à vérifier donne

une marge trop large aux fonctionnaires, qui doivent plutôt se conformer strictement

aux règlements de l’UE. En effet, ces fonctionnaires agissent au nom de l’Etat et du

peuple: ils doivent suivre les règles et ne doivent pas faire de choix personnels.

Les acteurs d’un protocole pour Poignée de Main Secrète avec Vérification Dy-

namique Contrôlée sont représentés par des utilisateurs appartenants à un ensemble

d’utilisateurs U et une une autorité de certification unique et fiable. Chaque utilisateur

possède des propriétés appartenantes à un ensemble de propriétés P. L’objectif des util-

isateurs est d’effectuer des poignées de main, afin de prouver et de vérifier mutuellement

la possession des propriétés. L’autorité de certification – au démarrage du système –

exécute l’algorithme Setup pour générer les paramètres publics et privés du système.

Dans un scénario avec Vérification Dynamique Contrôlée, les utilisateurs ont besoin de

recevoir des Titres de Preuve et des Titres de Vérification de la part par de l’autorité

de certification – qui est la seule entité habilitée à les générer – afin d’exécuter une

Poignée de Main Secrète fructueuse. A cet effet, l’autorité de certification expose deux

algorithmes, Certify et Grant, que les utilisateurs peuvent invoquer pour recevoir des

199

A. RÉSUMÉ EN FRANÇAIS

Titres de Preuve et des Titres de Vérification, respectivement. Enfin, deux utilisateurs

peuvent exécuter le protocole Handshake; le protocole retourne succès si le premier util-

isateur a un Titre de Preuve pour la propriété associée avec le Titre de Vérification

du deuxième, et inversement si le deuxième utilisateur a un Titre de Preuve pour la

propriété associée avec le Titre de Vérification du premier.

Une Poignée de Main Secrète avec Vérification Dynamique Contrôlée est définie par

les algorithmes suivants:

• Setup(k)→ (param, secret) est un algorithme non déterministe en temps polyno-

mial exécuté par l’autorité de certification en prenant un paramètre de sécurité

k en entrée et générant en sortie les paramètres publics param et les paramètres

privés mathsf secret;

• Certify(u, p, secret)→ (credp) est un algorithme non déterministe en temps poly-

nomial exécuté – sur demande d’un utilisateur – par l’autorité de certification.

L’entité de certification vérifie d’abord que l’utilisateur u ∈ U possède la pro-

priété p ∈ P dont la possession sera prouvée lors de l’exécution du protocole;

après une vérification réussie, l’entité de certification donne à u le Titre de Preuve

credp. L’utilisateur peut vérifier l’exactitude du Titre de Preuve. Si la vérification

réussit, l’utilisateur accepte le Titre de Preuve, annule sinon;

• Grant(u, p, secret)→ (matchu,p, Xu) est un algorithme non déterministe en temps

polynomial exécuté – sur demande d’un utilisateur – par l’autorité de certifica-

tion. Tout d’abord l’entité de certification vérifie que – selon les politiques du

système – l’utilisateur u est en droit de vérifier qu’un autre utilisateur possède

une propriété p ∈ P. Après vérification, l’entité de certification délivre le Titre

de Vérification approprié formé par la couple (matchu,p, Xu); l’utilisateur peut

vérifier l’exactitude du Titre de Vérification. Si la vérification réussit, l’utilisateur

accepte le Titre de Vérification, annule sinon;

• Handshake est un algorithme non déterministe en temps polynomial exécuté par

deux utilisateurs, ui et uj ; l’algorithme est composé de trois sous-algorithmes:

– Handshake.Init(param, state)→ (n, stateupd) produit une valeur aléatoire n et

met à jour l’état interne state;

200

A.4 Protocoles

– Handshake.RandomizeCredentials(param, credp, state, n)→ (SH, stateupd)

reçoit en entrée les paramètres du système, le Titre de Preuve de l’utilisateur

credp, la valeur aléatoire n reçue de l’autre partie et produit le message de

la Poignée de Main Secrète SH; cet algorithme met également à jour l’état

interne state;

