
An Authentication Flaw in Browser-based Single

Sign-On Protocols: Impact and Remediations

Alessandro Armandoa,b, Roberto Carboneb, Luca Compagnac, Jorge Cuellard,
Giancarlo Pellegrinoc,f, Alessandro Sorniottie

aAI-Lab, DIST U. di Genova, Viale Causa 13, 16145, Genova, Italy
bSecurity & Trust Unit, FBK-irst, Via Sommarive 18, 38050, Trento, Italy
cSAP Labs France SAS, 805 Av. du Dr M. Donat, 06254, Mougins, France

dSiemens AG, Corporate Technology, D-80200 Munich, Germany
eIBM Research Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland

fInstitut Eurécom, 2229 Route des Cretes, BP 193, F-06560 Sophia-Antipolis Cedex, France

Abstract

Browser-based Single Sign-On (SSO) protocols relieve the user from the burden
of dealing with multiple credentials thereby improving the user experience and
the security. In this paper we show that extreme care is required for specify-
ing and implementing the prototypical browser-based SSO use case. We show
that the main emerging SSO protocols, namely SAML SSO and OpenID, suffer
from an authentication flaw that allows a malicious service provider to hijack
a client authentication attempt or force the latter to access a resource without
its consent or intention. This may have serious consequences, as evidenced by
a Cross-Site Scripting attack that we have identified in the SAML-based SSO
for Google Apps and in the SSO available in Novell Access Manager v.3.1. For
instance, the attack allowed a malicious web server to impersonate a user on
any Google application. We also describe solutions that can be used to mitigate
and even solve the problem.

Keywords: Single Sign-On, Security Protocols, Model-checking, OpenID,
SAML SSO, Vulnerability, Model-based Security Testing

1. Introduction

Browser-based Single Sign-On (SSO) is replacing conventional solutions based
on multiple, domain-specific credentials by offering an improved user experience:
clients perform a single log in operation to an identity provider, and are yet able
to access resources offered by a variety of service providers. Moreover, by replac-
ing multiple credentials (one per service provider) with a single one (associated

Email addresses: armando@{dist.unige.it,fbk.eu} (Alessandro Armando),
carbone@fbk.eu (Roberto Carbone), luca.compagna@sap.com (Luca Compagna),
jorge.cuellar@siemens.com (Jorge Cuellar), giancarlo.pellegrino@{sap.com,
eurecom.fr} (Giancarlo Pellegrino), aso@zurich.ibm.com (Alessandro Sorniotti)

Preprint submitted to Elsevier July 21, 2012



with the identity provider), SSO solutions are expected to improve the overall
security as users tend to use weak passwords and/or to reuse the same password
on different service providers.

At the core of a browser-based SSO solution lies a browser-based authenti-
cation protocol. Three roles take part in the protocol: a client (C), an identity
provider (IdP) and a service provider (SP). The objective of C, typically a web
browser guided by a user, is to get access to a service or a resource provided
by SP. IdP authenticates C and issues corresponding authentication assertions.
Finally, SP uses the assertions generated by IdP to decide on C’s entitlement
to the requested resource.

A number of solutions for browser-based SSO are available: the OASIS Secu-
rity Assertion Markup Language (SAML) 2.0 (OASIS, 2007), Microsoft R© Pass-
port (Microsoft, 2011), the Liberty Alliance project (OASIS, 2004), the Shibbo-
leth Initiative (Internet2, 2007), and OpenID (OpenID Foundation, 2007b) are
the most popular. The Web Browser SSO Profile of SAML 2.0 (SAML SSO,
for short) (OASIS, 2005b, Chapter 4) is the de facto standard in the business
domain: it defines an XML-based format for encoding security assertions as well
as a number of protocols and bindings that prescribe how assertions must be
exchanged in a variety of applications and/or deployment scenarios. Prominent
software companies, including IBM, Novell, Oracle, and SAP, base their SSO
implementations on SAML SSO. Google has developed a SAML-based SSO ser-
vice for its popular web applications (namely Gmail, Google Calendar, Talk,
Docs and Sites), called the SAML-based SSO for Google Apps (Google, 2008).

OpenID is an SSO solution more suited to Web 2.0 applications (e.g. blogs,
wikis) as it supports dynamic interactions between identity providers and ser-
vice providers without requiring any configuration, prior metadata exchange, or
administrative privileges for deployment.

The security of browser-based SSO protocols critically relies on a number
of assumptions on the trustworthiness of the principals involved and on the
security of the transport protocol used to exchange messages. As we will discuss
in more detail later, IdP is trusted (and in particular it is not compromised).
But we do not assume that all SPs which C may play the protocol with are
trusted or uncompromised. In particular, we ask ourselves, if a malicious SP
can compromise the security of sessions of the protocol played with other SPs.
We also assume that the communications between C and SP, and also between
C and IdP, are carried over unilateral SSL or TLS connections. It is worth
noticing, and this fact will play a crucial role later, that the single messages
between C and SP may be sent over different SSL/TLS connections, as far as
the standard and the typical implementations are concerned. Trying to enforce
that all such messages are always sent over the same SSL/TLS connection is
quite difficult in practice, as we will discuss later on. The consequence will be
that a malicious SP will indeed be able to affect the security of sessions of the
SAML protocol of C with other SPs.

Thus, in this paper we show that the usual assumptions, and in particular
the one concerning the nature of the communication channel between C and SP
are not enough and leave the protocols vulnerable to an authentication flaw,

2



which is present in straight-forward implementations of the standard. We will
also discuss further security measures to mitigate or fully avoid the risks.

We then show how this flaw can be practically exploited in a number of
prominent SSO solutions based on SAML, including the SAML-based SSO for
Google Apps, used by over one million business customers, and the SSO solution
available in Novell Access Manager v.3.1. In particular, on the SAML-based SSO
for Google Apps, a malicious web server was able to impersonate a target user on
any Google application. A similar attack was possible on deployments of Novell
Access Manager v.3.1. Both vendors have been informed of the vulnerabilities
in their products and both have promptly patched their implementations. All
our findings have also been discussed with members of the OASIS Security
Services Technical Committee and a SAML V2.0 Errata has been redacted and
approved (OASIS, 2012).

We also show that the OpenID protocol too is affected by the same problem,
and – for both SAML SSO and OpenID – we provide solutions that allow the
authentication flaw and its exploitations to be mitigated or even completely
eliminated. We have just informed the OpenID working group and some of the
implementors of this solution about our recent findings on OpenID.

The findings reported in this paper have been found with the help of state-
of-the-art techniques for the formal modeling and automated analysis of security
protocols. Although the main goal of the paper is to present and discuss the
findings themselves, details about the formal modelling and analysis that we
performed are also given.

Structure of the paper. In the next section we introduce the SAML SSO profile
for web-based authentication. In Section 3 we present the authentication flaw
on the SAML SSO, and in Section 4 describe how it can be exploited on actual
implementations. In Section 5 we provide a number of solutions to the problem.
In Section 6 we discuss the effects of the same vulnerability in OpenID and
show how similar countermeasures as those presented in Section 5.2 for SAML
SSO may be used to protect OpenID implementations. In Section 7 we briefly
present the formal modelling and the automatic analysis of SAML SSO that
allowed us to discover the flaw. In Section 8 we discuss the related work and in
Section 9 we draw some final remarks.

2. The SAML 2.0 Web Browser SSO Profile

SAML SSO provides a standardized, open, interoperable SSO solution ap-
plicable in a multitude of environments and situations, and can therefore be
instantiated according to the specific requirements posed by the application
scenario. In this paper we focus on one of its most widely used instantiations,
the SP-Initiated SSO with Redirect/POST Bindings, whose typical use case is
described in (OASIS, 2007). In the remainder of this paper we will refer to this
use case as the SAML SSO use case and to the associated protocol as the SAML
SSO Protocol.

3



In Figure 6 we capture the most important steps of the SAML SSO Protocol,
abstracting away the steps that are irrelevant for our analysis, such as—among
others—the IdP discovery phase. In step S1, C asks SP to provide the resource
located at URI, say Resource(URI), without having a valid, active logon ses-
sion (i.e. security context) with SP. SP then initiates the SAML Authentication
Protocol by sending to C an HTTP redirect response (status code 302) to IdP,
containing an authentication request AuthReq(ID,SP), where ID is a (pseudo-)
randomly generated string uniquely identifying the request (steps A1 and A2).
A frequent implementation choice is to use the RelayState field to carry the
original URI that C has requested (see (OASIS, 2007)).

If C does not have an existing security context with IdP, then IdP chal-
lenges C to provide valid credentials. If the authentication succeeds, IdP cre-
ates the local security context, builds an authentication assertion as the tuple
AA = AuthAssert(ID,C, IdP, SP), and places it in a response message Resp =
Response(ID, SP, IdP, {AA}K−1

IdP

), where {AA}K−1

IdP

is the assertion signed with

K−1
IdP, IdP’s private key. IdP then places Resp and the value of RelayState

received from SP into an HTML form (indicated as Form(. . .) in Figure 6) and
sends the result back to C in an HTTP response (step A3) together with some
script that automatically posts the form to SP (step A4). This completes the
SAML Authentication Protocol. SP can then deliver the requested resource,
Resource(URI), to C (step S2), and the SAML SSO Protocol completes as well.

Note that the steps at message S1 and S2 admittedly fall outside of the
scope of the standard, and their implementation is left free. In this paper we
capture steps S1 and S2 as described in the SAML SSO use case; a number of
commercial SAML SSO solutions indeed adopt similar approaches to implement
those steps.

