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Cristina Bǎsescu† Christian Cachin∗ Ittay Eyal§ Robert Haas∗

Alessandro Sorniotti∗ Marko Vukolić‡ Ido Zachevsky§

Abstract

A key-value store (KVS) offers functions for storing and retrieving values associated with unique
keys. KVSs have become the most popular way to access Internet-scale “cloud” storage systems.
We present an efficient wait-free algorithm that emulates multi-reader multi-writer storage from a set
of potentially faulty KVS replicas in an asynchronous environment. Our implementation serves an
unbounded number of clients that use the storage concurrently. It tolerates crashes of a minority of
the KVSs and crashes of any number of clients. Our algorithm minimizes the space overhead at the
KVSs and comes in two variants providing regular and atomic semantics, respectively. Compared
with prior solutions, it is inherently scalable and allows clients to write concurrently.

Because of the limited interface of a KVS, textbook-style solutions for reliable storage either do
not work or incur a prohibitively large storage overhead. Our algorithm maintains two copies of the
stored value per KVS in the common case, and we show that this is indeed necessary. If there are
concurrent write operations, the maximum space complexity of the algorithm grows in proportion to
the point contention. A series of simulations explore the behavior of the algorithm, and benchmarks
obtained with KVS cloud-storage providers demonstrate its practicality.

1 Introduction

1.1 Motivation

In the recent years, the key-value store (KVS) abstraction has become the most popular way to access
Internet-scale “cloud” storage systems. Such systems provide storage and coordination services for
online platforms [15, 33, 7, 28, 40], ranging from web search to social networks, but they are also
available to consumers directly [6, 13, 35, 34].

A KVS offers a range of simple functions for manipulation of unstructured data objects, called
values, each one identified by a unique key. While different services and systems offer various extensions
to the KVS interface, the common denominator of existing KVS services implements an associative
array: A client may store a value by associating the value with a key, retrieve a value associated with a
key, list the keys that are currently associated, and remove a value associated with a key.

This work is motivated by the idea of enhancing the dependability of cloud services by connecting
multiple clouds to an intercloud or a cloud-of-clouds. Although existing KVS services provide high
availability and reliability using replication internally, a KVS service is managed by one provider; many
common components (and thus failure modes) affect its operation. A problem with any such component
may lead to service outage or even to data being lost, as witnessed during an Amazon S3 incident [4],
Google’s temporary loss of email data [23], and Amazon’s recent service disruption [5]. As a remedy, a
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client may increase data reliability by replicating it among several storage providers (all offering a KVS
interface), using the guarantees offered by robust distributed storage algorithms [21, 8]. Data replication
across different clouds is a topic of active research [2, 12, 36, 10].

1.2 Problem

Our data replication scheme relies on multiple providers of raw storage, called base objects here, and
emulates a single, more reliable shared storage abstraction, which we model as a read/write register.
A register represents the most basic form of storage, from which a KVS service or more elaborate
abstractions may be constructed. The emulated register tolerates asynchrony, concurrency, and faults
among the clients and the base objects. For increased parallelism, the clients do not communicate with
each other for coordination, and they may not even be aware of each other.

Many well-known robust distributed storage algorithms exist (for an overview see [11]). They all
use versioning [38], whereby each stored value is associated with a logical timestamp. For instance, with
the multi-writer variant of the register emulation by Attiya et al. [8], the base objects perform custom
computation depending on the timestamp, in order to identify and to retain only the newest written value.
Without this an old-new overwrite problem might occur when a slow write request with an old value and
a small timestamp reaches a base object after the latter has already updated its state to a newer value
with a higher timestamp. On the other hand, one might let each client use its own range of timestamps
and retain all versions of a written value at the KVSs [18, 1], but this approach is overly expensive in
the sense that it requires as many base objects as there are clients. If periodic garbage collection (GC) is
introduced to reduce the consumed storage space, one may face a GC racing problem, whereby a client
attempts to retrieve a value associated with a key that has become obsolete and was removed.

1.3 Contribution

We provide a robust, asynchronous, and space-efficient emulation of a register over a set of KVSs, which
may fail by crashing. Our formalization of a key-value store (KVS) object represents the common de-
nominator among existing commercial KVSs, which renders our approach feasible in practice. Inspired
by Internet-scale systems, the emulation is designed for an unbounded number of clients and supports
multiple readers and writers (MRMW). The algorithm is wait-free [25] in the sense that all operations
invoked by a correct client eventually complete. It is also optimally resilient, i.e., tolerates the failure of
any minority of the KVSs and of any number of clients.

We give two variations of the emulation. Our basic algorithm emulates a register with regular
semantics in the multi-writer model [37]. It does not require read operations to write to the KVSs. Pre-
cluding readers from writing is practically appealing, since the clients may belong to different domains
and not all readers may have write privileges for the shared memory. But it also poses a challenge be-
cause of the GC racing problem. Our solution stores the same value twice in every KVS: (1) under an
eternal key, which is never removed by a garbage collector, and therefore is vulnerable to an old-new
overwrite and (2) under a temporary key, named according to the version; obsolete temporary keys are
garbage-collected by write operations, which makes these keys vulnerable to the GC racing problem.
The algorithm for reading accesses the values in the KVSs according to a specific order, which guar-
antees that every read terminates eventually despite concurrent write operations. In a sense, the eternal
and temporary copies complement each other and, together, guarantee the desirable properties of our
emulation outlined above.

We then present an extension that emulates an atomic register [30]. It uses the standard approach of
having the readers write back the returned value [8]. This algorithm requires read operations to write,
but this is necessary [30, 9].

Our emulations maintain only two copies of the stored value per KVS in the common case (i.e.,
failure-free executions without concurrent operations). We show that this is also necessary. In the worst
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case, a stored value exists in every KVS once for every concurrent write operation, in addition to the one
stored under the eternal key. Hence, our emulations have optimal space complexity.

Even though it is well-known how to implement a shared, robust multi-writer register from simpler
storage primitives such as unreliable single-writer registers [9], our algorithm is the first to achieve an
emulation from KVSs with the minimum necessary space overhead.

Note that some of the available KVSs export proprietary versioning information [6, 40]. However,
one cannot exploit this for a data replication algorithm before the format and semantics of those versions
has been harmonized. Another KVS prototype allows to execute client operations [19], but this technique
is far from commercial deployment. We believe that some KVSs may also support atomic “read-modify-
write” operations at some future time, thereby eliminating the problem addressed here. But until these
extensions are deployed widely and have been standardized, our algorithm represents the best possible
solution for minimizing space overhead of data replication on KVSs.

Last but not least, we simulate the algorithm with practical network parameters for exploring its
properties. The results demonstrate that in realistic cases, our algorithm seldom increases the duration
of read operations beyond the optimal duration. Furthermore, the algorithm scales to many concur-
rent writers without incurring any slowdown. We have also implemented our approach and report on
benchmarks obtained with cloud-storage providers; they confirm the practicality of the algorithm.

