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Abstract. Secret Handshakes are well-established cryptographic primitives that help two mistrusting
users to establish initial trust by proving and verifying possession of given properties, such as group
membership. All the Secret Handshake schemes to date assume the existence of a single, centralized
Certification Authority (CA). We challenge this assumption and create the first Secret Handshake
scheme that can be managed by a federation of separate and mistrusting CAs, that collaborate in the
setup of the scheme yet retaining strict control over subsets of the property in the system. The security
of the scheme is proved without random oracles.

1 Introduction

A Secret Handshake is a distinct form of greeting which conveys membership to club, group or
fraternity [1]. Usually a Secret Handshake involves conducting the handshake in a special way so as
to be recognizable as such by fellow members while seeming completely normal to non-members.
The need for such a secretive initial exchange is motivated by the existence in society of gatherings
of individuals, revolving around sensitive topics and therefore secret by nature.

With the increasing role over the past half century of electronic communications in our society,
it is natural to expect that the discipline of cryptography should capture the essence of Secret
Handshakes and model it into protocols that can be automatically executed by electronic devices.
It has indeed been the case, as witnessed by the numerous papers on the subject [3, 4, 9–11, 16–19,
21].

One common trait of all these schemes is that they all rely on a single centralized entity, that we
shall refer to as certification authority or CA, that is in charge of generating public parameters and
of handing over cryptographic tokens to users. While the assumption of a single CA can be justified
in simple scenarios, it becomes arguably unrealistic in scenarios where more dynamic matching is
possible. Indeed, within such a setting, the same CA may be required to generate Credentials for
competing groups or secret agencies of different countries.

The objective of this paper is therefore the creation of a Secret Handshake scheme that relaxes
the requirement on a single centralized CA. To the best of our knowledge, ours is the first effort
in this direction. Instead of creating a brand new scheme, we have chosen to extend one of the
schemes in the state-of-the-art in order to support the federation of independent and mistrusting
CAs.

The choice of what scheme to extend has lead us to conduct an extensive survey of the state of
the art which also constitutes a valuable contribution to the literature.



2 A Primer on Secret Handshakes

Secret Handshakes belong to a very specific and yet very complex family of cryptographic protocols.
A new Secret Handshake protocol can be better understood by reference to its functional and
security requirements. The task of drafting a taxonomy for Secret Handshakes however has, to
date, not yet been undertaken. Therefore in this Section, starting from a toy protocol, we introduce
all the orthogonal dimensions in the family of Secret Handshakes and describe its design space,
by identifying a set of characteristics for these protocols. We then move on to the analysis of the
numerous Secret Handshake protocols in the state-of-the-art, explaining what they achieve and how
they position themselves within the identified taxonomy.

Secret Handshakes consist of users engaging in a protocol in order to exchange information about
a property. There are two actions that each user performs during a Secret Handshake: proving and
verifying. Proving means convincing the other party that one possesses the property object of the
handshake. Verifying in turn means checking that the other party actually possesses the property
object of the handshake.

The core objective of Secret Handshakes can be defined as follows:

Definition 1 (Secret Handshake). A Secret Handshake is a protocol wherein two users ui and
uj belonging to a universe of users U authenticate as possessors of a common property p∗ belonging
to a universe of properties P.

A simple toy protocol achieving this objective is the following: users ui and uj receive a secret
value Kp∗ associated with property p∗. The two users exchange ni and nj , two nonces randomly
chosen by each user. After the two nonces are exchanged, each user can compute a value k =
MACKp∗ (ni||nj), using a message authentication code such as for instance HMAC; both users
will compute the same value k only if they both posses the correct secret value Kp∗ . A proof of
knowledge that the same value has been computed by both users accomplishes the proving and
verifying actions.

A limitation of the above protocol is that the actions of proving and verifying cannot be sepa-
rated since they are both accomplished at the same time through the proof of knowledge of k; in
turn, k is a function of the nonces and of Kp∗ : therefore, in the simple protocol described above,
the knowledge of Kp∗ grants at the same time the right to prove and to verify for property p∗. Let
us then define the concept of separability:

Definition 2 (Separability). A Secret Handshake protocol is separable if the ability to prove can
be granted without the ability to verify (and vice versa).

According to Definition 2, the simple toy protocol described above is non-separable. Separability in
particular translates into splitting secrets associated with a property – such as Kp∗ in our previous
example – into two separate components: Credentials and Matching References . Credentials grant
the ability to prove to another user the possession of a property. Matching References in turn grant
the ability to verify whether another user possesses a property. Now that we have formally intro-
duced Credentials and Matching References, we can underline the fact that, in Secret Handshakes,
only legitimate bearers of Credentials should be able to prove possession of a property, and only
legitimate bearers of Matching References should be able to verify possession of a property. We can
thus refine Definition 1 as follows:



Definition 3 (Secret Handshake). A Secret Handshake is a protocol wherein two users ui and uj
belonging to a universe of users U authenticate as possessors of a common property p∗ belonging to a
universe of properties P. The authentication is successful if both users possess legitimate Credentials
and Matching References for p∗.

The legitimacy of Credentials and Matching References depends on the particular way in which
these are generated. Indeed, different Credentials and Matching Reference generation policies play
a crucial role on the control over “who can prove possession of a property” and “who can verify
possession of a property”. We shall refer to proof-control and verification-control respectively, to
refer to these two concepts. For instance, if a certification authority generates Credentials and gives
them away only to selected users, it retains the control over the ability to prove.

Let us now investigate the amount of information leaked to an observer from a Secret Handshake
execution. At first, we will state a few definitions, taken from [15].

Definition 4 (Anonymity). Anonymity of a user means that the user is not identifiable within
a set of user, the user set.

Definition 5 (Unlinkability). Unlinkability of two or more items of interest (IOIs, e.g., subjects,
messages, actions, ...) from an observers perspective means that within the system (comprising these
and possibly other items), the observer cannot sufficiently distinguish whether these IOIs are related
or not.