As pointed out in (Armando et al., 2008) the security of the protocol criti-
cally relies on (unstated) assumptions about the trustworthiness of the partici-
pants involved and about the transport protocols used to exchange the protocol
messages; we shall review these in the next Sections.

2.1. Trust and Transport Protocol Assumptions

The above protocols work under the assumption that (i) IdP is not compro-
mised, i.e. it is not under the control of an intruder and it abides by the rules of
the protocol and (ii) IdP is trusted by SP to generate authentication assertions
about C. Even if they are not explicitly stated in the SAML 2.0 specifications,
these are very reasonable assumptions to make and, in fact, both protocols are
useless if IdP is not trusted to generate authentication assertions about C or
if there is the doubt that IdP is compromised. However, we do not assume
that all SPs which C may play the protocol with are uncompromised. In other
words, unlike (Hansen et al., 2005), we want to consider also those situations in
which C runs the protocol with compromised SPs in order to determine whether
they affect the security of sessions of the protocol played with other uncompro-
mised SPs. This is very important as SPs are usually managed by different
organizations that do not always share trust relationships.

4



The SAML 2.0 specifications repeatedly state the following assumptions of
the transport protocols used to carry the protocol messages:

(TP1) Communication between C and SP is carried over a unilateral SSL 3.0
or TLS 1.0 connection (henceforth called SSL), established through the
exchange of a valid certificate (from SP to C).

(TP2) Communication between C and IdP is carried over a unilateral SSL
connection that becomes bilateral once C authenticates itself on IdP. This
is established through the exchange of a valid certificate (from IdP to C)
and of valid credentials (from C to IdP).

2.2. Security Requirements

The SAML specifications do not explicitly state the security properties that
the SAML SSO Protocol and the SAML Authentication Protocol are expected to
achieve. By comparison with classic web authentication schemes, it is however
natural to expect that at the end of the SAML SSO Protocol, the following
security property is fulfilled:

(P1) SP and C mutually authenticate and agree on the value URI

As pointed out in (Lowe, 1997), different definitions of authentication are
possible. The notion of authentication we consider in this paper includes re-
centness, i.e. the fact that the principal being authenticated recently took part
in the protocol run so as to exclude replay attacks.

We note that the SAML Authentication Protocol, the building block of the
SAML SSO Protocol, is only able to guarantee the property

(P2) SP authenticates C

The converse is not true, i.e., the SAML Authentication Protocol does not
provide to C any guarantee on SP’s identity; indeed in message A1, SP may
instruct IdP to force C to redirect message A4 to an arbitrary location. Even
the use of SSL certificates only guarantees that there is no man-in-the-middle
in the communications between C and the recipient of message A4.

In the remainder of this paper, we will investigate whether the SAML SSO
Protocol, constructed with a building block that only guarantees (P2), is able
to fulfill the original property (P1), and we will show that the fulfillment of
this property is not automatically guaranteed; in particular depending on the
implementation choices, a malicious SP may be able to hijack C’s authentica-
tion attempt and force the latter to access a resource without its consent or
intention.

3. An Authentication Flaw in the SAML SSO Protocol

An analysis of the SAML specifications reveals that the standard does not
specify whether the messages exchanged at steps S1 and A4 must be transported

5



over the same SSL connection or whether two different SSL connections can be
used for this purpose. In other words, there is a certain degree of ambiguity on
how assumption (TP1) of Section 2 can be interpreted.

The reuse of the SSL connection established at step S1 to also transport the
message at step A4 is at first sight the most natural option. However this is
difficult to achieve in practice for a number of reasons:

Resuming SSL connections. The use of a single SSL connections for the
exchange of different messages cannot be guaranteed as, e.g., the underlying
TCP connection might be terminated (e.g. timeout, explicitly by one of the
end points), an SSL server could not resume a previously established session,
or a client might be using a browser that very frequently renegotiates its SSL
connection.1

Software modularity. Nowadays, software is designed to be increasingly
modularized, capitalizing on layering and separation of concerns. This may re-
sult in the fact that—within SP implementations—the software module that
handles SAML messages has no access to the internal information of the trans-
port module that handles SSL. Thus, the information on whether the client has
used a single SSL connection or two different ones may not be available.

Distributed SPs. The SAML SP may be distributed over multiple machines,
for instance, for work-balancing reasons. This results in physically different SSL
endpoints, with the inherent impossibility of enforcing a single session for all
communications between SP and C.

We have extended the formal model discussed in (Armando et al., 2008)
to faithfully capture the SAML SSO use case in which the messages of steps
S1 and A4 can be transported over different SSL connections and fed it to
SATMC (Armando et al., 2009), a state-of-the-art model-checker for security
protocols. (See Sections 7 and 8 for more details.) The model checker detected
the attack depicted in Figure 7, thereby witnessing a violation of property (P1)
in the SAML SSO Protocol.

The attack involves four principals: a client (c), an honest IdP (idp), an
honest SP (sp) and a malicious SP (i). The attack is carried out as follows: c
initiates the protocol by requesting a resource urii at SP i. Now i, pretending
to be c, requests a different resource uri at sp and sp reacts according to the
standard by generating an Authentication Request, which is then returned to
i. Now i maliciously replies to c by sending an HTTP redirect response to
idp containing AuthReq(id, sp) and uri (instead of AuthReq(idi, i), and urii as
the standard would mandate). The remaining steps proceed according to the
standard. The attack makes c consume a resource from sp, while c originally
asked for a resource from i.

Note that the attack is possible essentially because the client—usually a
normal browser with no knowledge of the SAML protocol—has no means of

1See, for instance, http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.

jsp?topic=/com.ibm.itame2.doc_5.1/am51_webseal_guide54.htm

6



verifying whether the authentication request and the authentication assertion
are related to the initial request.

Interestingly enough, standard username/password authentication mecha-
nisms do not suffer from this authentication flaw. To see this, let us assume
that c has no active sessions with SPs i and sp; let us also assume that c’s user-
names and passwords are different for each SP.2 Then under no circumstance
can i hijack c’s authentication attempt and unawarely and automatically force
it to consume a protected resource at sp. From this point of view, the advantage
of domain-specific credentials in the control of the user is that the user knows
exactly for whom the credentials are intended upon providing them. With SSO,
“binding” the views of the user and of the service provider is not so easy.

Note that the attack would be prevented if sp could enforce that the initial
request and authentication response are carried over the same secure channel,
but we have previously explained why this requirement is very difficult to achieve
in practice. Note also that requiring digitally signed authentication requests
would not fix the vulnerability; indeed the authentication request is actually
generated by sp, and only blindly forwarded to c by the attacker; the signature
is therefore valid and will be accepted.

Even more interestingly, the attack does not strictly require a malicious SP
in order to be successful. Any malicious web server i would be able, upon a
request from c, to mount the attack provided that (i) c is a client of sp and (ii)
c has an active authentication context with idp.

The attack in Figure 7 can be exploited in a number of ways:

Delivery of an unrequested resource. The most trivial exploitation of the
flaw consists in the attacker forcing the client to receive a different protected
resource from the initially requested one. The same exploitation may also be
mounted if a malicious web server redirects the browser to a legitimate SP
before the SAML SSO Protocol starts. However this attack can be prevented
by using well-known browser-side plugins that restrict HTTP redirections (e.g.,
the NoRedirect addon for Firefox). By allowing only IdP-to-SP and SP-to-IdP
redirections, the delivery of an unrequested resource upon redirection outside of
the SAML SSO Protocol is prevented, but a malicious SP can still mount the
one depicted in the Figure 7.

Launching pad for cross-Site Request Forgery (CSRF) attacks. This
attack assumes that the URI that was initially requested did not point to a
resource, but rather contained a URL-encoded command, such as a request
for the change of some settings or user’s preferences, for the deletion of some
resource or for the annulment of/committing to an action, such as the purchase
of a paid good. Depending on the output provided by the execution of the
command, the client may or may not be able to detect the attack. This type
of attack is even more pernicious than classic CSRF, because CSRF requires C

2If this assumption does not hold, c is vulnerable to a number of other trivial attacks
anyway.

7



to have an active session with SP, whereas in this case, the session is created
automatically hijacking C’s authentication attempt.

Launching pad for cross-Site Scripting (XSS) attacks. It is straight-
forward to see that this attack also constitutes a launching pad to reflected XSS
attacks, i.e. XSS attacks that can be triggered by visiting a maliciously-crafted
URL. In addition, a vanilla implementation of the SAML SSO protocol exposes
the RelayState field to a possible injection of malicious code that may be ex-
ecuted at the honest SP side. Although the SAML standard recommends to
protect the integrity of this field, our experience shows that this often is not the
case (see Section 4).

In addition, unlike normal XSS attacks, where the attacker has to rely on
social engineering (phishing, spam and so forth) to lure a victim into clicking on
a malicious link, an exploitation of the vulnerability paves the way for system-
atically luring victims into visiting URIs that may be vulnerable to cross-site
scripting attacks. Note also that in this case, unlike in the previous exploita-
tions, the client is not suspicious about receiving a different resource than the
one requested. On the contrary, with reference to Figure 7, because arbitrary
code can be embedded in uri, a redirection to urii, the page that c initially
requested, can be eventually forced at the end of the attack. As an example, if
uri is forged as javascript:window.open(’urii’+document.cookie) the client
would be victim of the theft of its cookies for the domain sp through a visit to
the requested urii.

Although in this paper we focus on the SP-initiated SSO protocol, it is worth
mentioning that IdP-Initiated flows may suffer from login CSRF attacks (Barth
et al., 2008), whereby the attacker forges a cross-site request to the login form
and logs the victim into an honest web site as the attacker.