Roadmap. The rest of the paper is organized as follows. We discuss related work in Section 2 and
introduce the system model in Section 3. In Section 4, we provide two robust algorithms that use
KVS objects to emulate a read/write register. Section 5 analyzes the correctness of the algorithms
and Section 6 establishes bounds on their space usage. In Section 7 we describe simulations of specific
properties of the algorithms, and in Section 8 we report on benchmarks obtained with an implementation.
Section 9 concludes the paper.

2 Related Work

There is a rich body of literature on robust register emulations that provide guarantees similar to ours.
However, virtually all of them assume read-modify-write functionalities, or computation at the base ob-
jects. These include the single-writer multi-reader (SWMR) atomic wait-free register implementation
of Attiya et al. [8], its dynamic multi-writer counterparts by Lynch and Shvartsman [32, 22] and Englert
and Shvartsman [17], wait-free simulations of Jayanti et al. [26], low-latency atomic wait-free imple-
mentations of Dutta et al. [16] and Georgiou et al. [20], and the consensus-free versions of Aguilera et
al. [3]. These solutions are not directly applicable to our model where KVSs are used as base objects,
due to the old-new overwrite problem.

Notable exceptions that are applicable in our KVS context are SWMR regular register emulation by
Gafni and Lamport [18] and its Byzantine variant by Abraham et al. [1] that use registers as base objects.
However, transforming these SWMR emulations to support a large number of writers is inefficient:
standard register transformations [9, 11] that can be used to this end require at least as many SWMR
regular registers as there are clients, even if there are no faults. This is prohibitively expensive in terms
of space complexity and effectively limits the number of supported clients. Chockler and Malkhi [14]
acknowledge this issue and propose an algorithm that supports an unbounded number of clients (like
our algorithm). However, their method uses base objects (called “active disks”) that may carry out
computations. In contrast, our emulation leverages the operations in the KVS interface, which is more
general than a register due to its list and remove operations, and supports an unbounded number of
clients. Ye et al. [41] overcome the GC racing problem by having the readers “reserve” the versions
they intend to read, by storing extra values that signal to the garbage collector not to remove the version
being read. This approach requires readers to have write access, which is not desirable.
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Two recent works share our goal of providing robust storage from KVS base objects. Abu-Libdeh
et al. [2] propose RACS, an approach that casts RAID techniques to the KVS context. RACS uses a
model different from ours and basically relies on a proxy between the clients and the KVSs, which may
become a bottleneck and single point-of-failure. In a variant that supports multiple proxies, the proxies
communicate directly with each other for synchronizing their operations. Bessani et al. [10] propose
a distributed storage system, called DepSky, which employs erasure coding and cryptographic tools to
store data on KVS objects prone to Byzantine faults. However, the basic version of DepSky allows only
a single writer and thereby circumvents the problems addressed here. An extension supports multiple
writers through a locking mechanism that determines a unique writer using communication among the
clients. In comparison, the multi-writer versions of RACS and DepSky both serialize write operations,
whereas our algorithm allows concurrent write operations from multiple clients in a wait-free manner.
Therefore, our solution scales easily to a large number of clients.

3 Model

Here we introduce the formal model underlying the description of our algorithms and specify registers
with regular and atomic semantics. Then we introduce a key-value store object and state the system
model.

3.1 Executions

The system is comprised of multiple clients and (base) objects. We model them as I/O automata [31],
which contain state and potential transitions that are triggered by actions. The interface of an I/O au-
tomaton is determined by external (input and output) actions. A client may invoke an operation1 on an
object (with an output action of the client automaton that is also an input action of the object automaton).
The object reacts to this invocation, possibly involving state transitions and internal actions, and returns
a response (an output action of the object that is also an input action of the client). This completes
the operation. We consider an asynchronous system, i.e., there are no timing assumptions that relate
invocations and responses. (Consult [31, 9] for details.)

Clients and objects may fail by stopping, i.e., crashing, which we model by a special action stop.
When stop occurs at automaton A, all actions of A become disabled indefinitely and A no longer modi-
fies its state. A client or base object that does not fail is called correct.

An execution σ of the system is a sequence of invocations and responses. We define a partial order
among the operations. An operation o1 precedes another operation o2 (and o2 follows o1) if the response
of o1 precedes the invocation of o2 in σ. We denote this by o1 ≺σ o2. The two operations are concurrent
if neither of them preceded the other. An operation o is pending in an execution σ if σ contains the
invocation of o but not its response; otherwise the operation is complete. An execution σ is well-formed
if every subsequence thereof that contains only the invocations and responses of one client on one object
consists of alternating invocations and responses, starting with an invocation. A well-formed execution σ
is sequential if every prefix of σ contains at most one pending operation; in other words, in a sequential
execution, the response of every operation immediately follows its invocation.

A real-time sequential permutation π of an execution σ is a sequential execution that contains all
operations that are invoked in σ and only those operations and in which for any two operations o1 and
o2 such that o1 ≺σ o2, it holds o1 ≺π o2. Since a sequential execution is a sequence of pairs, each
containing the invocation and the response of one operation, we slightly abuse the terminology and refer
to π as the sequence of these operations.

A sequential specification of some objectO is a prefix-closed set of sequential executions containing
operations on O. It defines the desired behavior of O. A sequential execution π is legal with respect

1For simplicity, we refer to an operation when we should be referring to operation execution.
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to the sequential definition of O if the subsequence of σ containing only operations on O lies in the
sequential specification of O.

Finally, an object implementation is wait-free if it eventually responds to an invocation by a correct
client [24].

3.2 Register Specifications

Sequential Register. A register [30] is an object that supports two operations: one for writing a value
v ∈ V , denoted by write(v), which returns ACK, and one for reading a value, denoted by read(), which
returns a value in V . The sequential specification of a register requires that every read operation returns
the value written by the last preceding write operation in the execution, or the special value⊥ if no such
operation exists. For simplicity, our description assumes that every distinct value is written only once.

Registers may exhibit different semantics under concurrent access, as described next.

Multi-Reader Multi-Writer Regular Register. The following semantics describe a multi-reader multi-
writer regular register (MRMW-regular), adapted from [37]. A MRMW-regular register only guarantees
that different read operations agree on the order of preceding write operations.

Definition 1 (MRMW-regular register). A well-formed execution σ of a register is MRMW-regular if
there exists a sequential permutation π of the operations in σ as follows: for each read operation r
in σ, let πr by a subsequence of π containing r and those write operations that do not follow r in σ;
furthermore, let σr be the subsequence of σ containing r and those write operations that do not follow
it in σ; then πr is a legal real-time sequential permutation of σr. A register is MRMW-regular if all
well-formed executions on that register are MRMW-regular.

Atomic Register. A stronger consistency notion for a concurrent register object than regular semantics
is atomicity [30], also called linearizability [25]. In short, atomicity stipulates that it should be possible
to place each operation at a singular point (linearization point) between its invocation and response.

