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Abstract— Storage cloud systems achieve economies of scale
by serving multiple tenants from a shared pool of servers and
disks. This leads to the commingling of data from different
tenants on the same devices. Typically, a request is processed
by an application running with sufficient privileges to access
any tenant’s data; this application authenticates the user and
authorizes the request prior to carrying it out. Since the only
protection is at the application level, a single vulnerability
threatens the data of all tenants, and could lead to cross-tenant
data leakage, making the cloud much less secure than dedicated
physical resources. To provide security close to physical isolation
while allowing complete resource pooling, we propose Secure
Logical Isolation for Multi-tenancy (SLIM). SLIM incorporates
the first complete security model and set of principles for the
safe logical isolation between tenant resources in a cloud storage
system, as well as a set of mechanisms for implementing the
model. We show how to implement SLIM for OpenStack Swift
and present initial performance results.

1 INTRODUCTION

Cloud systems achieve economies of scale by serving mul-
tiple customers from a shared pool of resources [1], [2]; each
customer (which could be a company or enterprise) is a tenant
of the cloud infrastructure. Physical resource pooling enables
load balancing, homogeneity for management and much higher
utilization rates. Sharing of physical resources is important for
compute clouds as well as storage-centric clouds. In storage-
centric clouds, the pooled resources include the physical media
and the servers controlling the media. In a cloud where all
physical resources are pooled, any given device may have data
from multiple, unrelated tenants.

A major concern expressed by many businesses over moving
to a public cloud delivery model is security [3]. This concern
stems from the commingling of the data of different tenants
on shared physical resources.

It is common for cloud storage systems to provide
application-level security, in which components that authen-
ticate and process user requests run with sufficient privileges
to access any tenant’s data; the code of each component is
responsible for authorizing requests based on the requester’s
credentials. This architecture is used by OpenStack Swift [4]
and other publicly available cloud storage systems.

Application-level security only provides a single level of
defense; a vulnerability that allows bypassing the security
check, such as a confused deputy attack [5], can compromise
all data stored in the cloud. This is very weak isolation. If each
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tenant had its own segregated physical resources, it would be
much less likely that a single vulnerability could jeopardize
all tenants’ data.

To provide security similar to physical isolation while allow-
ing complete pooling of resources, we propose Secure Logical
Isolation for Multi-tenancy (SLIM). SLIM adds an orthogonal
tenant isolation mechanism over existing application-level
security by leveraging the Linux process isolation mechanisms
that have been thoroughly tested for over 20 years by the Linux
community and enhanced with mechanisms such as SELinux.
SLIM therefore enables resource pooling while decreasing
the likelihood that a single vulnerability could jeopardize all
tenants data.

In particular, SLIM provides this additional isolation across
tenants by following the principle of least privilege [6]: each
system component runs with the least set of privileges required
to complete its task. Moreover, such privileges are designed to
be tenant-specific: for example, we define separate privilege
classes to access authentication material of tenant A and tenant
B. As a consequence, whenever possible, SLIM contains
breaches within a tenant by leveraging process isolation. For
the remaining components, which need to be trusted to operate
on data of multiple tenants, we minimize their attack surface.

Employing these principles in an efficient manner is diffi-
cult. First, each request must be correctly associated with a
tenant and properly split into appropriate sub-pieces each of
which is processed under the principle of least privilege [7].
For instance, we use different privileges for authenticating a
user and for accessing a disk.

Second, we need to address security as we move between
components in the cloud implementation, either between dif-
ferent processes implementing different parts of the function
on a single server or communicating with a different server,
e.g., for data replication. In both cases we need to correctly
track the tenant identity and use the appropriate privilege.

Finally, in real world systems we may need to use existing
resources like a distributed cache (e.g., memcached [8]) or a
shared data store (e.g., Cassandra [9]) that do not implement
all of our principles. While we cannot provide the same degree
of isolation here as we provide in the rest of the system, we
still want to maximize the degree of secure logical isolation
between data of different tenants.