4. Exploitations in Actual SSO Implementations

An interesting question that we also address in this paper is whether exploita-
tions of the abstract weakness of the standard are possible in actual implemen-
tations of the SAML SSO Protocol. To this end, we have analysed a number
of SAML-based SSO solutions available on the market, including the SAML-
based SSO for Google Apps, a deployment of Novell Access Manager v.3.1, and
SimpleSAMLphp as deployed for Foodle (https://foodl.org). More details
are reported in Sections 4.1, 4.2, and 4.3, respectively. All these deployments
support the SAML SSO use case. As expected, by inspecting the messages
exchanged between the parties we verified that SPs accept and process SAML
responses carried over SSL connection different from that used to deliver the
SAML request.

4.1. The SAML-based SSO for Google Apps

The protocol implemented in the SAML-based SSO for Google Apps in op-
eration until 2009 is depicted in Figure 8. The model has been obtained by

8



carefully inspecting the reference implementation of SAML-based Single Sign-
On for Google Apps3 and by experimenting with the online service.

In the implementation offered by Google, when SP receives a request for a
resource URI from C, if the request is accompanied by a valid session cookie,
then the resource is returned right away (step S10 in Figure 8). The name of
the session cookie depends on the specific service considered, e.g. it is named
CALH in case of Google Calendar, and GXAS in case of Gmail. If the request
is accompanied by valid values for the parameters auth and husr in the URI,
then SP creates a fresh session cookie and sends it back to C; C then is asked
to resubmit the request by means of an HTTP redirect (steps S8 and S9). If
neither of the above conditions hold, C is redirected to the Service Login (SL)
and the requested URI is passed as the value of the continue URL-encoded
parameter. Upon receipt of this request, SL initiates the SAML Authentication
Protocol (step A1) using SL?continue=URI as the value of the aforementioned
RelayState field. If the SAML Authentication Protocol completes successfully,
then SL sets the cookies HID, HUSR, and ASIDAS and returns an HTML page of
the form (concisely indicated as Script(. . .) in step S4 of Figure 8):

<html >

...

<body >

<script >

var url=URI

. . .

window. setTimeout (

function () {

window.location = url;

},

0);

</script >

. . .

</body >

</html >

This simulates a redirection by setting the value of the browser variable
window.location to URI and forcing the browser to reload the page. Notice
that since the value of URI is embedded into the HTML page, it will be evaluated
by the JavaScript interpreter. As already mentioned in Section 3, this means
that if URI contains some malicious code, e.g.

javascript:window .open (

’http://i/collect.php?cookies=’ + document .cookie

)

then the cookies of C for the SP domain are sent to a web server under control
of the intruder.

3http://code.google.com/googleapps/domain/sso/saml_reference_implementation_

web.html

9



Our analysis of the SAML-based SSO for Google Apps shows that by exploit-
ing the weakness of the standard, a compromized SP can force C to consume
a resource from Google, e.g., by visiting any page of the gmail service. This
trivial attack is however easily detected by the user using C, and does not bring
any real advantage to the attacker. Definitely more serious was the XSS at-
tack we were able to execute and that allowed the compromised SP to steal the
cookies of C for the Google domain and thus to impersonate C on any Google
application. The abstract flaw of Figure 7 served indeed as launching pad for
this XSS. The attack is depicted in Figure 9. As we can see in the figure, c re-
quires a resource from a compromised SP i; i, acting in turn as a client, receives
from sp an Authentication Request, and passes it back to c, with the malicious
code injected into the RelayState. The client’s browser eventually executes
the redirection to the maliciously-crafted URI, as if coming from the Google
domain (thus circumventing the same origin policy). This redirection leads to
the theft of the HID, HUSR, and ASIDAS cookies by sp. The malicious SP i can
then use these cookies to obtain a valid session cookie from SL and unrestricted
access to the Google Apps under c’s name. In other words, the combination
of the abstract flaw and the missing sanitization was key to this XSS attack.
In response to our vulnerability report Google patched the issue by properly
sanitizing the RelayState value. An acknowledgement of our contribution can
be found in the Google corporate web pages (Google, 2009).

4.2. Novell Access Manager

We have also analysed the SAML SSO solution of the Novell Access Man-
ager v.3.1 as deployed in a real industrial environment and even in this case
we detected the authentication flaw. We have been able to mount a XSS at-
tack similar to the one found in the Google SSO solution. In this deployment
RelayState is not used to store the URI; instead, a URL-encoded parameter is
used to this end and also in this case, the parameter was not sanitized. In re-
sponse to our findings Novell promptly patched their implementation and issued
a vulnerability report (Novell, 2011).

4.3. SimpleSAMLphp

The SimpleSAMLphp, as deployed in Foodle, stores the initially requested
URI into the URL parameter ReturnTo. Although that field is not sanitized, we
have not been able to mount any XSS. The reason is that SPs running Simple-
SAMLphp additionally use cookies that block the abstract flaw we discovered.
More details on this solution will be given in the next section.

Also in this case we promptly informed the developer and maintainer of the
SSO solution, namely UNINETT. UNINETT credited us in the release notes of
a new version of SimpleSAMLphp (UNINETT, 2010).

5. Fixing the vulnerability

The root of the authentication flaw presented in Section 3 lies in the following
two main factors:

10



1. Clients are not able to link the Authentication Request they receive from
SP in step A1 with their initial requests for a resource issued in step S1;

2. SP is not able to ensure that the messages exchanged with C (cf. steps S1,
S2, A1, and A4) are carried over the same channel.

We have verified that – could one of the two causes be removed – the vul-
nerability would no longer be exploitable. In what follows, we shall outline a
number of mitigations and subsequently of possible solutions, highlighting their
strengths and shortcomings.

5.1. Mitigations

This section describes a number of controls – specified by the standard –
that mitigate the impact of possible exploitations of the flaw, but that do not
tackle its root causes.

The OASIS SAML Guidance for Implementations. We have thoroughly dis-
cussed our findings and possible solutions with members of the working group
of the OASIS Security Services Technical Committee. The erratum “E90: Re-
layState sanitization”, which has been included in the newly released errata to
the SAML SSO v2.0 (OASIS, 2012), specifically addresses the security concerns
we raised. The erratum summarizes the changes to (OASIS, 2005a) and (OA-
SIS, 2005b) that have been eventually decided by OASIS. In a nutshell, the
main points are:

• When using RelayState, implementations must carefully sanitize the URL
schemes they permit, disallowing unencoded characters; and

• SPs should have a means of disabling the acceptance of unsolicited re-
sponses.

The first measure limits the damage an attacker can do upon a successful ex-
ploitation of the flaw; the second attempts to restrict the attack surface by
refusing to accept unsolicited responses. It is worth pointing out that neither
measures address the root cause of the vulnerability.

Signing the Authentication Request. Signing Authentication Requests limits the
ability of an attacker to alter the content of sensitive fields in the message, such
as the RelayState, whose modification opens up to XSS attacks as we have seen
in the Section 4. Chapter E1: RelayState for HTTP Redirect of the SAML
V2.0 Approved Errata (OASIS, 2012) clarifies how Authentication Requests
(and sensitive fields within, such as RelayState) are to be signed. However,
this security control alone is not sufficient to block all XSS attacks. Indeed an
attacker may well discover a URL whose parameters are susceptible to injection
of malicious code, request said URL and feed the signed Authentication Request
to its victim.

In addition, signatures may even be removed from an Authentication Re-
quest: as an example, the HTTP redirection binding mandates the signature to

11



be stored as a URL encoded parameter and appended to the URL containing
the request. By removing said parameter, the attacker is still able to modify
the content of the RelayState and may thus trigger a successful XSS attack.
Such attack vector is blocked only if IdP refuses to accept requests that are not
signed.

5.2. Solutions

In this section we shall highlight measures that tackle the root cause of the
presented flaw, in increasing order of effectiveness. The introduced measures
may be deployed separately or may be combined to achieve an improved effec-
tiveness. We emphasize however that the SAML SSO Protocol alone does not
mandate the implementation of any of these solutions, thus leaving a vanilla
implementation in principle flawed. The challenge is to fix the vulnerability
with minimal changes so that existing solutions can be secured without radical
modifications to the software components (e.g. SAML ECP profile) or to the
standard.

Enforcing a single session. As pointed in Section 3, there is no guarantee that
messages associated with steps S1, S2, A1, A4 are carried out over a single SSL
connection. A different way to achieve this objective could be for SP to make
sure that it is interacting with the same C throughout all these messages. SP
may use IP addresses to identify clients and bind together the protocol messages.
However, IP addresses can be spoofed by malicious principals, and it is a good
and well-established security practice to not base any security decision on fields
whose integrity cannot be satisfactorily verified.

Feedback from the user. As seen in the previous sections, the user may initi-
ate the SAML SSO profile, authenticating to an SP without actually having
explicitly requested anything from it. This could be avoided if IdP informed
the user about the attempt to access URI on SP during the authentication and
asked for an explicit consent before issuing the authentication assertion to SP.
In this way, the user may realise that the authentication was going to be sent
to a different SP than expected and may be given the possibility to stop the
protocol. This solution however has a number of drawbacks: first of all, it forces
a security decision upon a (possibly technically unaware) user, who is asked to
tell apart legitimate SP-to-SP redirections from malicious ones. In addition, it
breaks the seamlessness of SSO, in which the authentication process is supposed
to be carried out with minimal interactions with the user.