Definition 2 (Atomicity). A well-formed execution σ of a concurrent object is atomic (or linearizable),
if σ can be extended (by appending zero or more responses) to some execution σ′, such that there is a
legal real-time sequential permutation π of σ′. An object is atomic if all well-formed executions on that
object are atomic.

3.3 Key-Value Store

A key-value store (KVS) object is an associative array that allows storage and retrieval of values in a set
X associated with keys in a set K. The size of the stored values is typically much larger than the length
of a key, so the values in X cannot be translated to elements of K and be stored as keys.

A KVS supports four operations: (1) Storing a value x associated with a key key (denoted put(key, x)),
(2) retrieving a value x associated with a key (x← get(key)), which may also return FAIL if key does not
exist, (3) listing the keys that are currently associated (list← list()), and (4) removing a value associated
with a key (remove(key)).

Our formal sequential specification of the KVS object is given in Algorithm 1. This implementation
maintains in a variable live the set of associated keys and values. The space complexity of a KVS at
some time during an execution is given by the number of associated keys, that is, by the value |live|.

3.4 Register Emulation

The system is comprised of a finite set of clients and a set of n atomic wait-free KVSs as base objects.
Each client is named with a unique identifier from an infinite ordered set ID. The KVS objects are
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Algorithm 1: Key-value store object i
1 state
2 live ⊆ K ×X , initially ∅
3 On invocation puti(key, value)
4 live← (live \ {〈key, x〉 |x ∈ X}) ∪ 〈key, value〉
5 return ACK

6 On invocation geti(key)
7 if ∃x : 〈key, x〉 ∈ live then
8 return x
9 else

10 return FAIL

11 On invocation removei(key)
12 live← live \ {〈key, x〉 |x ∈ X}
13 return ACK

14 On invocation listi()
15 return {key | ∃x : 〈key, x〉 ∈ live}

numbered 1, . . . , n. Initially, the clients do not know the identities of other clients or the total number of
clients.

Our goal is to have the clients emulate a MRMW-regular register and an atomic register using the
KVS base objects [31]. The emulations should be wait-free and tolerate that any number of clients and
any minority of the KVSs may crash. Furthermore, an emulation algorithm should associate only few
keys to values in every KVS (i.e., have low space complexity).

4 Algorithm

4.1 Pseudo Code Notation

Our algorithm is formulated using functions that execute the register operations. They perform com-
putation steps, invoke operations on the base objects, and may wait for such operations to complete.
To simplify the pseudo code, we imagine there are concurrent execution “threads” as follows. When a
function concurrently executes a block, it perform the same steps and invokes the same operations once
for each KVS base object in parallel. An algorithm proceeds past a concurrently statement as indicated
by a termination property; in all our algorithms, this condition requires that the block completes for a
majority of base objects.

In order to maintain a well-formed execution, the system implicitly keeps track of pending opera-
tions at the base objects. Relying on this state, every instruction to concurrently execute a code block
explicitly waits for a base object to complete a pending operation, before its “thread” may invoke an-
other operation. This convention avoids cluttering the pseudo code with state variables and complicated
predicates that have the same effect.

4.2 MRMW-Regular Register

We present an algorithm for implementing a MRMW-regular register, where read operations do not
store data at the KVSs.

Inspired by previous work on fault-tolerant register emulations, our algorithm makes use of version-
ing. Clients associate versions with the values they store in the KVSs. In each KVS there may be several
values stored at any time, with different versions. Roughly speaking, when writing a value, a client as-
sociates it with a version that is larger than the existing versions, and when reading a value, a client tries
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to retrieve the one associated with the largest version [8]. Since a KVS cannot perform computations
and atomically store one version and remove another one, values associated with obsolete versions may
be left around. Therefore our algorithm explicitly removes unused values, in order to reduce the space
occupied at a KVS.

A version is a pair2 〈seq, id〉 ∈ N0 × ID, where the first number is a sequence number and the
second is the identity of the client that created the version and used it to store a value. When comparing
versions with the < operator and using the max function, we respect the lexicographic order on pairs.
We assume that the key space of a KVS is the version space, i.e.,K = N0×ID, and that the value space
of a KVS allows clients to store either a register value from V or a version and a value in (N0×ID)×V .3

At the heart of our algorithm lies the idea of using temporary keys, which are created and later
removed at the KVSs, and an eternal key, denoted ETERNAL, which is never removed. Both represent
a register value and its associated version. When a client writes a value to the emulated register, it
determines the new version to be associated with the value, accesses a majority of the KVSs, and stores
the value and version twice at every KVS — once under a new temporary key, named according to the
version, and once under the eternal key, overwriting its current value. The data stored under a temporary
key directly represents the written value; data stored under the eternal key contains the register value
and its version. The writer also performs garbage collection of values stored under obsolete temporary
keys, which ensures the bound on space complexity.

4.2.1 Read

When a client reads from the emulated register through algorithm regularRead (Algorithm 3), it obtains
a version and a value from a majority of the KVSs and returns the value associated with the largest
obtained version.

To obtain such a pair from a KVS i, the reader invokes a function getFromKVS(i) (shown in
Algorithm 2). It first determines the currently largest stored version, denoted by ver0, through a snapshot
of temporary keys with a list operation.

Then the reader enters a loop, from which it only exits after finding a value associated with a version
that is at least ver0. It first attempts to retrieve the value under the key representing the largest version.
If the key exists, the reader has found a suitable value. However, this step may fail due to the GC racing
problem, that is, because a concurrent writer has removed the particular key between the times when the
client issues the list and the get operations.

In this case, the reader retrieves the version/value pair stored under the eternal key. As the eternal
key is stored first by a writer and never removed, it exists always after the first write to the register. If the
retrieved version is greater than or equal to ver0, the reader returns this value. However, if this version is
smaller than ver0, an old-new overwrite has occurred, and the reader starts another iteration of the loop.

This loop terminates after a bounded number iterations: Note that an iteration is not successful only
if a GC race and an old-new overwrite have both occurred. But a concurrent writer that may cause an
old-new overwrite must have invoked its write operation before the reader issued the first list operation
on some KVS. Thus, the number of loop iterations is bounded by the number of clients that concurrently
execute a write operation in parallel to the read operation (i.e., the point contention of write operations).
This intuition is made formal in Section 5.