SLIM addresses these issues using the following mecha-
nisms:

• a security gateway ensures a request is handled with the
right tenant-specific privilege



• a proxy/guard mechanism prevents escalation of privi-
leges as we move between components

• and a gatekeeper provides a secure wrapper for existing
resources

These SLIM components are relevant for almost any cloud
based object store system, and can be easily integrated to pro-
vide end-to-end isolation between tenants. Here, we describe
an implementation of SLIM for OpenStack Swift; we are also
implementing it for the VISION Cloud project [10].

Our paper makes the following contributions:
• We present the first complete security model and set

of principles for safe logical isolation between tenant
resources in a cloud storage system.

• We define a set of mechanisms for implementing secure,
logically isolated cloud storage systems.

• We implement SLIM for Swift and present initial perfor-
mance results, determining that process recycling is the
most critical factor influencing performance.

The next section describes various approaches to security
isolation for multi-tenancy and provides background on Swift.
Section 3 presents SLIM and its implementation in Swift. Sec-
tion 4 presents initial performance results. Section 5 presents
an informal analysis of SLIM’s security. Section 6 presents
our conclusions.

2 PROBLEM STATEMENT

Cloud storage systems come in multiple flavors that differ
in their abstraction, ranging from block storage systems, to
key-value and object stores; in this work, we select object
stores as our case-study. Although the internal architecture of
such services is rarely disclosed, we can identify a number
of common features. First, services run over commodity hard-
ware. Second, they are symmetric and decentralized: there is
no hierarchy among the pool of machines that provide the
service, and such machines run essentially the same code.
More significantly in our context, these systems commingle
data from different users on the same physical resources. This
approach is often referred to as multi-tenancy.

Ideally a multi-tenant cloud storage system serves requests
of multiple customers (tenants) in such a way that (1) comput-
ing and storage resources are shared among such customers
and (2) this sharing of resources does not weaken system
security. In practice, multi-tenancy is a trade-off between
security and costs: the wider the subset of resources shared
(e.g., same physical machine vs. same OS), the more the cloud
system can amortize costs and increase utilization. However,
this sharing leads to weaker isolation and consequently higher
security risks.

In a typical object store architecture a client contacts a web
front-end to issue a request. The front-end passes the request
to a request processor, which accesses (e.g., read or write)
the data usually through a file system on disks. The request
processor may also access a supplementary data store, such
as a distributed key/value store. It also performs security-
related tasks like authentication, authorization and access

control enforcement. Usually, the front end authenticates and
authorizes a request, prior to executing the request under a
single cross-tenant privilege.

As a concrete example for our analysis we consider Swift,
the popular open-source, cloud object store, which is part of
the Openstack Framework. Swift has a two tier architecture,
consisting of client facing proxy servers, which handle au-
thentication, authorization and access control enforcement, and
storage servers which store objects and manage the associated
metadata. A typical installation will consist of multiple proxy
and storage servers possibly sharing the same hardware. Each
Swift server (proxy or storage) is coupled with an integrated
HTTP server, employing WSGI and serving REST requests
via a dedicated port. A client request may be addressed to
any of the proxy servers, which forwards it to the appropriate
storage server(s).

Swift, like most other cloud storage systems, employs
application-level isolation to address multi-tenancy and the
entire service runs with a single privilege level, allowing
access to all tenant and user data from the Swift code. Swift
enforces isolation through pluggable access control modules
such as Keystone or tempAuth. Swift supports container
ACLs, which are retrieved from a storage server and then
cached by the proxy using memcached [8], allowing their fast
retrieval. While this approach makes Swift lightweight and
able to serve a large number of tenants, it has the negative
impact that finding and exploiting a single vulnerability gives
an attacker the ability to access resources belonging to any
user of any tenant. Furthermore, it is hard to prevent attacks
on a given Swift component, since it commingles information
for different tenants, including the use of memcached to store
sensitive access control data.

3 SECURE LOGICAL ISOLATION FOR MULTI-TENANCY

SLIM addresses the weaknesses highlighted in the previous
Section, incorporating a security model and set of principles
for the safe logical isolation between tenant resources for a
cloud storage system, as well as a set of mechanisms for
implementing the model.

3.1 System model

SLIM provides services for a number of entities that we
call users. Users board the system through an enrollment
process that equips them with credentials, which can be later
on produced to gain access to the system and its resources.
Users are grouped into administrative entities called tenants. In
what follows we only capture simple hierarchies where there
is a set of users, a set of tenants and each user is associated
to a single tenant; however, SLIM can be generalized to more
complex n-level hierarchies involving sub-tenants.