Cookies. A standard way of enforcing bindings on connections is implemented
using session cookies. With reference to Figure 6, by setting a session cookie in
step A1 and expecting to receive it back on message A4, SP could check that
the communication has occurred with the same C. This solution is adopted by
a number of implementations of the standard, for instance by SimpleSAMLphp.
An alternative approach that is suggested as a best practice, is to set the target
URI of step S1 as the value of a cookie that the SP sets in step A1. The name

12



of said cookie is the hash of its value (i.e. of URI), and the cookie name is in
turn set as the content of the RelayState. Originally this method was suggested
to avoid revealing confidential information about the requested URI to IdP. A
side-effect of the adoption of such measure is that responses that come in HTTP
messages that do not contain a cookie (i) whose name is the same as specified
in the RelayState field, (ii) whose content is not a valid URI and (iii) whose
content does not hash to the cookie name are automatically rejected.

Unfortunately, cookies do not represent a complete solution: indeed cook-
ies are designed to be difficult to steal and it is not as hard to set them. For
instance, cookies with the “Secure” flag set (which instructs the browser not
to transmit them over unencrypted channels) can be set over unprotected con-
nections: modern browsers (e.g. Firefox 9.0) allow this. In practice an attacker
could circumvent the protection offered by cookies by (i) setting a cookie for
the victim SP through injected JavaScript or HTML META tags; (ii) corrupt-
ing the proxy discovery phase setting up a rogue WPAD or DHCP server, thus
becoming the user’s proxy; (iii) performing ARP poisoning thus becoming the
victim’s default gateway. Admittedly such attacks require a relatively powerful
attacker.

In order not to block the SAML SSO IdP-initiated profile (see Section 4.1.5
in (OASIS, 2005b)) – an SP ought to accept unsolicited Authentication Re-
sponses (i.e. responses that do not carry an InReturnTo field) even if no valid
session cookie is presented. However, as we have seen above, unsolicited re-
sponses may not be desirable in security sensitive deployment scenarios.

Self-signed Client Certificates. A simple, yet effective way for the SP to ensure
that it is interacting with the same client is to require the latter to present a
self-signed certificate. This solution is particularly attractive since it requires
no changes to the protocol and can be deployed over existing components, since
modern browser can perform certificate generation quite easily. The solution
goes as follows: during the first SSL connection (cf. steps A1 and A2 in Figure 6),
C is asked to present the certificate. SP will then generate an Authentication
Request whose ID field is set to be equal to n || HMACK ||n(RSA modulus), where
n is a nonce, K is a secret known only to SP, RSA modulus is the RSA modulus
of the public key contained in the client’s certificate for the SSL connection in
steps S1-A1. HMAC is the well-known HMAC keyed hash function (Bellare
et al., 1996) and || denotes the concatenation. After this, SP deletes all state
information and sends the Authentication Request to C. During the second SSL
connection (cf. steps A4 and S2), C is again asked for the certificate and the
same certificate will be delivered to SP. The standard requires the InResponseTo
field of the Response message to contain the same value of the ID field of the
Authentication Request message: therefore SP can parse such field as n′ and
H ′ and then check whether H ′ = HMACK ||n′(RSA modulus’); RSA modulus’ is
the RSA modulus of the public key contained in the client’s certificate for the
SSL connection in steps A4-S2.

If the above equality is verified, SP has the assurance that the assertion
contained in step A4 is delivered by a principal whose RSA modulus used in

13



steps A4-S2 is the same as the one used in steps S1-A1. Identity of RSA moduli
across both SSL connections implies identity of the principal triggering both
connections: indeed, if we exclude the possibility of stolen certificates/private
keys,4 having two certificates with the same modulus is widely considered to
happen with negligible probability: RSA moduli are currently 1024 or 2048 bits
integers so the chance of randomly picking the same modulus twice is negligible.5

Forging a second certificate with the same modulus as the first one is considered
hard as it would break RSA’s security: the SSL handshake indeed forces the
user to prove possession of the private key associated to the advertised modulus,
and generating such private key requires solving the RSA problem on input the
initial modulus.

Notice that generating multiple certificates with the same modulus by ex-
ploiting the knowledge of its factorization is commonly discouraged as it may
open up to the well-known common modulus attack (Schneier, 1996). Note also
that the possibility of circumventing this security measure by performing replay
attacks is not feasible because replayed assertions are not accepted by compliant
implementations of the standard.

This security control effectively thwarts the attack presented in Figure 7:
indeed c’s self-generated certificate could not be the same as i’s, and as a con-
sequence, sp would reject message A4. On the client side, no difference with
respect to the standard operations of SAML-based SSO are perceived, except
the very first time in which – in case no client certificate is available – the client
is instructed to create one. When the client gets the Authentication Assertion
from IdP, an SSL connection with SP is opened. This connection may be the
same or may be different. The client is again asked for a certificate and the
browser will seamlessly present the same certificate as before. As pointed out
in the previous section, extra care should be taken when this security control is
used in conjunction with the SAML SSO IdP-initiated profile.

6. OpenID

OpenID Authentication 2.0 (hereafter OpenID) is an open and user-centric
Web browser-based Single Sign-On protocol. It provides a way to authenticate a
user C asking her to prove that she controls an identifier (OpenID Foundation,
2007a). OpenID is decentralized in the sense that it does not require SPs 6

4Exporting a private key is considered a sensitive operation in most operating systems and
browsers; consequently it presents warning to the users and requires explicit approval.

5If weak randomness generation techniques are used, two independent users may draw
the same two random primes and therefore end up with two certificates with the same RSA
modulus. This may happen in practice, as shown by (Lenstra et al., 2012): we therefore
require users to be equipped with software libraries that implement secure random number
generation routines.

6The OpenID Authentication 2.0 specification uses the term Relying Parties for the web
applications that want a proof that the end user controls an identifier. However, in order to
avoid confusion to the reader by introducing new terms, we will adhere to the SAML SSO
terminology.

14



and OpenID IdPs to have pre-established relationships. This is actually one of
the main differences with respect to SAML SSO where SPs and IdPs have to
perform a prior metadata exchange and configuration to establish trust among
each others.

Figure 10 shows the most relevant steps of OpenID, abstracting away the
steps that are irrelevant for our analysis, such as the IdP discovery phase, the
association session protocol and the user authentication (grey arrows). In the
remainder, we call the OpenID SSO Protocol the steps from S1 till S2 and the
OpenID authentication protocol the steps from A1 till A4.

The OpenID SSO protocol is initiated by C who accesses a resource URI at
SP in step S1. Between the steps S1 and A1, SP executes the association session
protocol with IdP in order to generate a shared secret key K, used to sign and
verify assertions, and a value H used as a pointer to refer to the key K. Once SP
possesses K and H, it issues an authentication request AuthReq(C, IdP,H, SP)
and redirects C to IdP (steps A1 and A2). C authenticates now with IdP (ab-
stracted away). If the authentication succeeds, IdP issues an authentication
assertion {AA}K where AA = AuthAssert(IdP,C, SP,H) and K is the key asso-
ciated with H. The assertion is placed into an HTML form that C automatically
posts to SP (steps A3 and A4). Upon receiving the assertion, SP verifies the
signature and delivers the resource to C (step S2). It is worth pointing out that
the OpenID standard does not describe a mechanism to let SP recover in step
S2 the resource originally asked in S1. This feature is offered by many actual
implementations using customized techniques.

Trust and Transport Protocol Assumptions. As for SAML SSO, also OpenID
works under the assumptions that IdP is not compromised and that IdP is
trusted by SPs to generate authentication assertions. The latter requires a
certain care from SPs as in principle any entity can claim itself to be an IdP.
SPs are assumed to be capable to select those IdPs that can be considered
trustworthy. Of course, if the IdP is not trusted in generating authentication
assertions, then the OpenID protocols become useless.

The OpenID specifications strongly recommend the use of SSL connections
for all parts of the interaction, including communication with the user. Not
following this recommendation would make the OpenID protocols vulnerable in
many trivial aspects that may not fit relevant business scenarios. In our analysis
we follow this recommendation and we assume then that the protocol is working
under the assumptions (TP1) and (TP2) as discussed in Section 2.1.

Security Requirements. The OpenID specifications do not state the security
properties the OpenID SSO protocol and the OpenID authentication protocol
are expected to achieve. Similarly as seen for SAML, we expect that the OpenID
SSO protocol and the OpenID Authentication Protocol meet, respectively, the
property (P1) and (P2) in Section 2.2.

6.1. Authentication Flaw
Like SAML SSO, we modeled the OpenID protocols of Figure 10 under

the assumption that steps S1 and A4 can be transported over different SSL

15



connections. We fed the SATMC model checker with it and SATMC returned
the attack trace in Figure 11, showing that the flaw found in SAML SSO is also
present in OpenID.

The attack involves four principals: a client (c), an honest IdP (idp), an
honest SP (sp) and a malicious service provider (i). The client c requests urii at
SP i. Here, the attacker i, impersonating c, requests a different resource to sp
and sp reacts starting the OpenID authentication protocol by crafting a proper
authentication request for c. The malicious SP i uses this authentication request
in its protocol session with c. The protocol simply proceeds according to the
OpenID standard resulting in c accessing to a resource of sp, while c originally
asked for a resource from i.

The attack in Figure 11 is witnessing that the OpenID SSO protocol does not
offer the security property (P1). As said in Section 3, under no circumstance a
compromised SP should hijack C’s authentication attempt to force C to consume
a protected resource at an honest SP. We verified that if C can link the message
A1 with S1 or SP can enforce that S1, A1, A4, and S2 are exchanged over
the same SSL connection then the attack is solved. However, the client, a web
browser guided by a user, have no means of verifying whether the authentication
request and the assertion are related to the initial request. Also, the reuse of the
same SSL connection for exchanging the messages S1, A1, A4 and S2, though
theoretically possible, it is not feasible in practice.