2We denote by N0 the set {0, 1, 2, . . . }.
3In other words, X = V ∪ (N0 × ID) × V . Alternatively one may assume that there exists a one-to-one transformation

from the version space to the KVS key space, and from the set of values written by the clients to the KVS value space. In
practical systems, where K and X are strings, this assumptions holds.
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Algorithm 2: Retrieve a legal version-value pair from a KVS
1 function getFromKVS(i)
2 list← listi() \ ETERNAL

3 if list = ∅ then
4 return 〈〈0,⊥〉,⊥〉
5 ver0 ← max(list)
6 while True do
7 val← geti(max(list))
8 if val 6= FAIL then
9 return 〈max(list), val〉

10 〈ver, val〉 ← geti(ETERNAL)
11 if ver ≥ ver0 then
12 return 〈ver, val〉
13 list← listi() \ ETERNAL

Algorithm 3: Client c read operation of the MRMW-regular register
1 function regularReadc()
2 results← ∅
3 concurrently for each 1 ≤ i ≤ n, until a majority completes
4 if some operation is pending at KVS i then wait for a response
5 result← getFromKVS(i)
6 results← results ∪ {result}
7 return val such that 〈ver, val〉 ∈ results and ver′ ≤ ver for any 〈ver′, val′〉 ∈ results

4.2.2 Write

A client writes a value to the register using algorithm regularWrite (Algorithm 5). First, the client lists
the temporary keys in each base object and determines the largest version found in a majority of them.
It increments this version and obtains a new version to be associated with the written value.

Then the client stores the value and the new version in all KVSs using a function putInKVS, shown
in Algorithm 4, which also performs garbage collection. It first lists the existing keys and removes ob-
solete temporary keys, i.e., all temporary keys excluding the one corresponding to the maximal version.
Subsequently the function stores the value and the version under the eternal key. To store the value under
a temporary key, the algorithm checks whether the new version is larger than the maximal version of
an existing key. If yes, it also stores the new value under the temporary key corresponding to the new
version and removes the key holding the previous maximal version.

Once the function putInKVS finishes for a majority of the KVSs, the algorithm for writing to the
register completes. It is important for ensuring termination of concurrent read operations that the writer
first stores the value under the eternal key and later under the temporary key.

Algorithm 4: Store a value and a given version in a KVS
1 function putInKVS(i, verw, valw)
2 list← listi()
3 obsolete← {v | v ∈ list ∧ v 6= ETERNAL ∧ v < max(list)}
4 foreach ver ∈ obsolete do
5 removei(ver)
6 puti(ETERNAL, 〈verw, valw〉)
7 if verw > max(list) then
8 puti(verw, valw)
9 removei(max(list))
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Algorithm 5: Client c write operation of the MRMW-regular register
1 function regularWritec(valw)
2 results← {〈0,⊥〉}
3 concurrently for each 1 ≤ i ≤ n, until a majority completes
4 if some operation is pending at KVS i then wait for a response
5 list← listi()
6 results← results ∪ list
7 〈seqmax, idmax〉 ← max(results)
8 verw ← 〈seqmax + 1, c〉
9 concurrently for each 1 ≤ i ≤ n, until a majority completes

10 if some operation is pending at KVS i then wait for a response
11 putInKVS(i, verw, valw)
12 return ACK

4.3 Atomic Register

The atomic register emulation results from extending the algorithm for emulating the regular register.
Atomicity is achieved by having a client write back its read value before returning it, similar to the
write-back procedure of Attiya et al. [8].

The write operation is the same as before, implemented by function regularWrite (Algorithm 5).
The read operation is implemented by function atomicRead (Algorithm 6). Its first phase is unchanged
from before and obtains the value associated with the maximal version found among a majority of the
KVSs. Its second phase duplicates the second phase of the regularWrite function, which stores the
versioned value to a majority of the KVSs.

Algorithm 6: Client c read operation of the atomic register
1 function atomicReadc()
2 results← ∅
3 concurrently for each 1 ≤ i ≤ n, until a majority completes
4 if some operation is pending at KVS i then wait for a response
5 result← getFromKVS(i)
6 results← results ∪ {result}
7 choose 〈ver, val〉 ∈ results such that ver′ ≤ ver for any 〈ver′, val′〉 ∈ results
8 concurrently for each 1 ≤ i ≤ n, until a majority completes
9 if some operation is pending at KVS i then wait for a response

10 putInKVS(i, ver, val)
11 return val

5 Correctness

For establishing the correctness of the algorithms, note first that every client accesses the KVS objects
in a well-formed manner, as ensured by the corresponding checks in Algorithm 3 (line 4), Algorithm 5
(lines 4 and 10), and Algorithm 6 (lines 4 and 8).

A global execution of the system consists of invocations and responses of two kinds: those of the
emulated register and those of the KVS base objects. In order to distinguish between them, we let σ̄
denote an execution of the register (with read and write operations) and let σ denote an execution of the
KVS base objects (with put, get, list, and remove operations).

We say that a KVS-operation o is induced by a register operation ō when the client executing ō
invoked o according to its algorithm for executing ō. Furthermore, a read operation reads a version ver
when the returned value has been associated with ver (Algorithm 3 line 7), and a write operation writes
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a version ver when an induced put operation stores a value under a temporary key corresponding to ver
(Algorithm 5 line 11).

At a high level, the register emulations are correct because the read and write operations always
access a majority of the KVSs, and hence every two operations access at least one common KVS. Fur-
thermore, each KVS stores two copies of a value under the eternal and under temporary keys. Because
the algorithm for reading is carefully adjusted to the garbage-collection routine, every read operation
returns a legitimate value in finite time. Section 5.1 below makes this argument precise for the regular
register, and Section 5.2 addresses the atomic register.

5.1 MRMW-Regular Register

We prove safety (Theorem 3) and liveness (Theorem 6) for the emulation of the MWMR-regular regis-
ter. Consider any execution σ̄ of the algorithm, the induced execution σ of the KVSs, and a real-time
sequential permutation π of σ (note that σ is determined by the operations on the atomic KVSs). Let πi
denote the sequence of actions from π that occur at some KVS replica i.

According to Algorithm 5, every write operation to the register induces exactly two put operations,
one with a temporary key and one with the eternal key; the write may also remove some temporary
keys. We first establish that for every KVS, the maximum of all versions that correspond to an associated
temporary key always increases.

Lemma 1 (KVS version monotonicity). Consider a KVS i, a write operation w that writes version ver,
and some operation puti in πi induced by w with a temporary key. Then the response of any operation
listi in πi that follows puti contains at least one temporary key that corresponds to a version equal to or
larger than ver.

Proof. We show this by induction on the length of some prefix of πi that is followed by an imaginary
list′ operation. (Note that list does not modify the state of KVS i.)

Initially, no versions have been written, and the claim is vacuously true for the empty prefix. Ac-
cording to the induction assumption, the claim holds for some prefix ρi. We argue that it also holds
for every extension of ρi. When ρi is extended by a puti operation, the claim still holds. Indeed, the
claim can only be affected when ρi is extended by an operation removei with a key that corresponds to
version ver and when no puti operation with a temporary key that corresponds to a larger version than
ver exists in ρi.

A removei operation is executed by some client that executes a write operation and function putInKVS
in two cases. In the first case, when Algorithm 4 invokes operation removei in line 5, it has previously
executed listi and excluded from obsolete the temporary key corresponding to the largest version ver′.
The induction assumption implies that ver′ ≥ ver. Hence, there exists a temporary key corresponding to
ver′ ≥ ver also after removei completes.