We say that a Secret Handshake scheme guarantees Anonymity if the identifiers of the involved
users are not revealed throughout its execution. Unlinkability of users instead relates to the ability
of an observer to link the same user throughout multiple instances of Secret Handshake. We can
therefore say that a Secret Handshake protocol guarantees Unlinkability of users if – upon exe-
cuting two separate instances of Secret Handshake – an observer is not able to tell whether he is
interacting with the same user or two different ones. As far as properties are concerned, we say
that a Secret Handshake protocol guarantees Unlinkability of properties if – upon executing two
separate instances of Secret Handshake – an observer is not able to tell whether he is interacting
with users holding Credentials for the same property or users holding Credentials for different ones;
naturally, this requirement should hold only in case of failed handshake, since in case of success,
linking properties is possible by definition.

Let us now introduce the concept of fairness, according to Asokan’s definition [2] and understand
its relationship with Secret Handshakes.

Definition 6 (Fairness). An exchange protocol is considered fair if at its end, either each player
receives the item it expects or neither player receives any additional information about the other’s
item.

In a Secret Handshake scenario, this definition translates to the requirement that either both
users learn that they both possess a given property, or they do not learn anything at all. As we
have seen, proving knowledge of the computed key to one another is what allows users to learn
of a successful handshake. Therefore fairness can be achieved if users can execute a protocol that
allows them to exchange fairly the results of a proof of knowledge of the two keys, for instance
a challenge-response protocol. Unfortunately, a result from Pagnia and Gärtner [14] shows that
fairness in exchange protocols is impossible to be achieved without a trusted third party. Secret



Handshake protocols however can achieve some more limited form of fairness. Let us define the
following predicate

P := “both participants to the Secret Handshake protocol possess the property object of the hand-
shake”

We can then introduce the notion of fairness in Secret Handshakes:

Definition 7 (Fairness in Secret Handshake). Upon termination of a Secret Handshake pro-
tocol after either a complete or incomplete execution, either at least one party learns P, or no one
learns any information besides qP.

where by qP we mean the negation of the predicate P. Definition 7 acknowledges the unfairness of
Secret Handshakes, but allows one of the two users, padv, to have an advantage over the other only
under specific circumstances. Indeed, in order for padv to learn P, padv must possess the property
object of the handshake. padv can only learn qP otherwise.

Thanks to the definitions that we have given so far, we will now go through the Secret Hand-
shakes protocols presented in the literature, underlining how they relate to the dimensions high-
lighted so far and gradually introducing new features.

2.1 Classic Secret Handshakes

In 2003 [4], Balfanz and colleagues first introduced the notion of Secret Handshake, presenting
a scheme based on bilinear pairings. The scheme introduced in the paper is, according to our
definitions, a non-separable protocol, since it is impossible for a user to only verify the member-
ship of another user without proving its own. The protocol guarantees Anonymity thanks to the
use of pseudonyms; Unlinkability of users is achieved by providing users with a large number of
pseudonyms and by asking users to never reuse them: however, although Unlinkability of users is
indeed guaranteed, the solution is suboptimal since it trades off the number of Credentials provided
with the number of unlinkable handshakes that a user can perform.

In order to mitigate this issue, Xu and Yung have presented in [21] the concept of k-anonymous
Secret Handshakes and of reusable Credentials. Let us start with the latter:

Definition 8 (Reusable Credentials). A Secret Handshake scheme supports reusable Creden-
tials if some form of Anonymity and Unlinkability are guaranteed and users receive a single Cre-
dential.

Clearly Balfanz et al.’s scheme does not support reusable Credential. Xu and Yung’s scheme is
the first one to support reusable Credentials. This is achieved at the expense of full Anonymity,
since a user is only effectively anonymous within a population of k < |U|

In [19], Vergnaud presents three Secret Handshake protocols whose security is based on the
RSA assumption. The scheme is similar to Balfanz et al.’s, and in particular also does not ensure
Unlinkability of users with reusable Credentials.

In [16] Shin and Gligor present a privacy-enhanced matchmaking protocol that shares several
features with Secret Handshakes. The protocol operates as follows: users receive anonymous Cre-
dentials and run a password-based authenticated key exchange (PAKE, see [6, 8, 5]), where instead
of the password, they use self-generated communication wishes, as in matchmaking protocol. This



suggests that users may retain proof and verification control; however, after a successful matching
of the communication wish through the PAKE, users are requested to show certificates linking
the pseudonym that has been declared upfront with the wish that they claim they possessed/were
interested in.

In [12] Jarecki and Liu underline the fact that schemes proposed so far either support limited nu-
ances of Unlinkability or support reusable Credentials. Therefore they propose an unlinkable version
of Secret Handshake, affiliation/policy hiding key exchanges, wherein Credentials are reusable and
yet Secret Handshake executions do not leak the nature of the properties linked with Credentials
(called affiliation) and Matching References (called policies). The scheme is based on public-key
group-management schemes.

In [11], the same authors strengthen the concept of affiliation-hiding key exchanges to include
perfect forward secrecy; the authors also investigate the amount of information leaked in the case
of an attacker able to compromise sessions (thus learning if the two users belonging to the session
do belong to the same group) and users (thus learning the group that user belongs to). The scheme
however relies on pseudonyms and therefore gives up Unlinkability of users.

2.2 Secret Handshake with Dynamic Matching

The concept of Dynamic Matching allows users to prove and verify possession of two distinct prop-
erties during the execution of a Secret Handshake, as opposed to Secret Handshakes introduced so
far, which allowed users to prove and verify the matching of a unique property, that is, membership
to a single, common group; we shall refer to the latter type of Secret Handshake as to classic Secret
Handshakes from here on.