– Handshake.Match(param, SH, (matchu,p, Xu), state) → (K) reçoit en entrée

les paramètres du système, le message de la Poignée de Main Secrète SH reçu

de l’autre utilisateur, l’état local et le Titre de Vérification (matchu,p, Xu)

et produit la clé K;

L’algorithme fonctionne comme suit:

ui : Handshake.Init(param, statei)→ (ni, statei,upd)

ui −→ uj : ni

uj : Handshake.Init(param, statej)→ (nj , statej,upd)

uj −→ ui : nj

uj : Handshake.RandomizeCredentials(credp1 , statej , ni)

→ (SHj , statej,upd)

uj −→ ui : SHj

ui : Handshake.RandomizeCredentials(credp2 , statei, nj)

→ (SHi, statei,upd)

ui −→ uj : SHi

ui : Handshake.Match(SHj , (matchui,p3 , Xui), statei)→ (Ki)

uj : Handshake.Match(SHi, (matchuj ,p4 , Xuj), statej)→ (Kj)

Figure A.2: L’algorithme Handshake exécuté par deux utilisateurs ui et uj .

Les deux clés Ki et Kj sont égales dans les conditions suivantes: p1 = p3 et p2 =

p4. Autrement, une des deux clés est une valeur aléatoire avec une probabilité

très élevé.

A.4.2 Révocation pour Poignées de Main Secrètes.

Le support pour la révocation des Titres de Preuve dans les protocoles pour Poignée

de Main Secrète est une tâche difficile. D’un côté, Anonymat et “Unlinkability” des

utilisateurs et des propriétés est une condition souhaitée. De l’autre côté, la plupart

201

A. RÉSUMÉ EN FRANÇAIS

des solutions au problème de la révocation des Titres de Preuve exigent que les Titres

de Preuve soient – d’une manière ou d’une autre – marqués, pour faire en sorte que les

Titres de Preuve révoqués puissent être reconnus comme tels: cela viole ouvertement

les exigences de “Unlinkability”.

Dans cette section nous définissons formellement un protocole de Poignée de Main

Secrète avec support pour la révocation des Titres de Preuve. Les algorithmes qui

composent le protocole sont les suivants:

• Setup(k)→ (param, secret) est un algorithme non déterministe en temps polyno-

mial exécutée par l’autorité de certification en prenant un paramètre de sécurité

k en entrée et générant les paramètres publics param et les paramètres privés

mathsf secret;

• Certify(u, p, secret)→ (credu,p, xu,p) est un algorithme non déterministe en temps

polynomial exécuté – sur demande d’un utilisateur – par l’autorité de certification.

L’entité de certification vérifie d’abord que l’utilisateur u ∈ U possède la propriété

p ∈ P dont la possession sera prouvée lors de l’exécution du protocole; après

vérification, l’entité de certification donne à u le Titre de Preuve formé par la

couple (credu,p, xu,p). L’utilisateur peut vérifier l’exactitude du Titre de Preuve.

Si la vérification réussit, l’utilisateur accepte le Titre de Preuve, annule sinon;

• Grant(u, p, secret)→ (matchp) est un algorithme non déterministe en temps poly-

nomial exécuté – sur demande d’un utilisateur – par l’autorité de certification.

Tout d’abord l’entité de certification vérifie que – selon les politiques du système –

l’utilisateur u est en droit de vérifier qu’un autre utilisateur possède une propriété

p ∈ P. Après vérification, l’entité de certification délivre le Titre de Vérification

approprié matchp; l’utilisateur peut vérifier l’exactitude du Titre de Vérification.

