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Abstract. Two sets of privacy requirements need to be fulfilled when a
company’s accounting data is audited by an external party: the company
needs to safeguard its data, while the auditors do not want to reveal their
investigation methods. This problem is usually addressed by physically
isolating data and auditors during the course of an audit. This approach
however no longer works when auditing is performed remotely.
In this paper we present an efficient construction for a searchable encryp-
tion scheme for outsourcing data analytics. In this scheme the data owner
needs to encrypt his data only once and ship it in encrypted form to the
data analyst. The data analyst can then perform a series of queries for
which he must ask the data owner for help in translating the constants
in the queries.
Our searchable encryption scheme extends previous work by the ability
to re-use query results as search tokens (query-result reusability) and the
ability to perform range queries. It is efficient with O(log2 n) work for
a range query and is semantically secure relying only on Diffie-Hellman
assumptions (in the random oracle model).

1 Introduction

We introduce the problem addressed in this paper by first presenting how finan-
cial auditing is traditionally performed, then exploring the privacy issues raised
by the provision of auditing services remotely. We then outline the proposed
solution, which makes remote auditing possible without sacrificing privacy.

From an abstract point of view, the auditor queries the accounting data and
analyses the results. Even though a large amount of queries may be generated
in the course of an audit, the final outcome of the audit can be as small as a few
paragraphs in the company’s annual report stating that everything was in order.
The final report therefore details what was found and not how it was found.

Each of the two parties, the auditor and the audited company, have privacy
requirements towards the other party. The company wants to preserve the pri-
vacy of data whose access is granted to the auditor for the purpose of the audit.
On the other hand, what makes the auditor effective and efficient in his work
are the queries he runs, which are his know-how and intellectual property. The



challenge is therefore to ensure both the privacy of the data and the privacy of
the queries.

The problem addressed in this paper is therefore that of performing remote
auditing, a specialized case of data analytics, without sacrificing the privacy of
either the data or the queries.

We describe an encryption scheme that can be used to encrypt the data, so
that nothing but the result from the queries will be revealed. In our scheme, the
data owner needs to encrypt his data only once and ship it in encrypted form to
the data analyst. The analyst can then perform a series of queries for which he
must ask the data owner for help in translating the constants in the queries.

2 Query Language and Setup

2.1 Query Language

The auditors would be able to use the following language for querying the data:
Let t = 〈d1, d2, . . . , dn〉 be a n-tuple (row) in the ledger data. Denote t.di the

i-th data item of row t. For simplicity we consider a flattened, non-normalized
form of the data, where all data tables have been condensed into one flat table.
Let ci be any constant query string for t.di. The grammar for a query expression
e is as follows:

e := e ∧ e | e ∨ e | s

s := t.di op ci | t.di ops t′.di

op := ops | < | >

ops := ==

This grammar implies range queries (ci < t.di ∧ t.di < c′i(ci < c′i)) and
keyword searches (ci == t.di). We write e |= t, if e matches the tuple t. The
footprint (Crange, Cid, F) of an expression e is its set Crange of used constants
in range queries, its set Cid of used constants in identity queries and its set
F of used foreign fields or keys. E.g. the query expression t.d1 > 2 ∧ t.d1 <

6 ∧ t.d2 == 4 ∧ t.d3 == t′.d3 has the footprint ({2, 6}, {4}, {t′.d3}). Note that
the query language only represents the queries possible by the data analyst, not
the security guarantee enforced by the system which we detail in Section 3.2
using a game-based definition.

2.2 Query Result Reusability

Our query language includes equality comparison of data items of two tuples;
given any two encrypted tuples, one can always check whether the two are equal
or not, without the need of decrypting them. This clearly implies that if a query
has returned a set of tuples, each tuple in the result set can be used in turn as
an identity query token: this allows subsequent keyword searches. We call this
feature query result reusability.



We could go one step further and require that query results be not only
reusable in equality queries but also in range queries. However we refrain from it
as this would conflict with the requirements for ciphertext indistinguishability.
Indeed, if this were possible, then one could always sort two resulting ciphertexts
for tuples t, t′ by using a returned query token t′.di on the other ciphertext for
the query t.di < t′.di, consequently breaking any IND-CPA-like game.

A crucial feature of the encryption system is that queries are not revealed to
the encrypting party. Nevertheless the querying party can search for any range
it chooses. In a completely non-interactive system these are conflicting goals. If
the querier can (non-interactively) search for any range he intends to, he can
binary search for the encrypted value and thereby break any encryption secure
against a polynomially-bound adversary.

We therefore chose to make the translation of constants into query tokens
an interactive protocol, but one that does not reveal its inputs. The query to-
ken protocol for the querier is a privacy-preserving protocol that protects the
constant from the encrypting party (and the secret key from the querier). The
encryption scheme preserves the privacy of the query.