In the second case, when Algorithm 4 invokes removei in line 9, then it has already stored a tem-
porary key corresponding to a larger version than ver through operation puti (line 8), according to the
algorithm. The claim follows.

Lemma 2 (Partial order). In an execution σ̄ of the algorithm, the versions of the read and write opera-
tions in σ̄ respect the partial order of the operations in σ̄:

a) When a write operation w writes a version vw and a subsequent (in σ̄) read operation r reads a
version vr, then vw ≤ vr.

b) When a write operation w1 writes a version v1 and a subsequent write operation w2 writes a version
v2, then v1 < v2.
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Proof. For part a), note that both operations return only after receiving responses from a majority of
KVSs. Suppose KVS i belongs to the majority accessed by the putInKVS function during w and to the
majority accessed by r. Since w ≺σ̄ r, the puti operation induced by w precedes the first listi operation
induced by r. Therefore, the latter returns at least one temporary key corresponding to a version that is
vw or larger according to Lemma 1.

Consider now the execution of function getFromKVS (Algorithm 2) for KVS i. The previous
statement shows that the client sets v0 ≥ vw in line 5. The function only returns a version that is at least
v0. As Algorithm 3 takes the maximal version returned from a KVS, the version vr of r is not smaller
than vw.

The argument for the write operations in part b) is similar. Suppose that KVS i belongs to the
majority accessed by the putInKVS function duringw1 and to the majority accessed by the list operation
during w2. As w1 ≺σ̄ w2, the puti operation induced by w1 precedes the listi operation induced by w2.
Therefore, the latter returns at least one temporary key corresponding to a version that is v1 or larger
according to Lemma 1. Hence, the computed previous maximum version 〈seqmax, idmax〉 of Algorithm 5
in w2 is at least v1. Subsequently, operation w2 at client c determines its version v2 = 〈seqmax + 1, c〉 >
〈seqmax, idmax〉 ≥ v1.

The two lemmas prepare the way for the following theorem. It shows that the emulation respects the
specification of a multi-reader multi-writer regular register.

Theorem 3 (MRMW-regular safety). Every well-formed execution σ̄ of the MRMW-regular register
emulation in Algorithms 3 and 5 is MRMW-regular.

Proof. Note that a read only reads a version that was written by a write operation. We construct a
sequential permutation π̄ of σ̄ by ordering all write operations of σ̄ according to their versions and then
adding all read operations after their matching write operation; concurrent read operations are added
in arbitrary after, the others in the same order as in σ̄.

Let r be a read operation in σ̄ and denote by σ̄r and by π̄r the subsequences of σ̄ and p̄i according
to Definition 1, respectively. They contain only r and those write operations that do not follow r in σ̄.
We show that π̄r is a legal real-time sequential permutation of σ̄r.

Due to the construction of π̄, operation r returns the value written by the last preceding write oper-
ation or ⊥ if there is no such write. The sequence π̄r is therefore legal with respect to a register.

It remains to show that π̄r respects the real-time order of σ̄r. Consider two operations o1 and o2 in
σ̄r such that o1 ≺σ̄r o2. Hence, also o1 ≺σ̄ o2. Note that o1 and o2 are either both write operations or
o1 is a write operation and o2 is the read operation r. If o1 is a write of a version v1 and o2 is a write of
a version v2, then Lemma 2a shows that v1 < v2. According to the construction of π̄, we conclude that
o1 ≺π̄ o2. If o1 is a write of a version v1 and o2 is a read of a version v2, then Lemma 2b shows that
o1 ≺π̄ o2, again according to the construction of π̄. By the construction of π̄r, this means that o1 ≺π̄r o2.
Hence, π̄r is also a real-time sequential permutation of σ̄r.

It remains to show that the register operations are also live. We first address the read operation, and
subsequently the write operation.

Lemma 4 (Wait-free read). Every read operation completes in finite time.

Proof. The algorithm for reading (Algorithm 3) calls the function getFromKVS once for every KVS
and completes after this call returns for a majority of the KVSs. As only a minority of KVSs may fail, it
remains to show that when a client c invokes getFromKVS for a correct KVS i, it returns in finite time.

Algorithm 2 implements getFromKVS. It first obtains a list list of all temporary keys from KVS i
and returns if no such key exists. If some temporary key is found, it determines the corresponding largest
version ver0 and enters a loop.
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Towards a contradiction, assume that client c never exits the loop in some execution σ̄ and consider
the induced execution σ of the KVSs.

We examine one iteration of the loop. Note that since all operations of c are wait-free, the iteration
eventually terminates. Prior to starting the iteration, the client determines list from an operation listi. In
line 8 the algorithm attempts to retrieve the value associated with key vc = max(list) through an opera-
tion getc(vc). This returns FAIL and the client retrieves the eternal key with an operation getc(ETERNAL).
We observe that listc ≺σ getc(vc) ≺σ getc(ETERNAL).

Since getc(vc) fails, some client must have removed it from the KVS with a remove(vc) operation.
Applying Lemma 1 to version vc now implies that prior to the invocation of getc(vc), there exists a
temporary key in KVS i corresponding to a version vd > vc that was stored by a client d. Denote the
operation that stored vd by putd(vd). Combined with the previous observation, we conclude that

listc ≺σ putd(vd) ≺σ getc(vc) ≺σ getc(ETERNAL). (1)

Furthermore, according to Algorithm 4, client d has stored a tuple containing vd > vc under the
eternal key prior to putd(vd) with an operation putd(ETERNAL). But the subsequent getc(ETERNAL)
by client c returns a value containing a version smaller than vc. Hence, there must be an extra client e
writing concurrently, and its version-value pair has overwritten vd and the associated value under the
eternal key. This means that operation pute(ETERNAL) precedes getc(ETERNAL) in σ and stores a
version ve < vc. Note that pute(ETERNAL) occurs exactly once for KVS i during the write by e.

As client e also uses Algorithm 5 for writing, its results variable must contain the responses of list
operations from a majority of the KVSs. Denote by liste its list operation whose response contains the
largest version, as determined by e. Let list0

c denote the initial list operation by c that determined ver0

in Algorithm 2 (line 5). We conclude that liste precedes list0
c in σ. Summarizing the partial-order

constraints on e, we have

liste ≺σ list0
c ≺σ pute(ETERNAL) ≺σ getc(ETERNAL). (2)

To conclude, in one iteration of the loop by reader c, some client d concurrently writes to the register
according to (1). An extra client e concurrently writes as well and its write operation is invoked before
list0

c and irrevocably makes progress after d invokes a write operation, according to (2). Therefore,
client e may cause at most one extra iteration of the loop by the reader. Since there are only a finite
number of such clients, client c eventually exits the loop. This contradicts the assumption that such an
execution σ̄ and the induced σ exist, and the lemma follows.