Si la vérification réussit, l’utilisateur accepte le Titre de Vérification, annule sinon;

• Revoke(u, p, secret, rl)→ (rlupd) est un algorithme non déterministe en temps poly-

nomial exécuté par l’entité de certification lorsque le Titre de Vérification pour la

propriété p détenu par l’utilisateur u doit être révoqué. L’entité de certification

met à jour une liste de révocation publique rl, en ajoutant les informations de

révocation appropriés;

202

A.4 Protocoles

• Handshake est un algorithme non déterministe en temps polynomial exécuté par

deux utilisateurs, ui et uj ; l’algorithme est composé de quatre sous-algorithmes:

– Handshake.Init(param, state)→ (n, stateupd) produit une valeur aléatoire n et

met à jour l’état interne state;

– Handshake.RandomizeCredentials(param, (credu,p1 , xu,p1), state, n) → (SH,

stateupd, K1) reçoit en entrée les paramètres du système, le Titre de Preuve

de l’utilisateur, la valeur aléatoire n reçue de l’autre partie et produit le

message de la Poignée de Main Secrète SH et la clé K1 liée à la preuve

de possession de la propriété p1; cet algorithme met également à jour l’état

interne state;

– Handshake.CheckRevoked(param, SH, rl, . . .)→ (b) reçoit en entrée le message

de la Poignée de Main Secrète SH reçu de l’autre utilisateur, les paramètres

du système, une version actualisée de la liste de révocation mathsf rl et

des paramètres supplémentaires; l’algorithme génère une valeur booléenne à

l’état vrai si le Titre de Preuve utilisé pour générer SH a été révoqué;

– Handshake.Match(param, SH,matchp2 , state) → (K2) reçoit en entrée les

paramètres du système, le message de la Poignée de Main Secrète SH

reçu de l’autre utilisateur, l’état local et le Titre de Vérification matchu,p;

l’utilisateur exécute tout d’abord le sous-algorithme Handshake.CheckRevoked

pour vérifier si le Titre de Preuve de l’autre utilisateur a été révoqué; si

Handshake.CheckRevoked donne une réponse négative, l’algorithme génère

une clé K2, liée à la vérification de possession de la propriété p1;

Supposons que deux utilisateurs ui et uj exécutent l’algorithme Handshake; l’entrée

de l’utilisateur ui est son Titre de Preuve (credui,p2 , xui,p2) pour la propriété p2

et un Titre de Vérification pour la propriété p3, matchp3 ; l’entrée de l’utilisateur

uj est son Titre de Preuve pour la propriété p1, (creduj ,p1 , xuj ,p1) et un Titre de

Vérification pour la propriété p4, matchp4 . L’algorithme fonctionne comme décrit

dans la figure A.3.

Les deux paires de clés Ki,1, Kj,2, et Ki,2, Kj,1 sont égales dans les conditions

suivantes: p1 = p3 et p2 = p4. Autrement, une des deux clés est une valeur aléatoire

avec une probabilité très élevé.

203

A. RÉSUMÉ EN FRANÇAIS

ui : Handshake.Init(param, statei)→ (ni, statei,upd)

ui −→ uj : ni

uj : Handshake.Init(param, statej)→ (nj , statej,upd)

uj −→ ui : nj

uj : Handshake.RandomizeCredentials((creduj ,p1 , xuj ,p1), statej , ni)

→ (SHj , statej,upd,Kj,1)

uj −→ ui : SHj

ui : Handshake.RandomizeCredentials((credui,p2 , xui,p2), statei, nj)

→ (SHi, statei,upd,Ki,1)

ui −→ uj : SHi

ui : Handshake.Match(SHj ,matchp3 , statei)→ (Ki,2)

uj : Handshake.Match(SHi,matchp4 , statej)→ (Kj,2)

Figure A.3: L’algorithme Handshake exécuté par deux utilisateurs ui et uj .

A.5 Cas d’utilisation

La deuxième partie de ce manuscrit présente des cas d’utilisation où les protocoles

présentés dans la partie précédente servent comme solutions pratiques aux problèmes

du monde réel.