Definition 9 (Secret Handshake with Dynamic Matching). A Secret Handshake with Dy-
namic Matching is a protocol wherein two users ui and uj belonging to a universe of users U
authenticate if two conditions are satisfied: (i) ui has a Credential for the same property p∗ for
which uj has a Matching Reference; and (ii) uj has a Credential for the same property p◦ for which
ui has a Matching Reference.

The introduction of Secret Handshake with Dynamic Matching in Definition 9 requires to revisit
the concept of fairness in Secret Handshakes introduced in Definition 7; in particular we need to
rephrase the predicate P as follows:

P := “both participants to the Secret Handshake protocol possess Credentials for the property object
of the other’s Matching Reference ”

The concept of Dynamic Matching has been introduced in [3] by Ateniese and colleagues; how-
ever the earlier work of Castelluccia et al. [9] already gave the same ability to users, although the
fact has not been stressed by the authors in their paper. The protocol of Ateniese and colleagues [3]
is compliant with Definition 9. The protocol is separable: users receive Credentials from the cer-
tification authority – which retains the proof control – whereas users can freely create Matching
References without the intervention of the CA; thus, verification control is in the hands of users.
The protocol is innovative also because it is the first one supporting reusable Credentials and
guaranteeing Anonymity and Unlinkability of users and of properties.



2.3 Secret Handshake with Dynamic Controlled Matching

In [17], we have introduced the concept of Dynamic Controlled Matching. Dynamic Controlled
Matching draws its motivation from the observation that among the two schemes supporting sepa-
rable Credentials, namely the work of Castelluccia et al. [9] and the work of Ateniese et al. [3], none
allows the CA to maintain verification control; indeed in both schemes, the user has the freedom
of choosing the property to be matched from the other party, and the CA can exercise no control
over it.

In Secret Handshake schemes that support Dynamic Controlled Matching, users are required
to possess Credentials and Matching References issued by a trusted certification authority in order
to be able to prove and to verify possession of a given property. Therefore the certification author-
ity retains the control over who can prove what and who can verify which Credentials. However
verification is dynamic, in that it is not restricted to a single, common property, as opposed to the
approaches suggested in [4, 19, 16, 13, 21].

It is important also to notice that Secret Handshake with Dynamic Controlled Matching is a
generalization of both classic Secret Handshake and Secret Handshake with Dynamic Matching; in
order to create classic Secret Handshakes the CA can grant a Matching Reference to a user only if
the latter has the corresponding Credential. This way, users are only allowed to execute successful
Secret Handshake proving and verifying possession of a common property. Conversely, in order
to create Secret Handshakes with Dynamic Matching, the CA can grant Matching References for
every property. This way, users can choose autonomously the Matching Reference to use upon each
Secret Handshake, thus effectively keeping control over verification.

2.4 Revocation in Secret Handshakes

Revocation represents an interesting challenge for Secret Handshakes: on the one hand a strong
requirement for Secret Handshakes is Unlinkability of both users and properties. On the other hand,
revocation usually requires means of tagging Credentials in order to single out the revoked ones
and refuse any interaction with users bearing them, which in principles requires some degree of
linkability.

There are normally three main ways of addressing revocation of cryptographic tokens: short-lived
Credentials, black lists and white lists. Short-lived Credentials are Credentials with an expiration
date embedded in them. Black lists, also called revocation lists, are public lists that contain identi-
fiers for all Credentials that have been revoked. White lists are based on cryptographic accumulators
initialized by the certification authority, who adds all the identifiers of the valid Credentials.

Most schemes follow a black-list approach for revocation. The scheme by Jarecki and Liu [12]
is to the best of our knowledge the only one following a revocation approach based on epochs and
short-lived Credentials.

The seminal work by Balfanz and colleagues [4] supports revocation of single Credentials; the CA
can publish user pseudonyms on a public CRL and users can refuse to engage in Secret Handshake
if the pseudonym used by the other party belongs to the list. This allows to selectively revoke the
power to prove. The same approach is followed by [11, 10, 19, 21, 16].

In [18], we have presented a scheme that supports in a comprehensive way all Secret Handshakes
scenarios known in the literature, classic Secret Handshakes, Secret Handshakes with Dynamic
Matching or Secret Handshakes with Dynamic Controlled Matching, adding revocation support to
each; the scheme also supports reusable Credentials.



3 The Scheme

In this Section we introduce a modification of the scheme that we have presented in [18]; within our
new, modified protocol, Credentials are distributed by multiple, independent CAs that trust one
another but still want to maintain the control over properties falling in their realm. The choice of
extending this scheme in particular is that, as can be deduced from what discussed in the previous
Section, it supports separability, reusable credentials and revocation. In addition, the CA retains
proof and verification control, thus allowing for the more generic concept of Dynamic Controlled
Matching.

Within a multiple CA scenario, a handshake between two users A and B can be successful if A
has a Credential for property p1 issued from CA1 and a Matching Reference for property p2 issued
from CA1 and B has a Credential for property p2 issued from CA1 and a Matching Reference for
property p1 issued from CA1. However a handshake can be successful even in hybrid situations in
which for instance A has a Credential for property p1 issued from CA1 and a Matching Reference
for property p2 issued from CA2 and B has a Credential for property p2 issued from CA2 and a
Matching Reference for property p1 issued from CA1.

3.1 Preliminaries

At first, let us describe the notation used in the sequel of the Chapter. Given a security parameter
k, let G1, G2 and GT be groups of order q for some large prime q, where the bitsize of q is
determined by the security parameter k. Our scheme uses a computable, non-degenerate bilinear
map ê : G1 × G2 → GT for which the Symmetric External Diffie-Hellman (SXDH) problem is
assumed to be hard. The SXDH assumption in short allows for the existence of a bilinear pairing,
but assumes that the Decisional Diffie-Hellman problem is hard in both G1 and G2 (see [3] for more
details).