2.3 Improvements over Previous Work

Our security requirements are identical to public key encryption with oblivious
keyword search introduced by [8]. There is Alice who does not want to reveal
its query and Bob who does not want to reveal its database. We stress that
we considered this setup and developed our solution independently concurrently
to [8]. Our work differs in that it is use-case driven from outsourced auditing.
Consequently we introduce new functionality, namely the following two features:
query result reusability and range queries.

While query result reusability is a novel concept, range queries on encrypted
data have been considered in [18] and [6]. We borrow some techniques for range
queries from [18], but their scheme does not lend itself to efficiently implementing
blind IBE, since it reveals the plaintext in a matching query (match-revealing).
Hiding the query from both, the trusted key authority and the database, is a
prerequisite for our application. Their ciphertext size is logarithmic in the size of
the domain D of the plaintext. The Boneh-Waters [6] encryption scheme supports
queries for arbitrary subsets and opposed to Shi et al. hides the resulting data
item in a matching query (match-concealing). It is therefore better suited for
query privacy, but still a query token may reveal the data item queried for.
Their ciphertext size is the full size of the range: O(D).

Another competing approach is to use private information retrieval (PIR)
[7, 10, 17] over single-key encrypted data. We improve over those techniques by
reducing the computation complexity to polylogarithmic for range queries and
the communication complexity by a factor linear in the number of queries. We
know from [19] that the limiting factor in PIR is computational complexity
and in the PIR approach the data owner needs to carry the computational
load while in our approach the data analyst carries the higher (but less than
in PIR) computational load. Boneh et al. [5] extend PIR to search on public-key



encrypted data, but at a further performance expense and without the possibility
for range queries.

Other secure computation protocols, such as private set intersection or Yao’s
millionaire’s protocols are not suitable. While they perform the same functions
as our searchable encryption scheme enables, the fundamental problem is that
in (almost) any secure computation protocol the function is public, i.e. known
to both parties. The entire point of our construction is to have one party chose
the function and hide it from the other party.

Let l be the number of tuples in the database. Our encryption scheme has
key size O(|t|) (where |t| is the number of fields in a tuple), ciphertext size
O(log(D)|t|l), range query token size O(log(D)), identity query token size O(1),
encryption complexity O(log(D)|t|l), range query complexity O(log2(D)l) and
keyword search complexity O(l).

3 Definitions

This section introduces the definitions used later in the description of our encryp-
tion scheme and also gives an explicit definition of the security of our solution.

3.1 Encryption Scheme

Definition 1 A Searchable Encryption scheme for Outsourcing Data Analytics
(SEODA) consists of the following polynomial-time algorithms or protocols:

1. Setup(k, Γ ): Takes a security parameter k and tuple definition Γ and out-
puts a secret key KDO at the data owner and a public security parameter
P .

2. Encrypt(KDO, t): Takes a secret key KDO and a tuple t (adhering to Γ )
and outputs a ciphertext C.

3. PrepareRangeQuery[(ci
range, c′irange), (KDO)]: Is a protocol between the

data analyst DA and the data owner DO. The analyst inputs a range from
ci
range to c′irange and the owner inputs a secret key KDO. The output at the

analyst is a range query token Qrange and the data owner receives no output.
The protocol hides the inputs, such that the analyst will learn nothing about
KDO and the data owner nothing about ci

range, and c′irange.

4. PrepareIdentityQuery[(ci
id), (KDO)]: Is a protocol between the data an-

alyst DA and the data owner DO. The analyst inputs a constant ci
id and

the owner inputs a secret key KDO. The output at the analyst is an identity
query token Qid and the data owner receives no output. The protocol hides
the inputs, such that the analyst will learn nothing about KDO and the data
owner nothing about ci

id.
5. Analyze(C, Qrange, Qid, e): Takes a ciphertext C, a set of range query

tokens Qrange, a set of identity query tokens Qid and a query expression e

and outputs a set Q′
id of identity query tokens.



For the encryption scheme to be searchable we impose the following con-
sistency constraint. For each tuple t = 〈c1, c2, . . . , cn〉 (defined by Γ ) and each
query expression e with footprint (Crange, Cid, F), the above scheme must sat-
isfy the consistency constraint from Figure 1. It basically states that the output
of the Analyze algorithm is a set of identity query tokens for each value of the
tuples matching the query, or the empty set if none does.