A.5.1 Groupes secrets dans les réseaux sociaux

Dans cette thèse, nous présentons le premier système qui permet la création de Groupes

d’intérêt Secrets (GIS) dans les réseaux sociaux en ligne; des GIS sont des groupes

autogérés formés à l’extérieur du réseau social, autour des sujets secrets, sensibles ou

privés. Les membres du group échangent des Titres de Preuve qui peuvent être utilisés

à l’intérieur du réseau social pour authentifier les demandes d’amitié ou pour sécuriser

les contenus générés par les utilisateurs.

A.5.1.1 Motivation

Les réseaux sociaux en ligne font partie des technologies de communication les plus

populaires. Les plates-formes comme Facebook comptent maintenant des millions

d’utilisateurs qui partagent quotidiennement leurs informations. Comme le contenu

204

A.5 Cas d’utilisation

est hébergé très souvent par le fournisseur du réseau, les utilisateurs peuvent être pro-

filées et le fournisseur du réseau peut leur offrir des annonces de publicité ciblées.

Un problème qui affecte particulièrement les utilisateurs des réseaux sociaux est

l’usurpation d’identité [CT09; Pir08]. L’origine du problème est que dans de nombreux

réseaux sociaux en ligne il y a presque aucune vérification que l’identité de la personne

qui rejoint le réseau social est véritablement celle qu’elle prétend d’être. Cette lacune

peut être combinée à une seconde: les utilisateurs des réseaux sociaux basent leur

décision d’accepter une requête sur le nom de l’utilisateur, sur des photos et des frag-

ments de texte; ces informations sont facilement accessibles ailleurs sur l’Internet. Il est

donc relativement simple [BSBK09] pour une entité malveillante de mettre en place un

faux profil sur un réseaux sociaux en ligne et puis de convaincre les autres utilisateurs

d’accepter la demande d’amitié, afin d’avoir accès à leurs informations personnelles.

Pour améliorer la sécurité de ce processus, les utilisateurs pourraient être invités

à fournir des Titres de Preuve lors de la demande d’amitié. Cependant, pour être

significatifs, les Titres de Preuve ne peuvent pas être autogérées, mais ils doivent être

générés et maintenus après vérification par un tiers: cette tâche est lourde et coûteuse

et d’une part, il est irréaliste de s’attendre à ce qu’une entité centrale (le fournisseur

de service de réseau social par exemple) s’en occupe gratuitement, et d’autre part, les

utilisateurs n’accepteraient pas de payer pour ce service.

L’une des solutions envisageables est la suivante: les utilisateurs peuvent créer des

groupes de confiance ad-hoc à l’extérieur du réseau social. Les membres du groupe

reçoivent des Titres de Preuve et ils les utilisent lors du processus d’invitation dans le

réseau social; le même phénomène se produit avec l’amitié, qui est formé en dehors du

réseau social et utilise le réseau social pour favoriser la communication entre amis.

Une évolution naturelle des groupes susmentionnés sont les Groupes d’intérêt Secret

(GIS), créés par les utilisateur avec une attention particulière à des sujets confidentiels

ou tout simplement liés à la vie privée. En effet, les utilisateurs des réseaux sociaux

en ligne échange aussi souvent du matériel personnel et sensible; en plus, les réseaux

sociaux en ligne sont de plus en plus le théâtre de débat politique, religieux et sont

souvent utilisés comme un moyen d’échanger des documents confidentiels qui ne peuvent

pas passer par les voies officielles; cela a été le cas par exemple en Iran pendant les

remous post-électorales [TW09].

205

A. RÉSUMÉ EN FRANÇAIS

L’objectif est donc la création d’un système qui prend en charge la formation et

l’évolution des groupes d’intérêt Secret. Grâce à notre système, les utilisateurs sont en

mesure de gérer l’entrée et la sortie des membres, de révoquer ou accorder le privilège

d’administration aux membres et d’accorder des Titres de Preuve que les membres

peuvent utiliser pour assurer leur relation avec les autres membres dans un réseau social.