Users interact with a set of service nodes that can serve
requests of any user belonging to any tenant; in particular,
we do not require dedicated hardware for each tenant, which
would undoubtedly achieve comparable, if not better, security
guarantees at a much higher total system cost. Service nodes



run a commodity operating system and do not require virtu-
alization techniques. Each service node may use local storage
and/or shared storage to host user data/metadata.

3.2 Security model

We consider two classes of attackers. In both cases, the
attacker is a system user, i.e., the attacker owns a valid
credential to access the system. Class 1 attackers attempt
to access resources belonging to another user of the same
tenant, whereas class 2 attackers attempt to access resources
belonging to the user of another tenant.

We do not assume dedicated hardware or dedicated virtual
machines for given users/tenants; however, we do trust the un-
derlying hardware, as well as the multi-user operating systems
to provide secure isolation between processes of different OS
users; in the rest of the paper, we will use uid to refer to an OS
user. This requirement translates into the assumption that the
process of one uid cannot access resources (e.g., memory, files,
sockets) belonging to another uid. If a process is compromised
by an attacker, we assume the attacker can run arbitrary code
under the uid that started the process.

The assumption above does not take into account the fact
that some of the tasks that the service nodes need to perform
require higher privileges than those of a single uid, e.g., admin
privileges to create processes restricted to a particular uid. A
process with such privileges, is called a privileged process
and is by definition capable of accessing any resource in
the system and can therefore bypass the uid restrictions. As
a consequence, if an attacker can compromise a privileged
process, it can achieve the objectives of both attacker classes.

Finally, nodes partake in a number of internal protocols,
through which a node can trigger the execution of a function
on another node on the system (e.g., trigger the replication of
a file from one node onto another one). We therefore need to
ensure that a successful attack – which by the assumptions
mentioned above should be confined to the privileges of the
owner uid only – cannot trigger the execution of a function
with higher privileges on another node.

3.3 Design Principles

The design of our solution was guided by the following
four principles. (1) Least privilege requires that every sub-
component operate using the least set of privileges required
for its task. A consequence of this principle is the need to use
separate processes with different uids for handling the various
stages of a user request. (2) Tenant containment requires
security isolation of tenant-related resources, i.e., each tenant
has its own privileges and hence its own uids. Thus, there is the
need to use different processes for each tenant. (3) Escalation
avoidance ensures that during the lifetime of a process it will
never gain a different, potentially higher privilege. This implies
that if a process with a tenant’s UID has been used to serve one
tenant’s requests, it cannot be reused later to process another
tenant’s request. (4) Minimizing the attack surface keeps the
code of any privileged processes simple, small and easy to
audit.

Fig. 1. The architectural components of SLIM (dark gray) added to a typical
object store architecture (light gray).

3.4 Design and Implementation

Complying with the principles described above requires
introducing end-to-end tenant isolation in the cloud storage
system, where we isolate both the processing and the access
to all tenant related information stored on the disks and
in supplementary data stores. The architectural elements of
SLIM are illustrated in Figure 1. They include the following
privileged processes: (1) a Security Gateway, which splits the
execution of a request into subtasks running under the proper
uids with confined privileges; (2) a Gatekeeper, which protects
the access to shared resources without built-in access control,
e.g., a key-value store; and (3) Guard and Proxy components
to maintain tenant identity and privileges across processes run-
ning on the same or different nodes. The remaining processes
are tenant-specific: (4) a Tenant Authenticator to authenticate
the tenant named in a request; and (5) a Request Processor
to execute the request. Below we detail the design of these
components as well as their implementation over Swift.

Security Gateway: A user request first arrives at the
web front end, which delivers it to a security gateway. The
security gateway introduces privilege separation by splitting
the execution of a request into subtasks, executing each subtask
under a dedicated uid corresponding to the required privilege
of the specific tenant. It begins by sanitizing the request and
verifying the validity of its parameters. It extracts the authen-
tication credentials from the request, e.g., from the HTTP
headers, and passes them to a tenant authenticator process,
which authenticates the tenant claimed in the request. Upon
approval from the authenticator, the security gateway delivers
the request to an appropriate request processor that has the
privilege of the tenant. To prevent an attacker from tampering
with requests, SLIM requires that requests be protected, e.g.,
signed, so the first action of the request processor is to
authenticate the request. Mechansims for protecting requests
are outside of the scope of SLIM.