Analyze(C, Qrange, Qid, e) =







{PrepareIdentityQuery[(c), (KDO)]|∀c ∈ {c1, c2, . . . , cn}}
ife |= t

⊥ w.h.p., otherwise

where

P, KDO = Setup(k, Γ )

C = Encrypt(KDO, t)

Qrange ⊃ {PrepareRangeQuery[(c, c′), (KDO)]|c, c′ ∈ Crange}

Qid ⊃ {PrepareIdentityQuery[(c), (KDO)]|c ∈ Cid ∪ F}

Fig. 1. Consistency Constraint

3.2 Security

Definition 2 We say that a SEODA scheme E is secure if all polynomial-time
adversaries A have at most a negligible advantage in the security game GameDA

defined below.

– Setup: The data owner runs Setup(k, Γ ) and passes the public parameter
P to the data analyst (presumed adversary).

– Query Phase 1: The data analyst adaptively outputs a (mixed) sequence
of either

• a plain text tuple t1, t2, . . . tq1
,

• a (non-composite) range query constant (ci
1, c

′i
1 ), (ci

2, c
′i
2 ), . . . , (ci

q2
, c′iq2

),
or
• an identity query constant ci

1, c
i
2, . . . , c

i
q3

.

where q1, q2 and q3 represent an upper bound on the number of encryption,
identity and range queries that the data analyst makes. The data owner
responds corresponding to the type of the query with either

• the ciphertext C = Encrypt(KDO, t).
• the range query token Qrange = PrepareRangeQuery [(ci, c′i), (KDO)].
• the identity query token Qid = PrepareIdentityQuery [(ci), (KDO)].

– Challenge: The data analyst outputs two different plain-text tuples t∗0 and
t∗1 subject to the following restrictions



• either no identity query constant ci matches the challenge plain texts
t∗{0,1} or it matches both challenge plain texts in the same dimension,
i.e.

∀j ∈ [1, q3] s.t.

(ci
j 6= t∗0.ci ∧ ci

j 6= t∗1.ci) ∨ (ci
j = t∗0.ci ∧ ci

j = t∗1.ci)

• no range query (ci
j , c

′i
j ) can distinguish the challenge plain texts t∗{0,1},

i.e.

∀j ∈ [1, q2] s.t.

((ci
j > t∗0.c

i ∧ ci
j > t∗1.c

i) ∨ (ci
j < t∗0.c

i ∧ ci
j < t∗1.c

i)) ∧

((c′ij > t∗0.c
i ∧ c′ij > t∗1.c

i) ∨ (c′ij < t∗0.c
i ∧ c′ij < t∗1.c

i))

• none of tj’s constants tj .c
i matches any constant of the challenge plain

texts t∗{0,1}, i.e.

∀j ∈ [1, q1], ∀i s.t. t.ci 6= t∗0.c
i ∧ t.ci 6= t∗1.c

i

The data owner flips a coin b ∈ {0, 1} and encrypts t∗b under KDO. The
ciphertext C∗ = Encrypt(KDO, t∗b ) is passed to the data analyst.

– Query Phase 2: The data analyst continues to adaptively output plain-
texts, range query and identity query constants subject to the restrictions
above. The data owner responds with the corresponding ciphertexts, range
and identity query tokens.

– Guess: The data analyst outputs a guess b′ of b.

A data analyst A’s advantage in the above game is defined as

AdvA = |Pr[b = b′]−
1

2
|

We need to exclude identity constant queries that match only one challenge
plaintext, because they could be used in a query to distinguish the ciphertext.
For the same reason we need to exclude range queries that can distinguish ci-
phertexts. We need to exclude encryptions of any challenge ciphertext in any
scheme, since they could be decrypted to identity query tokens by matching
range queries which could then distinguish the challenges.

4 Building Blocks

Let us first introduce terminology that will be used in the rest of this paper. In
what follows, we denote Z∗

p = {1, . . . , p− 1}.
Given a security parameter k, let G1, G2 and GT be groups of order p for some

large prime p, where the bit-size of p is determined by the security parameter k.
Our scheme uses a computable, non-degenerate bilinear map ê : G1 ×G2 → GT



for which the Symmetric External Diffie-Hellman (SXDH) problem is assumed
to be hard. The SXDH assumption in short allows for the existence of a bilinear
pairing, but assumes that the Decisional Diffie-Hellman problem is hard in both
G1 and G2 and was used e.g. in [1].

We recall that a bilinear map satisfies the following three properties:

– Bilinear: for g ∈ G1, h ∈ G2 and for a, b ∈ Z∗
p

ê(ga, hb) = ê(g, h)ab

– Non-degenerate: ê(g, h) 6= 1 is a generator of GT

– Computable: there exists an efficient algorithm to compute ê(g, h) for all
g ∈ G1 and h ∈ G2

4.1 Identity-based Encryption

We capitalize from Waters’ [20] and Boneh Boyen Goh’s [2] IBE scheme, with
some differences. First of all, we modify the scheme so as to include the SXDH
assumption, discussed previously. Secondly, we do not adopt Waters’ nice hash-
ing scheme but we require random oracles for reasons of our proofs and therefore
we use standard hash functions that map strings onto group elements. Note that
the random oracle, i.e. the hash function, only operates in one of the two groups
of the SXDH assumption.