La conception du système pose deux défis: le système doit (i) répondre aux exigences

de groupes ad hoc, il ne doit pas exiger une entité centralisée, mais fonctionner de

manière distribuée et (ii) il doit être possible de le mettre en œuvre dans un réseau

social en ligne réel, avec toutes les contraintes de celle-ci, par exemple, la rareté des

liaisons directes entre les utilisateurs, les modes de communication centralisée sur les

serveurs du réseau social et le fait que les utilisateurs ne sont pas nécessairement en

ligne au même temps.

Le système que nous avons conçu et développé, soutient les exigences techniques

susmentionnées ainsi que les exigences de sécurité élevées typiques des groupes secrets.

Ces groupes sont secrets dans le sens que l’appartenance à un GIS est une information

sensible que les utilisateurs sont réticents à exposer publiquement. Un GIS peut être

par exemple autour des intérêts religieux, politiques tels que les utilisateurs sont très

intéressés d’interagir avec d’autres utilisateurs qui partagent le même intérêt, mais très

réticents à admettre publiquement qu’ils appartiennent à un groupe d’intérêt. Un GIS

peut être aussi centrée autour de thèmes moins secrètes, qui représentent quand même

la vie privée des sujets. Le système proposé répond donc au cas le plus complexe des

groupes secrets, mais peut être appliqué à de simples groupes d’utilisateurs aussi.

A.5.2 Authentification des partenaires d’une châıne logistique basée

sur RFID

L’utilisation des radio-étiquettes (RFID) dans les châınes d’approvisionnement a une

valeur ajoutée indiscutable du point de vue productivité, mais soulève un certain nom-

bre de nouveaux défis liés à la sécurité. L’un d’eux est l’authentification des paires de

participants à une châıne d’approvisionnement qui ont possédé le même élément, mais

qui n’ont par ailleurs jamais communiqué auparavant. La situation est encore plus

complexe si nous imaginons que les participants à la châıne d’approvisionnement sont

des concurrents.

206

A.5 Cas d’utilisation

Dans cette thèse, nous présentons un nouveau protocole cryptographique qui résout

ce problème. Dans notre solution, les utilisateurs échangent des radio-étiquettes au

cours du cycle d’une châıne d’approvisionnement et, si les deux entités ont possédé

la même étiquette, ils peuvent convenir d’une clé secrète commune qu’ils peuvent

utiliser pour protéger leurs échanges d’informations. Aucune entité malveillante ne

peut régénérer la bonne clé secrète, parce cet action sera soit traçable ou impliquerait

la perte d’une clé secrète, ce qui constitue une incitation forte à garder le secret sur les

informations d’authentification.

A.5.2.1 Motivation

La radio-identification est une technologie moderne qui supporte le suivi et le traçage

des articles marqués dans les châınes d’approvisionnement. Chaque élément est équipé

d’une radio-étiquettes qui porte un identifiant unique. Cette radio-étiquette peut être

lu via communication sur fréquence radio et plusieurs radio-étiquettes peuvent être lues

à la fois.

Il y a des radio-étiquettes actives et passives. Les étiquettes actives ont leur propre

alimentation; les étiquettes passives fonctionnent uniquement grâce à la puissance du

signal émis par le lecteur. Le lecteur est un appareil spécial qui peut interagir avec

les étiquettes et lire les identifiants stockés dans leur mémoire. Des étiquettes plus

complexes peuvent stocker plus d’informations dans la mémoire et même effectuer des

simples opérations cryptographiques telles que le hachage.