Next, we describe how we represent strings into group elements. Following [7, 20], let g R← G1;
let us also choose n+ 1 random values {yi}ni=0

R← Z∗q ; we assign g0 = gy0 , g1 = gy1 , . . . , gn = gyn . If
v ∈ {0, 1}n is an n-bit string, let us define h(v) = y0 +

∑
i∈V (v) yi, where V (v) represents the set of

indexes i for which the i-th bit of v is equal to 1. We also define H(v) = g0
∏
i∈V (v) gi = gh(v) ∈ G1.

3.2 Description of the Scheme

In this Section we introduce the Secret Handshake scheme. The active parties in the scheme are
essentially users and a number of mistrusting entities that we will call certification authority (CA).
The various CAs jointly engage in the CASetup algorithm to generate the common public and
secret parameters. Each CA then executes independently the Setup algorithm to generate public
and secret parameters for the single CA.

Users then receive from given CAs Credentials and Matching References for a given property.
In case of compromised Credentials, the CA adds a value called Revocation Handle to a pub-
licly available revocation list: this way, verifiers may refuse to interact with users bearing revoked
Credentials.
The scheme is composed of the following algorithms:

– CASetup this algorithm corresponds to the general setup of the system, to which all CAs par-
ticipate; according to the security parameter k, g, g̃ are selected, where g and g̃ are random



generators of G1 and G2 respectively. Then the values W = gw and g̃w
−1

are chosen, so that the
value w is unknown to all CAs3. Then, values {yi}ni=0

R← Z∗q are randomly drawn and assigned
as g0 ← gy0 , g1 ← gy1 , . . . , gn ← gyn . Notice that with these parameters, H(p) is computed
as g0

∏
i∈V (p) gi = gh(p). The system’s parameters are {q,G1,G2, g, g̃,W, g0, . . . , gn}; the values

y0, . . . , yn and g̃w
−1

are kept secret among the CAs;
– Setup this algorithm corresponds to the setup of a single CA; upon execution of this algorithm,

the CA picks tCA ∈ Z∗q and publishes TCA = g̃tCA ; finally, the CA maintains its own function
fCA(p); fCA is implemented maintaining a list of pairs (p ∈ P, fCA(p) ∈ Z∗q), which is filled as
follows: if p is not in the list, the CA picks a random number r ∈ Z∗q and inserts the pair (p, r)
in the list. If p is already in the list, the CA looks up the pair (p, r) and sets fCA(p) = r;

– Certify this algorithm is executed by a given CA when a user u ∈ U queries that CA for a
Credential for property p ∈ P; if p falls within the set of properties that the queried CA is
responsible for, the queried CA verifies that the supplicant user u ∈ U possesses the property
p ∈ P; after a successful check, the CA issues to u the appropriate Credential, which is made
of two separate components: an Identification Handle, later used for revocation, and the actual
Credential. To hand out the Identification Handle for a given pair (u, p), the CA picks the
Identification Handle xu,p

R← Z∗q , randomly drawn upon each query, and gives it to the supplicant
user. The CA then forms the Credential as a tuple credu,p = 〈Cu,p,1, Cu,p,2, Cu,p,3〉 where Cu,p,1 =
gzw(xu,p+tCAfCA(p)h(p)), Cu,p,2 = g̃(zw)−1

and Cu,p,3 = g̃z
−1

, where z ∈ Z∗q is randomly drawn upon
each query. To allow the user to verify the goodness of the Credential, the CA gives to the user
gfCA(p) and g̃tCAh(p). The user first verifies that ê (H(p), TCA) = ê

(
g, g̃tCAh(p)

)
; if this first

verification succeeds, the user verifies that ê(Cu,p,1, Cu,p,2) = ê(gxu,p , g̃) · ê(gfCA(p), g̃tCAh(p));
– Grant this algorithm is executed by a given CA when a user u ∈ U queries that CA for a Matching

Reference for property p ∈ P; the CA verifies that – according to the policies of the CA – the
supplicant user is entitled to verify that another user possesses property p ∈ P. If the checking is
successful, the CA issues the appropriate Matching Reference matchp = g̃tCAfCA(p)h(p); to allow
the user to verify the goodness of the Credential, the CA gives to the user gfCA(p) and g̃tCAh(p).
The user first verifies that ê (H(p), TCA) = ê

(
g, g̃tCAh(p)

)
; if this first verification succeeds, the

user verifies that ê(g,matchp) = ê(gfCA(p), g̃tCAh(p));
– Revoke if the Credential for property p of user u ∈ U is to be revoked, the CA adds the so-called

Revocation Handle revu,p = g̃xu,p to a publicly available revocation list Lrev. It is worth noting
that the Identification Handle xu,p and the corresponding Revocation Handle revu,p = g̃xu,p are
tightly related;

– Handshake is a probabilistic polynomial-time two-party algorithm executed by two users; the
algorithm is composed of four sub-algorithms:

• Handshake.Init the user picks m R← Z∗q and produces g̃m;

• Handshake.RandomizeCredentials the user picks random values r, s R← Z∗q ; then, given the
Credential credu,p = 〈Cu,p,1, Cu,p,2, Cu,p,3〉 and the Identification Handle xu,p, the user

produces the tuple 〈gr, (Cu,p,1)rs , (Cu,p,2)s
−1

, (Cu,p,3)s
−1
〉

. The user also computes K =(
ê
(
g, g̃m

′
))rxu,p

, where g̃m
′

is the nonce received from the other party;

3 The CAs can achieve this for instance by using an external dealer or by engaging in a secure multi-party compu-
tation.