Lemma 5 (Wait-free write). Every write operation completes in finite time.

Proof. The algorithm for writing (Algorithm 5) calls the function list for every KVS, and continues after
this call returns for a majority of the KVSs. Then, it calls the function putInKVS for every KVS and
returns after this call returns for a majority of the KVSs. As only a minority of KVSs may fail, it remains
to show that when a client c invokes putInKVS for a correct KVS, it returns in finite time.

Algorithm 4 implements putInKVS. It calls list, possibly removes keys with remove and puts an
eternal and possibly a temporary key in the KVS. Since all these operations are wait-free, the function
returns in finite time.

The next theorem summarizes these two lemmas and states that the emulation is wait-free.

Theorem 6 (MRMW-regular liveness). Every read and write operation of the MRMW-regular register
emulation in Algorithms 3 and 5 completes in finite time.
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5.2 Atomic Register

We state the correctness theorems for the atomic register emulation and sketch their proofs. The com-
plete proofs are similar to the ones for the MRMW-regular register emulation.

Theorem 7 (Atomic safety). Every well-formed execution σ̄ of the atomic register emulation in Algo-
rithms 6 and 5 is atomic.

Proof sketch [8]. Note that a read operation can only read a version that has been written by some
write operation. We therefore construct a sequential permutation π̄ by ordering the operations in σ̄
according to their versions, placing all read operations immediately after the write operation with the
same version. Two concurrent read operations in σ̄ that read the same version may appear in arbitrary
order; all other read operations appear ordered in the same way as in σ̄.

We show that π̄ is a legal real-time sequential permutation of σ̄. From the construction of π̄, it
follows that every read operation returns the value written by the last preceding write operation, after
which it was placed. Therefore, π̄ is a legal sequence of operations with respect to a register.

It remains to show that π̄ respects the real-time order of σ̄. Consider two operations o1 and o2 in
σ̄ such that o1 ≺σ̄ o2. Operation o1 is either a write or a read operation. In both cases, it completes
only after storing its (read or written) version v1 together with its value at a majority of the KVSs under
a temporary key that corresponds to v1. Operation o2 is either a write or a read operation. In both
cases, it first lists the versions in a majority of the KVSs and determines the maximal version among the
responses. Let this maximal version be v2. Because at least one KVS lies in the intersection of the two
sets accessed by o1 and by o2, we conclude that v2 ≥ v1. If o2 is a read operation, it reads version v2,
and if o2 is a write operation, it writes a version strictly larger than v2. Therefore, according to the
construction of π̄, we obtain o1 ≺π̄ o2 as required.

Theorem 8 (Atomic liveness). Every read and write operation of the atomic register emulation in Al-
gorithms 6 and 5 completes in finite time.

Proof sketch. The only difference between the regular and the atomic register emulations lies in the
write-back step at the end of the atomicRead function. It is easy to see that storing the temporary
key corresponding to the same version again may only effect the algorithm and its analysis in a minor
way. In particular, the argument for showing Lemma 4 must be extended to account for concurrent read
operations, which may also store values to the KVSs now. Similar to a concurrent write operation, an
atomic read operation may delay a reader by one iteration in its loop. But again, there are only a finite
number of clients writing concurrently. A read operation therefore completes after a finite number of
steps.

6 Efficiency

We discuss the space complexity of the algorithms in this section. Our algorithms emulate a MRMW-
regular and atomic registers from KVS base objects. The standard emulations of such registers use base
objects with atomic read-modify-write semantics, which may receive versioned values and always retain
the value with the largest version. Since a KVS has simpler semantics, our emulations store more than
one value in each KVS.

Note how the algorithm for writing performs garbage collection on a KVS before storing a temporary
key in the KVS. This is actually necessary for bounding the space at the KVS, since the putInKVS
function is called concurrently for all KVSs and may be aborted for some of them. If the algorithm
would remove the obsolete temporary keys after storing the value, the function may be aborted just
before garbage collection. In this way, many obsolete keys might be left around and permantly occupy
space at the KVS.

13



We provide upper bounds on the space usage in Section 6.1 and continue in Section 6.2 with a lower
bound. The time complexity of our emulations follows from analogous arguments.

6.1 Maximal Space Complexity

It is obvious from Algorithm 5 that when a write operation runs in isolation (i.e., without any concurrent
operations) and completes the putInKVS function on a set C of more than n/2 correct KVSs, then every
KVS in C stores only the eternal key and one temporary key. Every such KVS has space complexity
two. When there are concurrent operations, the space complexity may increase by one for every concur-
rent write operation. Recall that point contention denotes the maximal number of clients executing an
operation concurrently.

Theorem 9. The space complexity of the MRMW-regular register emulation at any KVS is at most two
plus the point contention of concurrent write operations.

Proof. Consider an execution σ̄ of the MRMW-regular register emulation. We prove the theorem by
considering the operations o1, o2, . . . of some legal real-time sequential permutation π of σ, the KVS
execution induced by σ̄.

If at some operation ot the number of keys that is written to KVS i but not removed is x, then at
some operation prior to ot, at least x register operations were concurrently run. We prove by induction
on t. Initially the claim holds since there are no keys put and no clients run. Assume it holds until ot−1

and prove for ot. If operation ot is not a put, then the number of put keys is the same as at ot−1 and the
claim holds by the induction assumption.

If operation ot is puti, invoked by some client c, then it is performed by this client’s writec that
first removed all but one temporary keys in its GC routine (Algorithm 4 lines 4–9). These remove
operations precede the put in σ̄, and therefore also its real-time sequential permutation π. All (except
maybe one) versions that were written by writes that completed before writec are therefore removed
before operation ot. The temporary keys in the system at ot−1 are ones that were written by operations
concurrent with writec. The putc operation therefore increases their number by one, so the number of
keys is at most the number of concurrent write operations, as required.

A similar theorem holds for the atomic register emulation, except here read operations may also
increase the space complexity. The proof is similar to that of the regular register, and is omitted for
brevity.

Theorem 10. For any execution σ̄, the maximal storage occupied by the atomic algorithm on a KVS i is
at most linear in the concurrent number of operations.

6.2 Minimal Space Complexity

We show that every emulation of even a safe [29] register, which is weaker than a regular register, from
KVS base objects incurs space complexity two at the KVS objects.

Theorem 11. In every emulation of a safe MRMW-register from KVS base objects, there exists some
KVS with space complexity two.

Proof. Toward a contradiction, suppose that every KVS stores only one key at any time.
Note that a client in an algorithm may access a KVS in an arbitrary way through the KVS interface.

For modeling the limit on the number of stored values at a KVS, we assume that every put operation
removes all previously stored keys and retains only the one stored by put. A client might still “compress”
the content of a KVS by listing all keys, retrieving all stored values, and storing a representation of those
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values under one single key. In every emulation algorithm for the write operation, the client executes
w.l.o.g. a “final” put operation on a KVS (if there is no such put, we add one at the end).