Une application importante de la radio-identification est la gestion de la châıne

d’approvisionnement [WB08; BWL06; AM05]. Chaque objet peut être suivi au moyen

de son numéro d’identification unique. Le potentiel de cette technologie s’accrôıt si

tous les partenaires de la châıne logistique partagent les données liées à la châıne

d’approvisionnement. Ces informations contiennent généralement au moins ce qui suit:

〈organization, identifier, timestamp〉

Ce triplet est généralement enrichi par des informations supplémentaires, tel que

l’identifiant du lecteur, le type d’événement (réception, expédition, déballage, etc), et

des champs supplémentaires en fonction du type d’événement.

Les entreprises sont intéressés au partage des informations liées à des événements

pour de nombreuses raisons: premièrement, un consommateur peut être intéressé à

207

A. RÉSUMÉ EN FRANÇAIS

connâıtre le pedigree du produit. Une entreprise peut avoir besoin de rappeler les

produits défectueux et peut-être intéressé de connâıtre la liste des détaillants qui les

ont vendues. Les résultats des projets de recherche collaboratifs tels que Bridge ou

Ko-RFID [Kon] montrent que les entreprises sont réticentes à révéler leurs participa-

tions à une châıne d’approvisionnement pour un certain nombre de raisons, comme par

exemple la peur de l’espionnage ou parce qu’il pourrait être embarrassant de révéler la

participation à la production d’un produit avec des graves problèmes, qui a été retiré

du marché. En conséquence, les informations sont stockées en toute sécurité par chaque

partenaire et volontairement divulguées seulement après une authentification.

Afin de partager les données liées aux événements, les entreprises se connectent

à un réseau mondial, actuellement en cours de normalisation par le consortium EPC-

global. Ce réseau contient un service de découverte, qui stocke des pointeurs vers toutes

les entreprises qui disposent de données d’événements pour chaque radio-étiquettes

spécifique. Afin de récupérer toutes les informations sur une étiquette, les entreprises

doivent contacter le service de découverte; ce dernier renvoie alors la liste de toutes les

entreprises ayant manipulé le produit. Ensuite, les entreprises peuvent communiquer

individuellement et échanger les données d’événement.

Le principal défi de ce système est que d’un côté les entreprises voudraient partager

cette information de manière à faciliter leurs activités, de l’autre côté, ces informa-

tions sont strictement confidentielles et les entreprises hésitent à faire confiance les

uns les autres à cause de la possibilité d’espionnage par un concurrent [SS08], réalisé

par exemple en récupérant les données d’événement sur les éléments de la châıne

d’approvisionnement d’un concurrent.

Imaginez deux entreprises qui n’ont jamais communiqué ensemble et qui ont été

mises en contact via un service de découverte; ces deux entreprises doivent s’authentifier

mutuellement: la seule chose qu’elles ont jamais eu en commun, c’est qu’elles ont

toutes les deux été en possession de la même radio-étiquettes à un moment donné. Ces

entreprises ont besoin de prouver l’une l’autre qu’elles ont possédé la même étiquette.

Il y a un certain nombre d’attaques qui pourraient se produire dans ce scénario:

3. Un imposteur peut demander des informations sur des radio-étiquettes qu’il n’a

jamais possédé, par exemple afin de suivre la châıne d’approvisionnement de son

concurrent.

208

A.5 Cas d’utilisation

4. Une société malveillante pourrait fournir des informations sur des radio-étiquettes

qu’elle n’a jamais possédé, par exemple afin de dissimuler l’origine des produits

contrefaits.

Une solution simple à ce problème est de stocker un secret partagé sur l’étiquette,

pour faire en sorte que tous ceux qui l’ont possédé puissent utiliser ce secret pour

sécuriser les communications ultérieures.

Malheureusement, cette solution présente de nombreux inconvénients. Tout d’abord,

il n’y a pas obligation pour qu’une entreprise qui possède le secret partagé, le garde

pour secret, car la révélation du secret ne peut pas lui être attribuée. Deuxièmement,

la radio-étiquettes peut être lu de manière frauduleuse par un étranger qui n’a pas fait

légitimement partie de la châıne d’approvisionnement.