• Handshake.CheckRevoked the user parses SH as
〈
gr, (Cu,p,1)rs , (Cu,p,2)s

−1

, (Cu,p,3)s
−1
〉

.
The user verifies whether SH contains a revoked Credential by checking if the following
identity

ê
(

(Cu,p,1)rs , (Cu,p,2)s
−1
)

= ê (gr,matchp · rev) (1)

is verified with any of the Revocation Handles rev in the list Lrev. matchp is the Matching
Reference the user will use when performing Handshake.Match. If the check is successful, the
user discards the current handshake instance;
• Handshake.Match the users parses SH, the handshake message received from the remote

user, as 〈gr, (Cu,p,1)rs , (Cu,p,2)s
−1

, (Cu,p,3)s
−1
〉

. The user checks whether

ê
(
g, (Cu,p,3)s

−1
)

= ê
(
W, (Cu,p,2)s

−1
)

(2)

and computes

K =

 ê
(

(Cu,p,1)rs , (Cu,p,2)s
−1
)

ê (gr,matchp)

m

(3)

matchp is a Matching Reference;

Let us assume that two users, Alice and Bob, want to perform a Secret Handshake and share a
key if the Handshake is successful. Alice owns the tuple 〈credA,p1 ,matchp2 , xA,p1〉 and Bob owns
〈credB,p2 ,matchp1 , xB,p2〉. Figure 1 shows how the handshake is carried out.

At the completion of the protocol, Alice and Bob share the same keypair if and only if each
user’s Credential matches the other user’s Matching Reference. If not, one of the two keys, or both,
will be different. By requiring them to prove to one another knowledge of both keys simultaneously,
either both users learn of a mutual matching, or they do not learn anything at all. In particular,
they do not learn – in case of a failed handshake – if just one of the two matchings have failed, and
if so which one, or if both did fail.

Let us describe a practical scenario to understand the scheme better: let us assume that two
national CAs, CA1 and CA2, are issuing Credential and Matching References to justice enforcement
officials of their respective countries. CA1 can therefore for instance issue Credentials for “case agent
XYZ” or “case supervisor XYZ”; the same can be done by CA2. Then, if agents assigned to the
same case need to cooperate on an international investigation, they can receive Matching References
from the CA of the other country, making them able to run a Secret Handshake, authenticate and
secure their communications.

Notice that both CAs could in principle generate Credentials for the same property “case
agent XYZ”; however, thanks to the separate functions fCA and the different values TCA, none of
the CAs can generate Credentials (Matching References) that would match Matching References
(Credentials) associated with properties under the jurisdiction of another CA.

4 Security Analysis

This Section analyzes the security of the protocol. The proofs do not rely on random oracles, albeit
the function fCA can be mistaken by one: random oracles are functions that users of the system



Alice : pick r, s, m
R← Z∗q

Alice −→ Bob :
D
gr, (CA,p1,1)rs , (CA,p1,2)s−1

, (CA,p1,3)s−1
, g̃m

E
Bob : pick r′, s′, m′

R← Z∗q
Bob −→ Alice :

D
gr′ , (CB,p2,1)r′s′ , (CB,p2,2)s′−1

, (CB,p2,3)s′−1
, g̃m′

E
Alice : check that Equation 2 holds, otherwise abort
Alice : check that Equation 1 is not satisfied with any rev ∈ Lrev,

otherwise abort

Alice : compute K1 =
“
ê
“
g, g̃m′

””rxA,p1

Alice : compute K2 =

0@ ê
“

(CB,p2,1)r′s′ , (CB,p2,2)s′−1
”

ê (gr′ , matchp2)

1Am

Bob : check that Equation 2 holds, otherwise abort
Bob : check that Equation 1 is not satisfied with any rev ∈ Lrev,

otherwise abort

Bob : compute K1 =

0@ ê
“

(CA,p1,1)rs , (CA,p1,2)s−1
”

ê (gr, matchp1)

1Am′

Bob : compute K2 = (ê (g, g̃m))r′xA,p1

Alice ←→ Bob: mutual proof of knowledge of K1 and K2

Fig. 1. Secret Handshake with Dynamic Controlled Matching.

(and attackers) can compute on their own, whereas f is comparable to a master secret that changes
for the different properties, whose value is given to users only to allow them to perform checks on
Credentials.

It could be debatable whether or not it is opportune to hand out the value gfCA(p) for each
property at the time of the execution of Setup amongst the other public parameters, instead of
giving them only upon the execution of Certify and Grant. In any case, from the security point of
view, the adversary has knowledge of all these values in all the games.

Before proceeding further, we state a well-known hard problem:

Definition 10 (Hardness of the Decisional Diffie-Hellman Problem). We say that the De-
cisional Diffie-Hellman Problem (DDH) is hard if, for all probabilistic, polynomial-time algorithms
B,

AdvDDHB := Pr[B(g, ga, gb, gx) = > if x = ab]− 1
2

is negligible in the security parameter. We assume a random choice of g ∈ G2, a, b ∈ Z∗q; x is
equal to ab with probability 1

2 and is otherwise equal to a random value in Z∗q/{ab} with the same
probability.

We also introduce a slightly modified version of the SM problem introduced in [18].

Definition 11 (Hardness of the SM Problem). Let w, y,m ∈ Z∗q, let g be a generator of G1

and g̃ be a generator of G2. Let oracle Ow,y(·) take input x ∈ Z∗q and produce output gzw(x+y),

g̃z
−1

and g̃(zw)−1
where z is randomly drawn from Z∗q upon each oracle query. We say that the SM

Problem is hard if, for all probabilistic, polynomial-time algorithms A,

AdvSMA := Pr[A(g, gw, g̃, g̃w
−1
, g̃y, g̃m, Ow,y) = a, asw(x∗+y), g̃(sw)−1

, g̃(s)−1
, ê (a, g̃)mx∗ ]



such that x∗ /∈ O, is negligible in the security parameter; a ∈ G1. O is the set of queries A makes
to oracle Ow,y. This probability is taken over random choice of g ∈ G1, g̃ ∈ G2, and w, y,m ∈ Z∗q.

Evidence of the hardness of this problem is a straightforward adaptation of the proof contained
in [18], which we therefore omit here.