Note a client might also construct the key to be used in a put operation from values that it retrieved
before. For instance, a client might store multiple values by simply using them as the key in put oper-
ations with empty values. This is allowed here and strengthens the lower bound. (Clearly, a practical
KVS has a limit on the size of a key but the formal model does not.)

Since operations are executed asynchronously and can be delayed, a client may invoke an operation
at some time, at some later time the object (KVS) executes the operation atomically, and again at some
later time the client receives the response.

In every execution of an operation with more than n/2 correct KVSs it is possible that all operations
of some client invoked on less than n/2 KVSs are delayed until after one or more client operations
complete.

Consider now an execution with three KVSs, denoted a, b, and c. Consider three executions α, β,
and γ that involve three clients cu, cx, and cr.

Execution α. Client cx invokes write(x) and completes; let T 0
α be the point in time after that; suppose

the final put operation from cx on KVS b is delayed until after T 0
α; then b executes this put; let T 1

α be the
time after that; suppose the corresponding response from b to cx is delayed until the end of the execution.

Subsequently, after T 1
α, client cr invokes read and completes; all operations from cr to c are delayed

until the end of the execution. Operation read returns x according to the register specification.

Execution β. Client cx invokes write(x) and completes, exactly as in α; let T 0
β (= T 0

α) be the time
after that; suppose the final put operation from cx on KVS b is delayed until the end of the execution.

Subsequently, after T 0
β , client cu invokes write(u) and completes; let T 1

β be the time after that; all
operations from cu to KVS c are delayed until the end of the execution.

Subsequently, after T 1
β , client cr invokes read and completes; all operations from cr to a are delayed

until the end of the execution. Operation read by cr returns u according to the register specification.

Execution γ. Client cx invokes write(x) and completes, exactly as in β; let T 0
γ (= T 0

β ) be the time
after that; suppose the final put operation from cx to KVS b is delayed until some later point in time.

Subsequently, after T 0
γ , client cu invokes write(u) and completes, exactly as in β; let T 1

γ (= T 1
β ) be

the time after that; all operations from cu to KVS c are delayed until the end of the execution.
Subsequently, after T 1

γ , the final put operation from cx to KVS b induced by operation write(x) is
executed at KVS b; let T 1

γ be the time after that; suppose the corresponding response from KVS b to cx
is delayed until the end of the execution.

Subsequently, after T 1
γ , client cr invokes read and completes; all operations from cr to KVS a are

delayed until the end of the execution. The read by cr returns u by specification. But the states of KVSs
b and c at T 1

γ are the same as their states in α at T 0
α, hence, cr returns x as in α, a contradiction.

7 Simulation

To assess the properties of the algorithm, we analyze it through simulations under realistic conditions
in this section. In particular, we demonstrate the scalability properties of our approach and compare
it with a single-writer replication approach. In Section 8, we also assert the accuracy of the simulator
by comparing its output with that of experiments run with an implementation of the algorithm, which
accessed actual KVS cloud-storage providers over the Internet.
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Figure 1: The average duration of read operations shown with one concurrent writer accessing the KVS
replicas at varying network latencies. The mean network latency of the reader is 100 ms; only when the
writer has a much smaller latency does the read operations take longer than the expected minimum of
400 ms.

We have built a dedicated event-driven simulation framework in Python for this task. The simulator
models our algorithm for clients (Algorithms 2, 3, 4, and 5) and for KVS replicas (Algorithm 1). In each
simulation run, one or more clients perform read and write operations using our register emulation.

7.1 Simulation Setup

The simulated system contains a varying number of clients and three KVS replicas. The time for a client
to execute a KVS operation consists of three parts: (1) the time for the invocation message to reach
a KVS replica; (2) the time for a KVS to execute the operation, always assumed to be 0; and (3) the
time for the response message to reach the client. Message delays (1) and (3) are influenced by two
factors: first, the network latency of the client, which we model as a random variable with exponential
distribution with a given mean; and, second, by the size of the transferred value and the available network
bandwidth. We assume that metadata is always of negligible size and consider only the size of the stored
values.

As the base case for our explorations, we use a network latency with a mean of 100 ms. Unless
stated differently, the network available to every client has 1 MBps bandwidth and the data size is small,
namely 500 bytes.

The simulator drives the algorithm through read and write operations of the clients. Clients issue
operations in a closed-loop manner: each client issues a new request only after it has received a response
for the previous request. For measuring a statistic like the average duration of read and write operations,
a run is simulated for some time, the number of completed operations is counted, and the average of the
statistic per operation is output. The runs are sufficiently long to produce a reliable average.

7.2 Read Duration

Latency. A read operation takes at least two operations on the KVSs: an initial list, followed by
at least one iteration of the loop in Algorithm 2. More iterations are needed only in the presence of
concurrent write operations, according to Lemma 4.

To observe this behavior, we run the simulation with a single writer and one reader. The two network
latencies for the reader have a mean of 100 ms each. We vary the two network latencies of the writer
from 2 ms to 100 ms in increments of 2 ms, to investigate a higher rate of write operations than read
operations. Every average is computed from a simulation running for 40 s.

The average duration of the read operations is shown in Figure 1. As two network roundtrips are

16



 0.125

 0.25

 0.5

 1

 2

 4

 8

 1  10  100  1000  10000

R
ea

d 
du

ra
tio

n 
[s

]
Data size [KB]

Our algorithm
Lower bound

Figure 2: The average duration of read operations as a function of the data size. For small values, the
network latency dominates; for large value, the duration converges to the time for transferring the data.

needed by every read, the minimum expected duration is 400 ms. We note that only when the writer’s
network latency is about 20 ms or less, will read operations take noticeably longer than their minimal
duration. This corresponds to a writer that operates at least five times faster than the reader. However,
an average read operation never exceeds 600 ms.

Data size. The second parameter that affects the read duration behavior is the data transfer time. We
have already seen that for small values, read operations take longer than their minimal duration only in
the presence of very fast write operations.

For this simulation, we let a fast writer with 1 ms mean network latency run concurrently to the
reader. We vary the data size from 1 KB to 10 MB by multiplicative increments and simulate 16 data
points for every 10-fold increase in size. We compare the average read duration of our algorithm to the
theoretical lower bound, which is achieved by a non-robust algorithm that retrieves the value from one
KVS.

The result is depicted in Figure 2. It shows that for small sizes, the network latency dominates
the time for reading. Here, the read duration corresponds to the time needed for about three network
roundtrips and matches the simulation of the reader’s latency with much faster concurrent writes de-
scribed previously. With larger sizes, the data transfer time becomes dominant, the write operations
take longer, and the probability that the reader runs extra iterations of its loop decreases. For a data size
of about 400 KB or more, our algorithm converges to the lower bound. This is because the value is
transferred from the KVS only once, and the data transfer time dominates the operation duration.