Par conséquent, afin d’avoir une solution sécurisée pour ce problème, nous avons

besoin de développer un système plus complexe qu’un simple mécanisme basé sur des

secrets partagés.

A.5.2.2 Détail de la Solution

Dans cette thèse, nous présentons un nouveau protocole qui résout le problème ci-

dessus. La logique veut que les informations stockées sur l’étiquette sont liée à une

identité. Seul le détenteur de la clé privée liée à l’identité peut effectivement prouver

la possession de la radio-étiquette. Les informations stockées sur l’étiquette sont mises

à jour chaque fois que la radio-étiquette change de propriétaire; la mise à jour est

effectuée grâce à l’aide d’un tiers de confiance. La participation du tiers de confiance

permet de suivre chaque objet tout au long de la châıne d’approvisionnement.

Notre solution permet de surmonter les inconvénients de la solution simple présentée

ci-dessus. En effet, si une entité malveillante demande des informations restreintes

pour une étiquette, il peut être compromis par le tiers de confiance. D’autre part,

l’usurpation d’identité n’est possible que si un des utilisateurs légitimes révèle ses infor-

mations secrètes. Un partenaire permettant à une entité malveillante de s’authentifier

doit donc décider soit d’être traçable ou de révéler la clé secrète, renonçant à toutes ses

informations sensibles.

Une propriété intéressante de notre solution, est que les radio-étiquettes peuvent

être efficacement utilisées avec des primitives cryptographiques complexes: en effet, les

209

A. RÉSUMÉ EN FRANÇAIS

étiquettes agissent simplement comme transporteurs d’enveloppes cryptographiques,

qui sont ensuite utilisés pour exécuter des protocoles de sécurité complexes. Notre

technologie fonctionne avec les étiquettes plus simples spécifiées par la norme EPCglobal

(étiquettes de classe 1). La seule exigence est que les étiquettes doivent être capable

de stocker la quantité minimale d’information nécessaire pour effectuer les opérations

cryptographiques. Les étiquettes n’ont pas nécessairement besoin d’être réinscriptible:

elles peuvent tout simplement être remplacées par de nouvelles étiquettes contenant les

nouvelles informations: la baisse des prix du matériel peut justifier ce choix.

210

	List of Figures
	List of Tables
	List of Publications
	1 Introduction
	1.1 Secret Handshake
	1.1.1 Scenarios
	1.1.2 Characteristics
	1.1.3 Contributions and Organization

	I Cryptographic Protocols
	2 Preliminaries
	2.1 Introduction
	2.2 Security and Cryptography
	2.2.1 Cryptographic Protocols

	2.3 Provable Security
	2.3.1 Game-based Security
	2.3.2 The Random Oracle Model
	2.3.3 The Generic Group Model

	2.4 Elliptic Curve Cryptography
	2.4.1 ECC mathematical basis
	2.4.2 Supersingular curves
	2.4.3 Operations on points
	2.4.4 Torsion points

	2.5 Bilinear Pairings
	2.6 Conclusions

	3 About Secret Handshakes
	3.1 Introduction
	3.2 A Primer on Secret Handshakes
	3.2.1 Anonymity and Unlinkability
	3.2.2 A Word on Fairness

	3.3 The state-of-the-art of Secret Handshakes and related protocols
	3.3.1 Matchmaking
	3.3.2 Classic Secret Handshakes schemes
	3.3.3 Secret Handshake with Dynamic Matching
	3.3.4 Other Works

	3.4 Revocation in Secret Handshakes
	3.5 A Taxonomy of Secret Handshake protocols
	3.5.1 Highlighting the Gaps

	3.6 Conclusions

	4 Secret Handshake with Dynamic Controlled Matching
	4.1 Introduction
	4.2 Dynamic Controlled Matching
	4.2.1 Syntactic Definition
	4.2.2 Creating classic Secret Handshakes and Secret Handshakes with Dynamic Matching
	4.2.3 Security Requirements