6.2. Exploitations

As seen in Section 3, the authentication flaw on SAML SSO can be exploited
in several ways. However, the differences between SAML SSO and OpenID make
the exploitations on SAML SSO not directly applicable to OpenID. Indeed,
OpenID does not prescribe any parameters to let SP recover its previous state
(e.g. RelayState in SAML SSO). Therefore, the Cross-Site Request Forgery
and the Cross-Site Scripting attacks described in Section 3 are no directly ex-
ploitable. However, the OpenID specifications enable SP to append customized
query parameters to the authentication requests whose names and values are
out of the scope of the OpenID specifications. For instance, in this way SP can
recover the URI of resource the client originally asked for. Depending on the
usage by the SP, these parameters can be exploited to mount XSS and CSRF
attacks.

We have verified some OpenID suffers from this kind of vulnerabities. Also
in this case, we have promptly informed the vendors and details will be made
available to the public as soon as the vulnerabilities are fixed.

6.3. Solutions

This section shows how to apply the countermeasures discussed in Section 5.2
to OpenID. Enforcing a single session between SP and C is straight-forward for
OpenID and it does not require any adaptation. Particular care must be taken in
adapting self-signed client certificate. When issuing an Authentication Request,
SP calculates the value n || HMACK ||n(RSA modulus), where n is a nonce, K is

16



a secret known only to SP, RSA modulus is the RSA modulus of the public key
contained in the client’s certificate for the SSL connection in steps S1-A1. Then
SP stores it in an URL parameter ID and appends it to the Authentication
Request as a customized parameter. Afterwards, in step A3, IdP sends the
assertion to SP together with ID. Upon receiving the assertion, SP checks the
value in ID as explained in Section 5.

Interesting enough, cookies and the feedback from the user solutions are
already used by actual OpenID implementations. For example, Flickr7 and
Sourceforge8 use cookies that block the flaw as explained in Section 5. The
feedback from the user is specified in the OpenID User Interface Extension speci-
fications (OpenID Foundation, 2009a) and the OpenID User Interface Extension
Best-Practices for Identity Providers (OpenID Foundation, 2009b). They per-
mit SP to request IdP to display the IdP’s login window on top of the SP’s
page together with a consent page containing both the IdP and SP’s names.
Although the focus is merely improving the user experience, this mechanism
fixes the flaw.

7. Formal Modeling and Analysis of the SAML 2.0 Web Browser SSO
Profile

We carried out the formal analysis of SAML SSO using the AVANTSSAR (Ar-
mando et al., 2012) Platform, an integrated toolset for the formal specification
and automated validation of distributed, security-sensitive applications. The
platform supports a variety of specification languages and a number of model
checking tool specifically tailored for the specification and automatic analy-
sis of security-sensitive applications. For the analysis of SAML SSO we used
HLPSL++ as specification language and SATMC (Armando and Compagna,
2004) as model checker.

HLPSL++ is a role-based specification language for security protocols. Un-
like its predecessor HLPSL (High-Level Protocol Specification Language) (Cheva-
lier et al., 2004), HLPSL++ supports the specification of communication chan-
nels that go beyond the Dolev-Yao (DY) model. The DY model assumes that
communication between honest principals is controlled by a very powerful in-
truder (called Dolev-Yao intruder (Dolev and Yao, 1983)) capable to overhear,
divert, and fake messages. Since SAML SSO, as most browser-based security
protocols, runs over SSL, the adoption of a DY intruder for the analysis is
problematic. HLPSL++ allows the specification of confidential and authentic
channels and therefore is suited to the task of specifying browser-based security
protocols.

SATMC is a SAT-based bounded model checker for security protocols. Prop-
erties and assumptions on the security of the channels used to transport the pro-
tocol messages can be expressed in LTL (Armando et al., 2007, 2009). SATMC

7http://www.flickr.com
8http://www.sourceforge.net

17



performs a bounded analysis of the problem by considering scenarios with a
finite number of sessions. At the core of SATMC lies a procedure that, given a
security problem, automatically generates a propositional formula whose satisfy-
ing assignments (if any) correspond to counterexamples on the security problem
of length bounded by some integer k. Intuitively, the formula represents all the
possible evolutions, up to depth k, of the transition system described by the se-
curity problem. Finding attacks (of length k) on the protocol therefore reduces
to solving propositional satisfiability problems. For this task, SATMC relies on
state-of-the-art SAT solvers, which can handle propositional satisfiability prob-
lems with hundreds of thousands of variables and clauses or more. SATMC can
also be instructed to perform an iterative deepening on the number k of steps.
As soon as a satisfiable formula is found, the corresponding model is translated
back into a partial-order plan (i.e., a partially ordered set of rules whose appli-
cations lead the system from the initial state to a state witnessing the violation
of the expected security property).

In Section 7.1 we provide a brief description of the HLPSL++ specification
of SAML SSO and in Section 7.2 we discuss the security analysis of the protocol
that we carried out by using SATMC.

7.1. Formal Specification of SAML SSO

An HLPSL++ specification consists of the definition of

1. the basic roles, i.e. the roles played by the agents participating in the
protocol;

2. the interplay among the basic roles (role session); this includes the dec-
laration of the channels used to exchange the protocol messages;

3. the set of sessions to be analysed (role environment).

7.1.1. Roles

Actions carried out by a protocol participant are grouped and specified in a
basic role. Basic roles are then instantiated and glued together into composed
roles.

The three basic roles participating in the SAML SSO, namely client,
serviceProvider, and identityProvider, are defined in Figures 1, 2, and
3 respectively. The definition of a role includes a list of parameters and the
specification of agent playing that role in the protocol. A basic role with pa-
rameters thus corresponds to many possible instances of same role obtained
by instantiating the parameters with terms of the appropriate type. For in-
stance, the role serviceProvider has the following parameters (cf. lines 2-5
of Figure 2): C, IdP, and SP of type agent, KIdP of type public key, SP2C_1,
C2SP_1, SP2C_2, and C2SP_2 of type channel (used by SP to communicate with
the client), and URI of type text. In addition, this role will be played by agent
SP (cf. line 6). Roles (both basic and composed) can also contain the definition
of local variables and constants within the section local. For instance, the
role serviceProvider uses the local variable State of type nat, AnyC of type
agent, and the local variables ID and Resource of type text (cf. lines 9-12).

18



1 role client(

2 C, IdP, SP : agent,

3 KIdP : public_key,

4 C2SP_1, SP2C_1, C2IdP, IdP2C : channel,

5 Set_SP2C_2 : (agent.channel.channel) set,

6 URI : text

7 ) played_by C

8 def=

9

10 local

11 State : nat,

12 ID, Resource : text,

13 AnySP : agent,

14 AnyURI : text,

15 C2SP_2, SP2C_2 : channel

16

17 init

18 State:=0

19

20 transition

21 %% C asks for a resource to SP

22 S1. State=0 /\ SP2C_1(start)

23 =|>

24 State’:=2 /\ snd(C2SP_1, SP, URI)

25 /\ witness(C, SP, sp_c_uri, URI)

26

27 %% C receives an AuthnReq(ID, SP) to be forwarded to IdP

28 A1_A2. State=2 /\ rcv(SP2C_1, SP, C.IdP.(ID’.AnySP’).AnyURI’)

29 =|>

30 State’:=4 /\ snd(C2IdP, IdP, C.IdP.(ID’.AnySP’).AnyURI’)

31

32 %% C receives a Response(SP, C, IdP, ID) for SP

33 A3_A4.State=4 /\ rcv(IdP2C, IdP, AnySP’.{AnySP’.C.IdP.ID’}_inv(KIdP).AnyURI’)

34 /\ in(AnySP’.C2SP_2’.SP2C_2’, Set_SP2C_2)

35 =|>

36 State’:=6 /\ snd(C2SP_2’,AnySP’,AnySP’.{AnySP’.C.IdP.ID’}_inv(KIdP).AnyURI’)

37

38 %% C receives a resource from SP

39 A4_S2. State=6 /\ rcv(SP2C_2, AnySP, Resource’)

40 =|>

41 State’:=8

42 end role

Figure 1: HLPSL++ specification of the SAML SSO protocol: role C

Local variables can be initialized in the section init. For instance, State is
initially assigned to the value 1 in the serviceProvider role (cf. line 14).