7.3 Write Duration

This simulation addresses the scalability of write operations in the presence of multiple concurrent writ-
ers. We use a medium data size of 1 MB to illustrate the critical issue of write contention. With shorter
values, the put operations finish quickly and we have not experienced much contention in preliminary
simulations. For comparison we also simulate the performance of single-writer replication approaches,
which have been considered in the related literature about data replication for cloud storage [2, 10].
These approaches provide the multi-writer capability by agreeing on a schedule with a single writer at
any given time. In effect, this causes serial writes.

The network latencies for all writers are 100 ms; data size of 1 MB incurs a delay of 1 s because of
the bandwidth constraint, which is imposed on the connection from every writer to the KVS replicas.
Figure 3 shows the average duration of write operations invoked concurrently by a pool of clients, which
grows from 1 to 50 clients. The averages are obtained by running the simulations for 30 s. The single-
writer algorithm models write serialization through agreement, where we ignore the cost of reaching
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Figure 3: The average duration of write operations as a function of the number of concurrent writers.
The single-writer approach with serialized operations is shown for comparison.
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Figure 4: The maximal space usage depending on the number of concurrent writers. The upper bound
is the number of writers plus two according to Theorem 9.

agreement.
For this simulation we use a batched garbage collection scheme, where a writing client invokes all

remove operations concurrently. Although such a parallelization is impossible in our formal model, it
is a practical optimization feasible with all KVS services we encountered.

The figure shows how the average duration of a write in our algorithm remains constant, even with
many writers. In contrast, the time for writing in the single-writer approach obviously grows linearly
with the number of concurrent writers.

7.4 Space Usage

To gain insight in the storage overhead, we measure the maximal space used at any KVS depending on
the number of concurrently writing clients. The data size is 500 bytes, and the simulations are run for
50 s.

Figure 4 shows the maximal space usage at a KVS, where the number of concurrent writers increases
from 1 to 50. Space usage is normalized to multiples of the data size. The upper bound from Theorem 9,
given by the number of concurrent writers plus two, is included for comparison. The simulation shows
that this bound is pessimistic and that the space used in practice is much smaller.

Further investigations show that the average space usage lies in the range of 2–5 in this simula-
tion. This behavior can be explained by referring to the write algorithm. Concurrent writers indeed
leave a large number of temporary keys behind, but the next writer removes all of them during garbage
collection. As the time until removal is relatively short, the average space usage is small.
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Figure 5: The median duration of read operations and get operations as the data size grows. The box
plots also show the 30th and the 70th percentile.
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Figure 6: The median duration of write operations and put operations as the data size grows. The box
plots also show the 30th and the 70th percentile.

8 Implementation

8.1 Benchmarks

To evaluate the performances of read and write operations on cloud-storage KVSs in practice, we have
implemented the algorithm in Java. The implementation uses the jclouds library [27], which supports
more than a dozen practical KVS services.

Every client is initialized with a list of n accounts of KVS cloud-storage providers. The client library
buffers operations on the KVSs as required by our model. Specifically, when a read or a write operation
triggers a series of operations on the KVSs, these are appended to a dedicated FIFO queue for each one
of the n KVSs; for each KVS, the implementation fetches the first operation from its queue and executes
it as soon as the preceding one terminates.

The benchmark uses n = 3 KVS providers: Amazon S3, Microsoft Azure Storage, and Rackspace
Cloudfiles [6, 13, 35]. The client performs two write operations with the same key (so as to trigger the
deletion of the first version) for 1000 different keys in closed-loop mode, followed by as many read
operations with the keys written previously. We have instrumented the code to measure the completion
time of the individual list, put, get, and remove operations as well as the duration of the read and
write operations. The benchmark explores a data size ranging from 1 KiB to 10000 KiB in ten-fold
increments.

Figures 5 and 6 show the results of the benchmark. Closer investigation of these times reveals that
the duration of read operations is equal to the duration of the second-slowest get plus the duration of
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Figure 7: Comparison of the duration of read and write operations for the real system (solid lines)
and the simulated system (dotted lines). The graph shows a histogram of the operation durations
for 1000 read operations (centered at about 1200 ms) and 1000 write operations (centered at about
1800 ms).

the second-slowest list. The reason is that the reader only waits for responses from a majority of the
providers, and hence ignores the slowest response here. As for write operations, we observe that their
duration equals twice the duration of the second-slowest put operation plus the duration of the second-
slowest list. We also notice that read and write operations are faster than the slowest get and put
operations: this can be seen in Figure 5, where Amazon S3 get operations are much slower than read
operations for 10000 KiB data size, and in Figure 6, where Cloudfiles put operations are slightly slower
than write operations for 1000 KiB input files.

8.2 Comparison of Simulation and Benchmarks

To compare the simulations with the behavior of the implemented system, we run an experiment with
three KVS replicas and one client that performs 1000 write operations followed 1000 read operations.
The data size is 2 MB. The same scenario is simulated with parameters set to values that were obtained
from the experiment.

In particular, the simulation uses the same model as described before, with exponentially distributed
network latencies for KVS operations. We measured the network latency of KVS operations exclud-
ing the time for data transfer. We assume that the invocation and response latencies of the simulated
operations are symmetric and set their mean to half of the measured network latency. Furthermore, we
determined the bandwidth of every KVS provider from the measurements of put and get operations.

For get and put, the mean network latency for the KVSs is set to 39.4 ms, 90.4 ms, and 81.2 ms,
respectively. For list, the mean network latency is 36.5 ms, 181.1 ms, and 130.9 ms; and for remove,
network latency is 18.5 ms, 100 ms, and 59.5 ms. The bandwidth limitations for the providers are
6.67 MBps, 2.33 MBps, and 1.5 MBps, respectively.

Figure 7 compares the durations of read and write operations in the experiment and the simulation.
The graphs show a good match between the experimental system and the simulation. This reinforces the
confidence in the simulation results.

9 Conclusion

This paper investigates how to build robust storage abstractions from unreliable key-value store (KVS)
objects, as commonly provided by distributed cloud-storage systems over the Internet. We provide an
emulation of a multi-writer multi-reader regular register over a set of atomic KVSs; it supports an un-
bounded number of clients, that need not know each other and never interact among themselves directly.
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Our algorithm is wait-free and robust against the crash failure of a minority of the KVSs and of
any number of clients. The algorithm employs versioning and stores versioned values under two types
of keys — an eternal key that is never removed, and temporary keys that are dynamically added and
removed. This novel mechanism allows efficient garbage collection of obsolete values, which ensures
that the number of values stored in each KVS remains small and bounded. At the same time, garbage
collection allows every read operation to complete in a wait-free manner.

Simulations and benchmarks with actual cloud-storage providers demonstrate that the algorithm
works well under practical circumstances. In future work, we plan to explore the design space for robust
storage algorithms when eventually consistent key-value stores [39] are used as storage providers.
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