	4.3 SecureMatching: the building block
	4.3.1 Preliminaries
	4.3.2 Description of SecureMatching
	4.3.3 Security Analysis
	4.3.3.1 Unlinkability of Properties
	4.3.3.2 Detector Resistance
	4.3.3.3 Impersonation Resistance

	4.4 From SecureMatching to Secret Handshake
	4.4.1 The Scheme
	4.4.2 Security Analysis
	4.4.2.1 Impersonation Resistance
	4.4.2.2 Detector Resistance

	4.4.3 A Word on Man-In-The-Middle Attacks

	4.5 Conclusion

	5 Revocation in Secret Handshakes
	5.1 Introduction
	5.2 Problem Statement and Motivation
	5.2.1 Syntactic Definition
	5.2.2 Security Requirements

	5.3 Secret Handshake with Dynamic Controlled Matching and Revocation Support
	5.3.1 An overview of the solution
	5.3.2 Description of the Scheme
	5.3.3 Security Analysis
	5.3.3.1 Unlinkability of Properties
	5.3.3.2 Unlinkability of Users
	5.3.3.3 Detection Resistance
	5.3.3.4 Impersonation Resistance

	5.4 Secret Handshake with Dynamic Matching and Revocation Support
	5.4.1 Security Analysis
	5.4.1.1 Detection Resistance and Unlinkability of Properties
	5.4.1.2 Unlinkability of Users
	5.4.1.3 Impersonation Resistance

	5.5 Conclusion

	6 Towards Decentralized Secret Handshakes
	6.1 Introduction
	6.2 Secret Handshakes with multiple CA support
	6.2.1 Description of the Scheme
	6.2.2 Security Analysis
	6.2.2.1 Security against adversary type I
	6.2.2.2 Security against adversary type II

	6.3 Secret Handshakes with Ad-Hoc Certification
	6.3.1 Preliminaries
	6.3.2 Syntactic Definition
	6.3.3 The Scheme
	6.3.4 A word on Revocation
	6.3.5 Sketch of the Security Analysis

	6.4 Conclusion

	II Use Cases
	7 Secret Interest Groups in Social Networks
	7.1 Introduction
	7.2 Problem Statement and Motivation
	7.3 Design of the SIG Framework
	7.3.1 OSN external
	7.3.2 OSN internal
	7.3.3 Security and Adversarial Model

	7.4 The SIG Framework
	7.5 Implementation in Facebook
	7.5.1 What still needs to be implemented

	7.6 Conclusion

	8 RFID-Based Supply Chain Partner Authentication
	8.1 Introduction
	8.2 Motivation
	8.2.1 Overview of the Solution

	8.3 Related Work
	8.4 Supply Chain Partner Authentication
	8.4.1 Preliminaries
	8.4.2 The Scheme

	8.5 Security Analysis
	8.5.1 Security of RFIDAuth
	8.5.1.1 Impersonation Resistance

	8.6 Conclusion

	9 Conclusion and Future Work
	9.1 Summary
	9.2 What is missing?
	9.3 Future Work

	References
	Appendices
	A Résumé en Français
	A.1 Introduction
	A.2 Poignées de Main Secrètes
	A.2.1 Scénarios

	A.3 La Poignée de Main Secrète
	A.3.1 Anonymat et ``Unlinkability"
	A.3.2 Sur l'équité dans les protocoles pour Poignée de Main Secrète
	A.3.3 Récapitulation des exigences

	A.4 Protocoles
	A.4.1 Poignée de Main Secrète avec Vérification Dynamique Contrôlée
	A.4.2 Révocation pour Poignées de Main Secrètes.

	A.5 Cas d'utilisation
	A.5.1 Groupes secrets dans les réseaux sociaux
	A.5.1.1 Motivation

	A.5.2 Authentification des partenaires d'une chaîne logistique basée sur RFID
	A.5.2.1 Motivation
	A.5.2.2 Détail de la Solution