The behavior of roles is specified in the transition section. This comprises
a collection of transitions of the form Pre =|>Post , where Pre is the conjunc-
tion (denoted by the /\ symbol) of preconditions for the applicability of the
transition and Post is the conjunction of effects that result by the execution
of the transition. For example, the first transition in Figure 2 (cf. lines 19-
22) occurs only if State=1 and a message URI is received on channel C2SP_1

19



1 role serviceProvider (

2 C, IdP, SP : agent,

3 KIdP : public_key,

4 SP2C_1,C2SP_1, SP2C_2,C2SP_2 : channel,

5 URI : text

6 ) played_by SP

7 def=

8

9 local

10 State : nat,

11 AnyC : agent,

12 ID, Resource : text

13

14 init State:=1

15

16 transition

17 %% SP receives a request for a resource and issues an

18 %% AuthReq(ID, SP)

19 S1_A1. State=1 /\ rcv(C2SP_1, AnyC’, URI)

20 =|>

21 State’:=3 /\ ID’ := new()

22 /\ snd(SP2C_1, AnyC’, AnyC’.IdP.(ID’.SP).URI)

23

24 %% SP receives a Response(SP, C, IdP, ID) and serves the

25 %% resource to C

26 %% NOTE: SP check that ID is equal to what it generated before

27 A4_S2. State=3 /\ rcv(C2SP_2, C, SP.{SP.C.IdP.ID}_inv(KIdP).URI)

28 =|>

29 State’:=5 /\ Resource’ := new()

30 /\ snd(SP2C_2, C, Resource’)

31 /\ request(SP, C, sp_c_uri, URI)

32 end role

Figure 2: HLPSL++ specification of the SAML SSO protocol: role SP

from agent AnyC’ (represented by rcv(C2SP_1,AnyC’,URI)) and its execution
sets the value of State to 3, generates a fresh value for ID (cf. second con-
junct in line 21), and makes SP (the player of the role) sending the message
AnyC’.IdP.(ID’.SP).URI to AnyC’ over channel SP2C_1. The primed vari-
able ID’ denotes the new value of ID. When a primed variable occurs in a
received message, it means that the variable will be assigned to a new value, the
one specified in the corresponding part of the message received. If the primed
variable occurs in an outgoing message, then the value just assigned to that
variable will be included in the message. In summary, unprimed variables de-
note message elements that the role is checking while receiving that message (as
they are already stored somewhere in its state), while primed variables model
those elements that are unknown to the receiver. For instance, the transition of
identityProvider (see Figure 3, lines 19-21) states that IdP checks whether
the first two elements of the message received correspond to the (known) values
of C and IdP respectively, while the last three elements, namely ID’, SP’, and
URI’, are not checked.

20



1 role identityProvider (

2 C, IdP : agent,

3 KIdP : public_key,

4 IdP2C, C2IdP : channel

5 ) played_by IdP

6 def=

7

8 local

9 SP: agent,

10 URI : text,

11 ID : text,

12 State : nat

13

14 init State:=7

15

16 transition

17 %% IdP receives an AuthReq(ID, SP) from C and issues a

18 %% Response(SP, C, IdP, ID)

19 A2_A3. State=7 /\ rcv(C2IdP, C, C.IdP.(ID’.SP’).URI’)

20 =|>

21 State’:=9 /\ snd(IdP2C, C, SP’.{SP’.C.IdP.ID’}_inv(KIdP).URI’)

22 end role

Figure 3: HLPSL++ specification of the SAML SSO protocol: role IdP

As mentioned in the paper, we have adapted the formal model in (Armando
et al., 2008) so to let the messages of steps S1 and A4 be transported over
different SSL connections. In Figure 2, lines 27 and 30, we model a new SSL
connection with a pair of channels (namely, C2SP_2 and SP2C_2) different from
that used in the first transition (namely, C2SP_1 and SP2C_1). Moreover, in the
corresponding transition of the client we let the client to choose the appropriate
channel for the specific recipient among the set of available channels (cf. line 34
in Figure 1). Finally, at line 39 in Figure 1, C receives the resource on channel
SP2C_2. Details on the properties of the channels used in our specification are
given in Section 7.1.2.

Once the basic roles are defined, their parallel composition is defined by
means of the composed role session as shown in Figure 4. The parameters of
the composed role can be related to those of the component roles so that when
the composed role is instantiated its component roles are properly instantiated
too. Parameters include the channels used by component basic roles to exchange
messages.

7.1.2. Channels

C2SP_1 and SP2C_1 model one other two SSL connections between C and
SP: C2SP_1 carries messages from C to SP, SP2C_1 carries messages flowing
in the opposite direction. They are assumed to enjoy the following properties
(cf. lines 23-33 in Figure 4):

• confidential(SP, C2SP_1), i.e. the output of C2SP_1 is accessible to SP

21



1 role session (

2 C, IdP, SP : agent,

3 KIdP : public_key,

4 C2SP_1, SP2C_1,

5 C2SP_2, SP2C_2,

6 C2IdP, IdP2C : channel,

7 URI : text,

8 Set_SP2C_2 : (agent.channel.channel) set

9 )

10 def=

11

12 init

13

14 %% Channel assumptions

15 %% C <-> IdP

16 confidential(IdP, C2IdP)

17 /\ weakly_authentic(C2IdP)

18 /\ authentic(IdP, IdP2C)

19 /\ confidential(C, IdP2C)

20 /\ link(C2IdP, IdP2C)

21

22 %% C <-> Service Providers

23 /\ confidential(SP, C2SP_1)

24 /\ weakly_authentic(C2SP_1)

25 /\ weakly_confidential(SP2C_1)

26 /\ authentic(SP, SP2C_1)

27 /\ link(C2SP_1, SP2C_1)

28

29 /\ confidential(SP, C2SP_2)

30 /\ weakly_authentic(C2SP_2)

31 /\ weakly_confidential(SP2C_2)

32 /\ authentic(SP, SP2C_2)

33 /\ link(C2SP_2, SP2C_2)

34

35 composition

36

37 client(C, IdP, SP, KIdP, C2SP_1, SP2C_1, C2IdP, IdP2C, Set_SP2C_2, URI)

38 /\ serviceProvider(C, IdP, SP, KIdP, SP2C_1, C2SP_1, SP2C_2, C2SP_2, URI)

39 /\ identityProvider(C, IdP, KIdP, IdP2C, C2IdP)

40 end role

Figure 4: HLPSL++ specification of the SAML SSO protocol: session

only, and weakly_authentic(C2SP_1), i.e. the input of C2SP_1 is exclu-
sively accessible to a single, yet unknown, sender;

• weakly_confidential(SP2C_1), i.e. the output of SP2C_1 is exclusively
accessible to a single, yet unknown, receiver and authentic(SP, SP2C_1),
i.e. the input of SP2C_1 is accessible to SP only; and

• link(C2SP_1, SP2C_1), i.e. the principal sending messages on C2SP_1 is
the same principal that receives messages from SP2C_1.

22



Same considerations hold for C2SP_2 and SP2C_2, which model the second SSL
connection between C and SP.

Channels C2IdP and IdP2C model the SSL connection between C and IdP.
The former carries messages from C to IdP, the latter carries the messages
flowing in the opposite direction. The properties enjoyed by C2IdP (IdP2C) are
similar to those of C2SP_1 (resp. SP2C_1), the only difference being that IdP2C is
confidential to C and not simply weakly confidential thanks to the authentication
of C on IdP (cf. lines 16-20).

A precise definition of the properties of channels supported by HLPSL++
can be found in (Armando et al., 2008).

7.1.3. Environment

The HLPSL++ specification is concluded by the top-level role environment
(see Figure 5). This role includes a const section (cf. lines 9-17) containing
the declaration of global constants, the definition of the knowledge initially pos-
sessed by the intruder (cf. lines 22-25), and a composition section (cf. lines 28-
31) that defines the parallel composition of the sessions. Two sessions are com-
bined in our specification:

1. one session in which c and idp play the protocol with i (here acting as
SP); the pair of channels c2i_1 and i2c_1models the first SSL connection,
whereas the pair of channels c2i_2 and i2c_2 models the second SSL
connection; the pair of channels c2idp_s1 and idp2c_s1 models the SSL
connection between C and IdP;

2. and a session in which c and idp play the protocol with sp; the pair of
channels c2sp_1 and sp2c_1models the first SSL connection, whereas the
pair of channels c2sp_2 and sp2c_2 models the second SSL connection;
the pair of channels c2idp_s2 and idp2c_s2 models the SSL connection
between C and IdP;

A constant i of type agent is implicitly declared and associated with the in-
truder.

7.1.4. Security Properties

The security properties that the protocol is expected to meet are specified in
the goal section (cf. lines 34-36). HLPSL++ allows for the specification of an
authentication property that corresponds to the notion of agreement as defined
in (Lowe, 1997). Thus, authentication on sp c uri (in words sp authenticates
c on uri) means that whenever sp completes a run of the protocol apparently
with c, then (i) c has previously been running the protocol apparently with sp,
and (ii) the two agents agree on the value of uri (Lowe, 1997). This corresponds
to one of the two authentication properties implied by (P1).

To specify this property in HLPSL++ it suffices for sp to assert the fact
request(sp, c, sp c uri, uri) in its last transition (cf. line 31 in Figure 2)
and for c to assert the fact witness(c, sp, sp c uri, uri) as soon as it sends
uri (cf. line 25 in Figure 1). The statement authentication on sp c uri in the
goal section (cf. line 35 in Figure 5) states that if request(sp, c, sp c uri,

23



1 role environment()

2 def=

3 local

4 %% Maps client c to the channels it is using in sending

5 %% authentication assertions to a given SP

6 Set_c_SP_2: (agent.channel.channel) set

7

8 const

9 sp_c_uri : protocol_id,

10 c, idp, sp : agent,

11 c2idp_s1, idp2c_s1,

12 c2idp_s2, idp2c_s2,

13 c2i_1, i2c_1, c2i_2, i2c_2,

14 c2sp_1, sp2c_1, c2sp_2, sp2c_2 : channel,

15 kidp, ki : public_key,

16 uri_i, uri_sp : text,

17 n : text

18

19 init

20 Set_c_SP_2 := {i.c2i_2.i2c_2, sp.c2sp_2.sp2c_2}

21

22 intruder_knowledge={c, sp, idp, kidp, ki, inv(ki), n, uri_i, uri_sp,

23 c2i_1, i2c_1, c2i_2, i2c_2,

24 c2sp_1, sp2c_1, c2sp_2, sp2c_2,

25 c2idp_s1, idp2c_s1, c2idp_s2, idp2c_s2}

26

27 composition

28 session(c, idp, i, kidp, c2i_1, i2c_1, c2i_2, i2c_2,

29 c2idp_s1, idp2c_s1, uri_i, Set_c_SP_2)

30 /\ session(c, idp, sp, kidp, c2sp_1, sp2c_1, c2sp_2, sp2c_2,

31 c2idp_s2, idp2c_s2, uri_sp, Set_c_SP_2)

32 end role

33

34 goal

35 authentication_on sp_c_uri

36 end goal

37

38 environment()

Figure 5: HLPSL++ specification of the SAML SSO protocol: environment and goals

uri) is asserted, then sometime in the past a corresponding witness(c, sp,

sp c uri, uri) must have been asserted for the authentication property to
hold. Indeed, if a request is not matched by a corresponding witness, then the
intruder must have been playing the protocol run pretending to be the one that
otherwise would have asserted the witness expression.