The security requirements of the scheme can be effectively resumed as follows:

1. Impersonator Resistance: given property p∗; let us assume two users, A and B, engage in
Handshake; B has a Matching Reference for p∗; then, it is computationally infeasible for A –
without a non-revoked Credential for p∗ – to engage in Handshake with B and output the correct
key, linked to a successful proof of possession of p∗ by A and a successful detection of p∗ by B;

2. Detector Resistance: given property p∗; let us assume two users, A and B, engage in Handshake;
B has a Credential for p∗; then, it is computationally infeasible for A – without the appropriate
Matching Reference for p∗ – to distinguish between the key A computes executing Handshake
and a random value;

3. Unlinkability of Users: it is computationally unfeasible for a user – engaging in two executions
of Handshake – to tell whether he was interacting with the same user or two different ones;

4. Unlinkability of Properties: it is computationally unfeasible for a user – engaging in two exe-
cutions of Handshake without the appropriate Matching References – to tell whether he was
interacting with users having Credentials for the same property or for different ones;

Notice that in the impersonation resistance game, the adversary is required to produce the
successful key instead of requiring key indistinguishability. However we stress that the same re-
quirement is considered for instance in the works of Balfanz et al. [4] and of Ateniese et al. [3].

Throughout our analysis, we shall consider two separate types of adversary: type I represents a
common user of the system. For this type of attacker we assume that certification entities cannot
be compromised: this means that the adversary will not receive the secret system parameters
g̃w
−1
, y0, . . . , yn and the CA-specific parameters tCA and fCA(p).

Type II is instead represented by a malicious CA, whose objective is to successfully engage in
a Secret Handshake and carry out detection and impersonation for properties under the control of
another CA; this type of adversary has access to all the information available to CAs, but clearly
not to CA-specific information such as tCA and fCA(p) for other CAs.

Due to space restrictions, the proofs of the Lemmas establishing the security of the scheme
cannot be included in this paper, and will be included in its extended version.

4.1 Security against adversary type I

We consider the same adversarial type as the one adopted in numerous closely-related works such
as [3, 9, 4], wherein the adversary can always obtain Credentials and Matching References for proper-
ties at his will, except of course for properties being object of challenges: in particular, the adversary
cannot get a Credential (resp. Matching Reference) for the property he is trying to impersonate
(resp. detect); also, the adversary for Unlinkability requirements is not limited to passively observ-
ing protocol instances4, but can actively engage in protocol instances and even receive the correct
key at the end.

4 Adversaries trying to detect/impersonate are by nature active ones.



The adversary is allowed to access a number of oracles managed by the challenger in order
to interact with the system, in particular OSetup is invoked when the adversary wants to create a
new certification authority by calling Setup; OCertify is invoked when the adversary wants to receive
a Credential for a given property through the execution of Certify; OGrant is invoked when the
adversary wants to receive a Matching Reference for a given property through the execution of
Grant; and finally ORevoke is invoked when the adversary wants to receive a Revocation Handle for
a given Credential through the execution of Revoke. Each of the proofs of this Section assume that
the algorithm OCASetup has already been executed by the challenger prior to the beginning of the
game. Notice that this is not a limiting factor, since the adversary that we are addressing now
is a simple user of the system who – we assume – has no access to the output of OCASetup. This
assumption will be lifted in the next Section when we consider the resilience of the scheme against
a type II adversary.

Notice also that this adversarial model is weaker than the one adopted by Jarecki and colleagues
in [11]. Under this model, as opposed to the one used in this and several other works [3, 9, 4], the
adversary can access a OHandshake oracle through which it can initiate arbitrary concurrent Secret
Handshake instances and reveal the outcome of some of them. Quoting Jarecki and colleagues, we
focus our analysis only on the “security of isolated protocol instances”.

Unlinkability of Properties Consider an adversary A whose goal is to check if two handshake
tuples contain the same property. A can access the oracles of the system. A is then challenged as
follows: A chooses a property p∗ for which no call to OGrant has been submitted; he is then given
SH1 and SH2 generated by two calls to Matching.RandomizeCredentials and is required to return
true if he can decide that both SH1 and SH2 refer to p∗. To make the adversary as powerful as
possible, the challenger will also give to the adversary the key that it computes when executing
Matching.RandomizeCredentials. We call this game TraceProperty.

Lemma 1. If an adversary A has a non-null advantage

AdvTracePropertyA := Pr[A wins the game TraceProperty]− 1
2

then a probabilistic, polynomial time algorithm B can create an environment where it uses A’s
advantage to solve any given instance of the Decisional Diffie-Hellman problem (DDH).

Unlinkability of Users Consider an adversary A whose goal is to check if two handshake tuples
come from the same user. Let us first of all notice that there are two values that can deanonymize
a user, the Identification Handle xu,p, and z, the random number drawn at each call to Certify and
used to salt the Credentials. Between the two, xu,p is the only one that can be traced over two
different handshake tuples. Indeed, tracing the value z is impossible, since over successive handshake
tuples, it always appears multiplied by a different random value.
A can access the oracles of the system. Eventually A receives two handshake tuples containing

the same property, and returns true if he can decide that upon both protocol instances he was
interacting with the same user. We call this game TraceUser.

There are two separate situations where we want to prove that Unlinkability of users holds:
(i) where a user uses Credentials that have not yet been revoked, for which the adversary has a
corresponding Matching Reference; and (ii) where the user uses Credentials that have already been



revoked, in which case Unlinkability of users holds only if the adversary does not have the corre-
sponding Matching Reference. We remind the reader that users are clearly traceable to an adversary
who has both the correct Matching Reference and the Revocation Handle for that Credential.

Therefore we present two separate games, TraceUser1 and TraceUser2: the first challenges the
adversary’s capability to trace a non-revoked user, having the appropriate Matching Reference for
the user’s Credential; the second challenges the adversary’s ability to trace a revoked user without
the appropriate Matching Reference for the user’s (revoked) Credential.