Gatekeeper for shared resource protection: In some
cases a request processor may need to access a shared re-
source. This can be a distributed data store, like Cassandra [9],
e.g., used as a metadata catalog by the VISION Cloud, or a



shared cache like memcached [8], e.g., used by Swift, which
do not have built-in, fine-grained access control mechanisms,
yet are used to store data of multiple tenants. Despite the
potential security threats they can not always be replaced by
traditional data stores like RDBS, that provide access control,
yet may limit performance and scalability.

Each such resource has its own gatekeeper process. For each
request, the gatekeeper verifies the true tenant identity of the
process requesting access to the resource. Once the gatekeeper
has uniquely identified the tenant, its goal is to protect the
corresponding resource (e.g., keys and values) in a way that
it will be inaccessible to other tenants. To isolate the keys
under which the data is stored, the gatekeeper labels them with
a unique tenant identifier. When integrity and confidentiality
are also important, this key may be cryptographically signed
or encrypted with a unique key belonging to the tenant.
The values stored under these keys should also be signed or
encrypted according to the selected level of protection. To
prevent any backdoor attacks, all data store access requests
that do not originate from the gatekeeper are blocked (e.g., by
protecting the socket with ACLs). This allows the gatekeeper
to isolate views of the shared resource that each tenant has,
ensuring that each tenant has access only to its own keys and
values. This prevents cross-tenant data leakage and malicious
modifications of the stored keys and values.

Guard and Proxy to protect inter-node communica-
tion: In some cases a request processor (a first process) may
need to assign a task to a second process, possibly on another
node. This is done through a guard and a proxy that ensure the
identity of the tenant is maintained when the task is executed
by the second process. The request to the second process must
go through a proxy. Furthermore, the second process may
execute the task only if requested by a guard. Guards and
proxies maintain a trusted communication channel (e.g., using
a VPN or privileged ports in a well controlled environment).
These restrictions are applied by using operating system access
control and firewall rules.

SLIM maintains the tenant identity and privilege between
the request processor and the second process using the fol-
lowing three stages: (1) The proxy, which runs on the same
node as the first process, extracts the true set of privileges of
the first process (e.g., by using OS-level primitives such as
SCM CREDENTIALS). (2) The proxy sends a description of the
privileges together with the request of the first process to the
guard, which resides on the same node as the second process.
(3) The guard delivers the request to the second process that
has the appropriate set of privileges.

4 PERFORMANCE ANALYSIS

We conducted performance tests which evaluated the
penalty of adding SLIM to an object storage system of Swift.
We compared throughput for PUT and GET requests of objects
of various size (on a 8-core, 2.33GHz, x86 server with 16GB
RAM, having Swift’s SAIO configuration with 9 disks divided
into 3 zones). For each combination of operation and object
size, we ran swift-bench for five minutes. To select the best

configuration in which the resources are maximally utilized,
we monitored the CPU and disk utilization. We observed that
swift-bench with request concurrency of 15 gave almost 100%
CPU utilization for SLIM, while for vanilla Swift, it was
maximized at a concurrency of 150.

Not surprisingly, vanilla Swift has the highest performance,
which was especially noticeable for small objects. For ex-
ample, for 16KB objects it supports the throughput of 4.8
and 16.8 MB/s for PUT and GET operations respectively.
However, vanilla Swift recycles processes between tenants
which can lead to cross-tenant leakage. We observed that
using the apache server with CGI for creating a fresh process
for executing each tenant request leads to severe performance
degradation, supporting the throughput of only 0.08 and 0.3
MB/s for PUT and GET of 16K objects respectively. Thus,
we conclude that process recycling is the most critical factor
influencing the performance and we are working on its opti-
mization. The Security Gateway and the Gatekeeper were not
observed to influence performance and can be safely added to
achieve multi-tenant isolation. Interestingly, when the object
size was increased the differences between the systems became
less noticeable as both vanilla Swift and SLIM saturated the
network, which became the major bottleneck.