7.2. Automatic Security Analysis of SAML SSO

By running SATMC against the HLPSL++ specification presented in Sec-
tion 7.1 the tool returned the attack trace in Figure 7. We then tested our
conjecture that the authentication flaw is solved if C can link the Authentica-
tion Request received in step A1 with the request in step S1 as discussed in

24



Section 5. To this end we modified the model in such a way to impose that the
second transition of C is applicable only if the SP is exactly the one expected
by C. This is done by replacing AnySP’ with SP in lines 28 and 30 of Figure 1.
When asked to analyse the resulting protocol SATMC did not report any attack,
thereby confirming our conjecture.

8. Related Work

(Groß et al., 2005; Pfitzmann and Waidner, 2003a,b) lay the theoretical basis
for a rigorous analysis of web-based federated identity-management protocols
(e.g. the SSO protocol proposed by Liberty Alliance in 2002). They discuss
some security vulnerabilities and possible preventive measures. Some of these
results have been fed into the Liberty Alliance project and indirectly into the
SAML 2.0 standard.

Security analyses of the SAML SSO v1.0 are presented in (Groß, 2003) and
in (Hansen et al., 2005). The security analysis presented in our paper refers
to SAML SSO v2.0, the latest version of the standard. Moreover, in our work
we focus on scenarios that are most likely to occur in actual deployments. For
instance, unlike (Hansen et al., 2005) we do not assume that SPs are trustworthy
and unlike (Groß, 2003) we assume that messages are exchanged over secure
channels as recommended by the standard.

In (Wang et al., 2012) the authors present a traffic-guided black-box security
study of web SSO systems. The web traffic is processed for inferring syntactics
and semantics of message fields showing what fields an attacker could play with.
Afterwards, the security analyst interprets and uses them for verifying poten-
tial vulnerabilities on implementations. Eight serious implementation-specific
vulnerabilities and their exploitation are reported proving the effectiveness of
their approach. This work shares commonalities with ours as well as differ-
ences. First, our approach classifies as model-based testing in which models
and real implementations are sitting on different abstraction layers. This may
result in overlooking low-level vulnerabilities therefore missing a wide-range of
implementation-specific security problems. On the contrary, the traffic-guided
approach does not use any model but enriches web traffic with new information
for guiding the security analyst. Security flaws may lay in deeper states of the
application and not using models may leave them undetected. Second, in our
work we use automatic reasoning techniques while the traffic-guided approach
relies on the security expert for verifying hypothesis. However, formal methods
require a formal specification that might not be available in practice and it has
to be provided by a modeler. In addition, the counterexamples returned by
the model checker are not directly verifiable against real implementations and
model checkers do not offer any support on that. Therefore, the security analyst
has also the burden of testing implementations.

In (Armando et al., 2008) we provide a formal model of the SAML SSO pro-
tocol as well as of a variant implemented in the SAML-based SSO for Google
Apps. By using SATMC, we discovered a subtle man-in-the-middle attack on
the SAML-based SSO for Google Apps. In reaction to this discovery Google

25



modified the implementation of the protocol. The version of the protocol de-
scribed in Section 4 is the one currently in use by Google and therefore does
not suffer from the attack reported in (Armando et al., 2008). Interestingly, in
(Armando et al., 2008) we did not find any attack on the Web Browser SAML
2.0 SSO profile as in our analysis we assumed that communication between C
and SP is carried over a single unilateral SSL connection.

In (Armando et al., 2011) we have adapted the formal model of (Armando
et al., 2008) so to let the messages of steps S1 and A4 be transported over differ-
ent SSL connections. By using SATMC we discovered the previously unknown
attack described in Section 3. This paper consolidates the work reported in (Ar-
mando et al., 2011) and shows that the vulnerability also applies to OpenID
(OpenID Foundation, 2007b), another prominent browser-based SSO protocol
as we discussed in Section 6.

9. Conclusions

Authentication protocols are notoriously difficult to get right, even more so
for browser-based authentication protocols because “browsers, unlike normal
protocol principals, cannot be assumed to do nothing but execute the given se-
curity protocol” (Groß et al., 2005). In this paper we have showed that browser-
based SSO protocols are no exception. We have presented an authentication flaw
that applies to both SAML SSO and OpenID. This flaw allows a compromised
service provider to hijack a client authentication attempt or force the latter to
access a resource without its consent or intention. We have showed how this
flaw can be generally exploited, and reported related security issues that we have
detected in actual SAML-based SSO solutions developed by prominent software
companies, including a severe attack on the SAML-based SSO for Google Apps.
We have presented a number of possible solutions that mitigate or even solve
the problem.

All our findings have also been discussed with various companies developing
browser-based SSO protocols as part of their software portfolio. At the same
time, we have discussed the oucomes of our work with members of OASIS and a
SAML V2.0 Errata has been redacted and approved (OASIS, 2012). Last, but
not least, we have recently informed the OpenID working group and some of
the implementations of this solution about our recent findings on OpenID.

As for future work we aim at automatically generate test-cases to verify
implementations of browser-based SSO protocols with minimal human inter-
vention. First steps in this direction are reported in (Armando et al., 2012).

Acknowledgments

This work has partially been supported by the FP7-ICT Projects AVANTSSAR
(no. 216471) and SPACIOS (no. 257876), and by the project SIAM funded in
the context of the FP7 EU “Team 2009 - Incoming” COFUND action. We
are also grateful to Scott Cantor, Brian Eaton, Matteo Grasso, and the SAP
NetWeaver SIM team for the valuable discussions and feedback they provided.

26



References

Armando, A., Arsac, W., Avanesov, T., Barletta, M., Calvi, A., Cappai, A.,
Carbone, R., Chevalier, Y., Compagna, L., Cuéllar, J., Erzse, G., Frau, S.,
Minea, M., Mödersheim, S., von Oheimb, D., Pellegrino, G., Ponta, S. E.,
Rocchetto, M., Rusinowitch, M., Dashti, M. T., Turuani, M., Viganò, L.,
2012. The AVANTSSAR platform for the automated validation of trust and
security of service-oriented architectures. In: Flanagan, C., König, B. (Eds.),
TACAS. Vol. 7214 of LNCS. Springer, pp. 267–282.

Armando, A., Carbone, R., Compagna, L., July 2007. LTL model checking for
security protocols. In: 20th IEEE Computer Security Foundations Sympo-
sium (CSF20). Venice (Italy).

Armando, A., Carbone, R., Compagna, L., 2009. LTL Model Checking for Se-
curity Protocols. In: Journal of Applied Non-Classical Logics, special issue
on Logic and Information Security. Hermes Lavoisier, pp. 403–429.

Armando, A., Carbone, R., Compagna, L., Cuéllar, J., Pellegrino, G., Sorniotti,
A., 2011. From multiple credentials to browser-based single sign-on: Are we
more secure? In: Camenisch, J., Fischer-Hübner, S., Murayama, Y., Port-
mann, A., Rieder, C. (Eds.), SEC. Vol. 354 of IFIP Advances in Information
and Communication Technology. Springer, pp. 68–79.

Armando, A., Carbone, R., Compagna, L., Cuéllar, J., Tobarra, M. L., 2008.
Formal Analysis of SAML 2.0 Web Browser Single Sign-On: Breaking the
SAML-based Single Sign-On for Google Apps. In: FMSE. ACM.
URL http://doi.acm.org/10.1145/1456396.1456397

Armando, A., Compagna, L., 2004. SATMC: a SAT-based model checker for
security protocols. In: Proceedings of the 9th European Conference on Log-
ics in Artificial Intelligence (JELIA’04). Vol. 3229 of LNAI. Springer-Verlag,
Lisbon, Portugal.

Armando, A., Pellegrino, G., Carbone, R., Merlo, A., Balzarotti, D., 05 2012.
From model-checking to automated testing of security protocols: Bridging the
gap. In: TAP 2012, 6th International Conference on Tests and Proofs, May
31-June 1, 2012, Prague, Czech Republic / To be published also in LNCS,
2012, Springer. Prague, CZECH REPUBLIC.
URL http://www.eurecom.fr/publication/3659

Barth, A., Jackson, C., Mitchell, J. C., 2008. Robust defenses for cross-site
request forgery. In: 15th ACM Conference on Computer and Communications
Security (CCS 2008).
URL http://seclab.stanford.edu/websec/csrf/csrf.pdf

Bellare, M., Canetti, R., Krawczyk, H., 1996. Keying hash functions for message
authentication. In: Koblitz, N. (Ed.), Advances in Cryptology CRYPTO 96.
Vol. 1109 of LNCS. pp. 1–15.
URL http://dx.doi.org/10.1007/3-540-68697-5_1

27



Chevalier, Y., Compagna, L., Cuellar, J., Hankes Drielsma, P., Mantovani, J.,
Mödersheim, S., Vigneron, L., 2004. A High Level Protocol Specification Lan-
guage for Industrial Security-Sensitive Protocols. In: Proc. SAPS’04. Austrian
Computer Society.