Lemma 2. If an adversary A has a non-null advantage

AdvTraceUser1A := Pr[A wins the game TraceUser1]− 1
2

then a probabilistic, polynomial time algorithm B can create an environment where it uses A’s
advantage to solve any given instance of the Decisional Diffie-Hellman problem (DDH).

Now we turn our attention to TraceUser2 featuring an attacker that has Revocation Handles
for the Credentials used by the challenger, but who does not have the corresponding Matching
References.

Lemma 3. If an adversary A has a non-null advantage

AdvTraceUser2A := Pr[A wins the game TraceUser2]− 1
2

then a probabilistic, polynomial time algorithm B can create an environment where it uses A’s
advantage to solve any given instance of the Decisional Diffie-Hellman problem (DDH).

Detection Resistance Let A be an adversary whose goal is to engage in Secret Handshake
protocol instances and detect the other user’s property, without owning the appropriate Matching
Reference. We call detector resistance the resilience to such kind of an attacker. At first, the
adversary can access the oracles of the system. At the end of the query phase, A picks a property
p∗ for which no call to OGrant has been made. The adversary then engages in a protocol execution
with the challenger, and is asked at the end to distinguish the correct key that Handshake.Match
would output with the correct Matching Reference from a random value of the same length. We
call this game Detect.

Lemma 4. If an adversary A has a non-null advantage

AdvDetectA := Pr[A wins the game Detect]

then a probabilistic, polynomial time algorithm B can create an environment where it uses A’s
advantage to solve any given instance of the Decisional Diffie-Hellman problem (DDH).

Impersonation Resistance The analysis of the impersonation resistance requirement is slightly
more complex than the analysis of other requirements. Before venturing in the actual analysis, we
shall give an overview of how we approach it. At first we define a broad game, called Impersonate,
where the attacker has to be able to conduct a successful Secret Handshake for a given property,
having access to an arbitrary number of Credentials that are revoked before the challenge phase.



Then, we create two sub-games, Impersonate1 and Impersonate2: each game is the same as
Impersonate with an additional requirement that the adversary needs to satisfy. The additional
requirement (namely the satisfaction of an equality) creates a clear cut between the two games,
whose union generates Impersonate. Then we present two separate proofs for the hardness of the
Impersonate1 and Impersonate2 games. These two games, while representing valid reductions, have
the inconvenience that they are strategy-dependent since they make assumptions on the behaviour
of the attacker. In order to fix this inconvenient, we show how the two reductions can be joined in
a single reduction for the strategy-independent initial game Impersonate.

Let us now introduce the Impersonate game, where the attacker has to be able to conduct a
successful Secret Handshake for a given property, having access to an arbitrary number of Cre-
dentials that are revoked before the challenge phase. The adversary can access the oracles of the
system. A eventually decides that this phase of the game is over. The challenger then revokes each
Credential handed out to the attacker in the previous phase. A then declares p∗ ∈ P which will be
the object of the challenge; A is then challenged to engage in Handshake with the challenger, and
has to be able to convince that he owns a Credential for property p∗. A is then asked to output the
key computed. In order to successfully win the game, it must not be possible for the challenger to
abort the handshake due to the fact that the Credentials used by the attacker have been revoked.

We then construct two sub-games, as follows: at the end of the query phase of the Impersonate
game, A receives a nonce g̃m and is then asked to produce the handshake tuple 〈gα, gβ, g̃γ , g̃δ〉 and
the key ek computed by Handshake.RandomizeCredentials. If the attacker is successful, the challenger
should be able to compute the same key using Handshake.Match and the Matching Reference for
p∗.

The challenger can thus check that
(

ê(gβ, g̃γ)
ê(gα,matchp∗)

)m
=
(

ê(gβ, g̃γ)
ê(gα, g̃tCAfCA(p∗)h(p∗))

)m
= ek and

that ê
(
g, g̃δ

)
= ê (gw, g̃γ). Let us set α = r, k = rxu∗,p∗m and δ = s−1, for some integers r, xu∗,p∗ , s ∈

Z∗q unknown to B. Then, we can write γ = (ws)−1 and β = rsw(xu∗,p∗ + tCAfCA(p∗)h(p∗)).
Recall that the attacker receives a number of Credentials during the query phase. The attacker

can win the game in two ways: (i) forge a brand new Credential or (ii) use an old Credential
yet circumventing the revocation check, notably Equation 1 of the Handshake.CheckRevoked sub-
algorithm. Let us set Xu,p = xu,p + tCAfCA(p)h(p). When the attacker is challenged, we have seen
that he produces the value grsw(xu∗,p∗+tCAfCA(p∗)h(p∗)) = grsXu∗,p∗ . If we define the set QA = {Xu,p ∈
Z∗q : A has received gzwXu,p , g̃(zw)−1

, g̃z
−1

from a Certify query}, then (i) implies Xu∗,p∗ /∈ QA and
(ii) implies Xu∗,p∗ ∈ QA. Xu∗,p∗ is the value the attacker uses in the challenge handshake instance.
We then define two different games: Impersonate1, the aforementioned Impersonate game when
Xu∗,p∗ /∈ QA, and Impersonate2 when Xu∗,p∗ ∈ QA.

Lemma 5. If an adversary A has a non-null advantage

AdvImpersonate1A := Pr[A wins the game Impersonate1]

then a probabilistic, polynomial time algorithm B can create an environment where it uses A’s
advantage to solve a given instance of the SM Problem.

We now turn our attention to the Impersonate2 game, focusing on an adversary reusing an
already received Credential and yet able to circumvent revocation.

Lemma 6. If an adversary A has a non-null advantage



AdvImpersonate2A := Pr[A wins the game Impersonate2]− 1
2

then a probabilistic, polynomial time algorithm B can create an environment where it uses A’s
advantage to solve a given instance of the Decisional Diffie-Hellman Problem (DDH).