5 SECURITY ANALYSIS

The security model presented in this work considers two
types of attacks: attacks within a tenant (class 1) and cross-
tenant (class 2). Possible attacks can target vulnerabilities in
the web front end, request processor, and privileged compo-
nents such as the kernel, data stores lacking authorization
mechanism, security gateway, proxy and guard, and gate-
keeper. The attacks we consider here range from confused
deputy attacks to full compromise of a process with arbitrary
code execution. The attackers goal is either to access another
user’s data from the same tenant (class 1) or other tenant data
(class 2).

In this section we show that SLIM protects against class 2
attacks and decreases the likelihood that a single vulnerability
could jeopardize all tenants’ data. Figure 2 illustrates the
defense line added by SLIM to achieve this goal as we detail
below.

An imminent risk to the system could come from a potential
vulnerability in the web front end or the request processor as
these components are both directly exposed to an attacker and
are large software packages, such as Apache and Swift. To
duly protect tenant data, we assume such vulnerabilities exist
and either the web front end and/or the request processor could
be fully compromised. SLIM ensures that even under such a
compromise, tenant data remains secure by: (1) restricting a
request processor, which is privileged to access tenant-data,
to a tenant-specific UID by the security gateway as well as
the proxy/guard components when inter-node communication
is involved; (2) restricting a tenant-specific authenticator to a
tenant-specific UID; and (3) restricting access to data stores
lacking authorization mechanisms through the gatekeeper.



Fig. 2. The defense line added by SLIM protects tenants using Swift from
unauthorized access to their data when the Swift request processor and/or web
front end is compromised.

Below, we detail the attacks SLIM protects against by
examining the cases where various components are either
compromised and used as a stepping stone for attacking further
modules, or are under a confused deputy attack.

Web front end: A compromised web front end cannot
access any tenant data directly since it is not privileged to
access the data stores. However given that TLS termination
occurs within this component, an attacker could mount a man-
in-the-middle attack against any tenant, potentially accessing
that tenant’s data. Yet, the attack is limited in time (the attacker
can only intercept requests occurring within the timeframe of
the compromise). Additionally, the system may authenticate
the requests (e.g., using signatures) and test for authenticity at
the request processor; in this way the attacker can be prevented
from tampering with the requests.

Request processor: In case a request processor is compro-
mised, the attacker’s process can only access the correspond-
ing tenant-data, and is limited to performing tenant-specific
queries through the security gateway and proxy. This does not
prevent the attacker from accessing data from another user of
the same tenant, but confines the attack within the tenant.

Data stores lacking authorization mechanism: In case the
data store is compromised, the attacker could mount attacks
that will lead to the compromise of all tenants’ data. However,
because the interface to the data store is highly restricted by
the gatekeeper, which only exposes a simple interface, such
an event is less likely.

Kernel: If local access is obtained, this could put the
attacker in a better position to perform further attacks to
elevate his privileges. In particular, the Linux kernel exposes a
very large attack surface to local attackers [11], [12]. Although
this is out of the scope of our work, this attack surface can be
greatly reduced (see for example [13], [14], [15], [11]). We
note that the request processor and authenticators do not have
network access (this is enforced by the use of the proxy as
well as host-firewall rules), hence preventing network-based
attacks being used for privilege elevation.

Security gateway, the gatekeeper, or the proxy/guard:
Similarly, the attacker could target one of the remaining
privileged processes: the security gateway, the gatekeeper, or
the proxy/guard. However, their very small size (less than 500

LOC) makes them easy to audit, making such attacks unlikely.

6 CONCLUSION

We presented SLIM, an end-to-end approach to tenant
isolation in a multi-tenant cloud storage system that allows
all resources to be shared. SLIM shows how to adapt a cloud
storage architecture to incorporate well-established security
principles such as least privilege and privilege separation.
SLIM addresses the new architectural requirements posed by
these principles in the context of cloud storage solutions,
where in principle any action taken on behalf of tenant should
be executed in a process with a tenant-specific privilege. We
contrast this with typical cloud storage systems where the only
mechanism for isolation is provided by the application-level
cloud implementation.
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