Dolev, D., Yao, A., 1983. On the Security of Public-Key Protocols. IEEE Trans-
actions on Information Theory 2 (29).

Google, 2008. Web-based SAML-based SSO for Google Apps. http://code.
google.com/apis/apps/sso/saml_reference_implementation_web.html.

Google, 2009. Google security and product safety. [Online; accessed 16-July-
2012].
URL http://www.google.com/about/company/security.html

Groß, T., Dec. 2003. Security analysis of the SAML Single Sign-on Browser/Ar-
tifact profile. In: Proc. 19th Annual Computer Security Applications Confer-
ence. IEEE.

Groß, T., Pfitzmann, B., Sadeghi, A.-R., 2005. Browser model for security anal-
ysis of browser-based protocols. In: ESORICS.

Hansen, S. M., Skriver, J., Nielson, H. R., 2005. Using static analysis to validate
the SAML single sign-on protocol. In: WITS ’05. ACM Press, New York, NY,
USA.

Internet2, 2007. Shibboleth Project. http://shibboleth.internet2.edu/.

Lenstra, A. K., Hughes, J. P., Augier, M., Bos, J. W., Kleinjung, T., Wachter,
C., 2012. Ron was wrong, whit is right. IACR Cryptology ePrint Archive
2012, 64.

Lowe, G., 1997. A hierarchy of authentication specifications. In: Proceedings of
the 10th IEEE Computer Security Foundations Workshop (CSFW’97). IEEE
Computer Society Press.

Microsoft, 2011. Windows Live ID. http://www.passport.net/.

Novell, 2011. Access Gateway Appliance security concerns poisoning or tamper-
ing cookies. [Online; accessed 16-July-2012].
URL http://www.novell.com/support/kb/doc.php?id=7008342

OASIS, 2004. Identity Federation. Liberty Alliance Project. http://www.

projectliberty.org/resources/specifications.php.

OASIS, March 2005a. Bindings for the OASIS Security Assertion Markup Lan-
guage (SAML) V2.0. http://docs.oasis-open.org/security/saml/v2.0/
samlbindings-2.0-os.pdf.

28



OASIS, March 2005b. Profiles for the OASIS Security Assertion Markup Lan-
guage (SAML) V2.0. http://docs.oasis-open.org/security/saml/v2.0/
samlprofiles-2.0-os.pdf.

OASIS, March 2007. SAML V2.0 – Technical Overview. http://www.

oasis-open.org/committees/tc_home.php?wg_abbrev=security.

OASIS, May 2012. SAML Version 2.0 Errata 05.
URL http://docs.oasis-open.org/security/saml/v2.0/

sstc-saml-approved-errata-2.0.pdf

OpenID Foundation, December 2007a. OpenID Authentication 2.0. Available
at http://openid.net/specs/openid-authentication-2_0.html.

OpenID Foundation, 2007b. OpenID Specifications. http://openid.net/

developers/specs/.

OpenID Foundation, May 2009a. The OpenID User Interface Extension 1.0,
draft 0.5. Available at http://svn.openid.net/repos/specifications/

user_interface/1.0/trunk/openid-user-interface-extension-1_0.

html.

OpenID Foundation, August 2009b. the OpenID User Interface Extension Best-
Practices for Identity Providers. Available at http://wiki.openid.net/w/

page/12995153/Details-of-UX-Best-Practices-for-OPs.

Pfitzmann, B., Waidner, M., 2003a. Analysis of Liberty Single-Sign-on with
Enabled Clients. IEEE Internet Computing 7 (6).

Pfitzmann, B., Waidner, M., 2003b. Federated identity-management protocols.
In: Security Protocols Workshop.

Schneier, B., 1996. Applied cryptography - protocols, algorithms, and source
code in C (2. ed.). Wiley.

UNINETT, 2010. simplesamlphp-1.6.3 is available, with a security fix. [Online;
accessed 16-July-2012].
URL https://rnd.feide.no/2010/12/20/simplesamlphp-1-6-3-is-available-with-a-security-

Wang, R., Chen, S., Wang, X., 2012. Signing me onto your accounts through
facebook and google: A traffic-guided security study of commercially deployed
single-sign-on web services. Security and Privacy, IEEE Symposium on 0, 365–
379.

29



SAML Authentication Protocol

C IdP SP

S1. GET URI

A1. HTTP302 IdP?SAMLRequest=AuthReq(ID, SP)&RelayState=URI

A2. GET IdP?SAMLRequest=AuthReq(ID, SP)&RelayState=URI

IdP builds an authentication assertion
AA = AuthAssert(ID,C, IdP, SP)A3. HTTP200 Form(. . .)

A4. POST SP?SAMLResponse=Response(ID, SP, IdP, {AA}
K

−1

IdP

)&RelayState=URI

S2. HTTP200 Resource(URI)

Figure 6: SAML SSO Protocol: SP-Initiated SSO with Redirect/POST Bindings

c idp i sp

S1. GET urii S1. GET uri

A1. HTTP302 idp?
SAMLRequest=AuthReq(id, sp)
&RelayState=uri

A1. HTTP302 idp?
SAMLRequest=AuthReq(id, sp)
&RelayState=uri

A2. GET idp?SAMLRequest=AuthReq(id, sp)&RelayState=uri

idp builds an authentication assertion
AA = AuthAssert(id, c, idp, sp)A3. HTTP200 Form(. . .)

A4. POST sp?SAMLResponse=Response(id, sp, idp, {AA}
K

−1

idp

)&RelayState=uri

S2. HTTP200 Resource(uri)

Figure 7: Authentication Flaw of the SAML 2.0 Web Browser SSO Profile

30



C IdP SP

S1. GET URI

S2. HTTP302 SL?continue=URI

S3. GET SL?continue=URI

A1. HTTP302 IdP?SAMLRequest=AuthReq(ID, SP,ACS)&RelayState=SL?continue=URI

A2. GET IdP?SAMLRequest=AuthReq(ID, SP,ACS)&RelayState=SL?continue=URI

IdP builds an authentication assertion
AA = AuthAssert(ID,C, IdP,ACS)

A3. HTTP200 Form(. . .)

A4. POST ACS?SAMLResponse=Response(ID,ACS, IdP, {AA}
K

−1

IdP

)&RelayState=SL?continue=URI

S4. HTTP200 Script(. . . ); SetCookies(HID,HUSR,ASIDAS)

S5. GET SL?continue=URI;Cookies(HID,HUSR,ASIDAS)

S6. HTTP302 URI?AuthEventSource=SSO&auth=HID&husr=HUSR; SetCookies(HID,HUSR,ASIDAS)

S7. GET URI?AuthEventSource=SSO&auth=HID&husr=HUSR

S8. HTTP302 URI?AuthEventSource=SSO; SetCookies(Session)

S9. GET URI?AuthEventSource=SSO; Cookies(Session)

S10. HTTP200 Resource(URI); SetCookies(. . .)

Legenda: : https

Figure 8: SAML-based Single Sign-On for Google Apps

31



c idp i sp

S1. GET urii S1’. GET uri

S2’. HTTP302 sl?continue=uri

S3’. GET sl?continue=uri

A1. HTTP302 idp?
SAMLRequest=AuthReq(id, sp, acs)
&RelayState=MaliciousCode

A1’. HTTP302 idp?
SAMLRequest=AuthReq(id, sp, acs)
&RelayState=sl?continue=uri

A2. GET idp?SAMLRequest=AuthReq(id, sp, acs)&RelayState=MaliciousCode

idp builds an authentication assertion
AA = AuthAssert(id, c, idp, acs)

A3. HTTP200 Form(. . .)

A4. POST acs?SAMLRequest=Response(id, acs, idp, {AA}
K

−1

idp

)&RelayState=MaliciousCode

S4. HTTP200 Script(. . . ); SetCookies(HID,HUSR,ASIDAS)

S5. GET i/collect.php?cookies=(HID,HUSR,ASIDAS)

S5’. GET sl?continue=uri; Cookies(HID,HUSR,ASIDAS)

S6. HTTP302 uri?AuthEventSource=SSO&auth=HID&husr=HUSR; SetCookies(HID,HUSR,ASIDAS)

S7. GET uri?AuthEventSource=SSO&auth=HID&husr=HUSR

S8. HTTP302 uri?AuthEventSource=SSO; SetCookies(Session)

S9. GET uri?AuthEventSource=SSO; Cookies(Session)

S10. HTTP200 Resource(uri); SetCookies(. . .)

Legenda: : https

Figure 9: XSS Attack on the SAML-based SSO for Google Apps

OpenID Authentication Protocol

C IdP SP

S1. GET URI

A1. HTTP302 IdP?AuthReq(C, IdP,H, SP)

A2. GET IdP?AuthReq(IdP,H, SP)

IdP builds an authentication assertion
AA = AuthAssert(IdP,C, SP,H)A3. HTTP200 Form(. . .)

A4. POST SP, {AA}K

S2. HTTP200 Resource(URI)

Figure 10: OpenID

32



c idp i sp

S1. GET urii S1. GET uri

A1. HTTP302 idp?AuthReq(c, idp,H, sp)A1. HTTP302 idp?AuthReq(c, idp,H, sp)

A2. GET idp?AuthReq(idp,H, sp)

idp builds an authentication assertion
AA = AuthAssert(idp, c, sp,H)A3. HTTP200 Form(. . .)

A4. POST sp, {AA}K

S2. HTTP200 Resource(uri)

Figure 11: Authentication Flaw of the OpenID SSO Protocol

IdP C SP

C2SP_2

SP2C_2

C2IdP

IdP2C
C2SP_1

SP2C_1

Figure 12: Communication channels among basic roles

33