Now we address the security of impersonation resistance as a whole, by presenting a Lemma
that unifies Impersonate1 and Impersonate2.

Lemma 7. If an adversary A has a non-null advantage

AdvImpersonateA := Pr[A wins the game Impersonate]

then a probabilistic, polynomial time algorithm B can create an environment where it uses A to
gain either an advantage AdvImpersonateA

2 on the Decisional Diffie-Hellman problem (DDH) or an
advantage AdvImpersonateA

2 on the SM Problem.

4.2 Security against adversary type II

In this Section we focus on colluding CAs, whose purpose is to engage in a successful Secret
Handshake carrying out a successful detection or impersonation of a property under the control of
another target CA∗, without owning the appropriate Credential or Matching Reference. In the rest
of this Section we will tackle the analysis of the security against this other type of adversary, by
presenting two games, CAImpersonate and CADetect, similar to the aforementioned Impersonate and
Detect games, with the difference that the adversary is now another CA; the adversary then also
obtains the values g̃w

−1
and y0, . . . , yn. In particular, we give the adversary the ability to invoke

the OCASetup oracle and receive its output: the adversary is therefore free to either generate and
maintain its own CAs, or to invoke the OSetup oracle and have the challenger generate a CA under
its control. The adversary will eventually attempt at impersonation or detection of a property under
the control of the CA controlled by the challenger.

CA Detection Resistance Let A be a malicious CA whose goal is to use the advantage held in
the role of CA to engage in Secret Handshake protocol instances and attempt at the detection of
a property whose Matching References are issued by another CA, without owning the appropriate
Matching Reference. We call CA detector resistance the resilience to this type of attacker. We
assume – with no loss in generality – that there are only two CAs in the system, the adversary and
the one simulated by the challenger.

At first, A can access the oracles of the system, including OCASetup. At the end of the query
phase, A decides a property p∗, under the control of the CA simulated by the challenger, for which
no call to OGrant has been made. A is then challenged to engage in a protocol execution with the
challenger, and asked at the end to distinguish the correct key that Handshake.Match would output
with the correct Matching Reference from a random value of the same length. We call this game
CADetect.

Lemma 8. If an adversary A has a non-null advantage

AdvCADetectA := Pr[A wins the game CADetect]

then a probabilistic, polynomial time algorithm B can create an environment where it uses A’s
advantage to solve any given instance of the Decisional Diffie-Hellman problem (DDH).



CA Impersonation Resistance To address the analysis of this requirement, we follow the
same strategy adopted in Section 4.1; in particular, we define two sub-games, CAImpersonate1
and CAImpersonate2 and then join them together under a broader CAImpersonate game.

Let A be a malicious CA whose goal is the impersonation of a user owning a Credential for
a given property, under the control of another CA. A can access A can access the oracles of the
system, including OCASetup. We assume – with no loss in generality – that there are only two CAs in
the system, the adversary and the one simulated by the challenger. A eventually decides that this
phase of the game is over. The challenger then revokes each Credential handed out to the attacker
in the previous phase. A then declares a property p∗ ∈ P under the control of the CA simulated
by the challenger, which will be the object of the challenge; the adversary A is then challenged to
engage in Handshake with the challenger, and has to be able to convince that he owns a non-revoked
Credential for property p∗. A is then asked to output the key computed. In order to successfully
win the game, it must not be possible for the challenger to abort the handshake due to the fact
that the Credentials used by the attacker have been revoked. We call this game CAImpersonate.

To create the first sub-game, CAImpersonate1, we also assume that the attacker will forge a
brand new Credential in the challenge phase.

Lemma 9. If an adversary A has a non-null advantage

AdvCAImpersonate1A := Pr[A wins the game CAImpersonate1]

then a probabilistic, polynomial time algorithm B can create an environment where it uses A’s
advantage to solve a given instance of the SM Problem.

We now turn our attention to the CAImpersonate2 game, focusing on a malicious CA attempting
to succeed in the impersonation of a user owning a credential for a given property p∗, under the
control of the CA managed by the challenger. To create this sub-game, we assume that the adversary
will be reusing an already revoked Credential received from another CA and yet able to circumvent
revocation.

Lemma 10. If an adversary A has a non-null advantage

AdvCAImpersonate2A := Pr[A wins the game CAImpersonate2]− 1
2

then a probabilistic, polynomial time algorithm B can create an environment where it uses A’s
advantage to solve a given instance of the Decisional Diffie-Hellman Problem (DDH).

To conclude the analysis of impersonation resistance by adversary type II, we introduce a final
lemma that merges the two games CAImpersonate1 and CAImpersonate2 engaging the attacker
in the CAImpersonate game where the challenger gets an advantage in solving a hard problem
independently of the strategy of the adversary.

Lemma 11. If an adversary A has a non-null advantage

AdvCAImpersonateA := Pr[A wins the game CAImpersonate]

then a probabilistic, polynomial time algorithm B can create an environment where it uses A to
gain either an advantage AdvCAImpersonateA

2 on the Decisional Diffie-Hellman problem (DDH) or an
advantage AdvCAImpersonateA

2 on the SM Problem.

A proof of this Lemma is a straightforward adaptation of the proof of Lemma 7, which we therefore
omit.



5 Conclusion

The focus of this paper has been the study of Secret Handshakes that do not rely on a centralized
certification entity; to this end, we have presented the first scheme whereby a coalition of mul-
tiple, independent CAs can associate: each CA maintains proof and verification control over the
properties falling under its realm. Users can conduct successful Secret Handshakes even in hybrid
scenarios, with Credentials and Matching References from different CAs. The scheme supports Se-
cret Handshake with Dynamic Controlled Matching and allows for revocation of Credentials. We
have studied the security of the scheme through game-based security without relying on random
oracles.
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