The IBE scheme has the following algorithms:
Setup(k): Let H be a one way hash function defined from {0, 1}∗ to G2. The
public parameters are g ∈ G1, gα, h ∈ G2. Messages need to be encoded in group
GT The secret parameter is α. We denote the identity id.

Encrypt(id, m): Choose s
R
← Z∗

p.

C = 〈gs, H(id)s, ê(gα, h)sm〉

GetPrivateKey(id, α): Choose r
R
← Z∗

p.

kid = 〈gr, hαH(id)r〉

Decrypt(C, kid):

ê(gα, h)sm
ê(gr, H(id)s)

ê(gs, hαH(id)r)
= m

5 Our SEODA Scheme

For simplicity of the exposition we construct a SEODA scheme for 1-dimensional
tuples t = 〈c〉 in this section. Multi-dimensional tuple definitions are covered in
an extended version of the paper.

Let D = [d1, d2] be the domain of c. Let us first explain how we represent
ranges in D. We organize all the elements of D in ascending order as the leaves



Fig. 2. Representing ranges on a binary tree

of a binary tree. Figure 2 shows the tree that is created when D = [1, 8]. Each
element is labeled with an identity. This way we have identified O(|D|) intervals,
where each node defines an interval comprised of all the elements of D that are
the leaves of the subtree rooted at the node itself. For instance, with reference
to Figure 2, x2 identifies the interval [1, 4]. With combinations of such intervals,
we can identify any range in the domain D. For instance the interval [2, 5] is
identified by the union of x9, x5 and x12. We require the data analyst to query
each interval in a separate protocol and later compose the result with an ∧ join.

With this in mind, let us see how we build our scheme.
Setup(k, Γ ):

The data owner (DO) sets up the IBE scheme defined in the previous Section.

DO also picks tDO
R
← Z∗

p and publishes htDO . Finally, DO creates a binary tree
TD for the domain D and makes the identifiers of each node public.
Encrypt(KDO, t):

DO picks s
R
← Z∗

p and computes the identity token

IDt = 〈gs, H(t)stDO 〉

DO then selects from TD the O(log n) identities Xt = {xi : node i is in the
path from t to the root} for all ranges from the leaf corresponding to t up to the
top of the tree. With reference to Figure 2 once more, if t = 5, the considered
identities would be x12, x6, x3 and x1. Note that in case of a match between
range query and plaintext, there is one and only one range (identity) in common
between query and ciphertext. Then, DO IBE-encrypts IDt under all the iden-
tities in Xt. Since IDt’s encoding in GT is longer than a single group element,
the data owner DO should pick a fresh random key k for a symmetric encryp-
tion scheme and encrypt k using the identities. DO can then encrypt IDt and a
checksum for integrity verification using this key k in the symmetric cipher.

After the encryption, DO returns IDt along with its log n IBE encryptions.
PrepareIdentityQuery[(cid), (KDO)]:

DA wants to request an identity token for a value cid ∈ D. He picks r
R
← Z∗

p,
and sends H(cid)

r to DO.



DO picks s
R
← Z∗

p and replies with (H(cid)
r)stDO , gs.

DA computes (H(cid)
rstDO )r−1

, thus obtaining the identity token for cid

IDcid
= 〈gs, H(cid)

stDO 〉

PrepareRangeQuery[(crange, c′range), (KDO)]:
The data analyst DA wants to obtain a range query token for a single range

[crange, c
′
range] within the binary tree of ranges. DA consequently chooses the

identity xr that represents such a range. DA chooses one r
R
← Z∗

p and sends
H(xr)

r and hr to the data owner DO. We emphasize that both, H(xr)
r and hr,

are elements of G2 and due to the SXDH assumption no efficient linear map f() :
G2 → G1 can exist, such that computing ê (f(hr), H(xr)) = ê (f(h), H(xr)

r) is
infeasible.

After receiving the identity, DO picks s
R
← Z∗

p. Then DO returns to DA

〈gs, hrαH(xr)
rs〉

Upon receipt, DA raises the first term to the multiplicative inverse of r, thus
obtaining the following IBE decryption key for identity H(xr):

kxr
= 〈gs, hαH(xr)

s〉

The resulting complexity for a single range is O(log D). For complex range
queries DA must request each range individually and combine the results by
himself. Note that there are at most O(log D) ranges that need to be combined
resulting in a complex range query complexity O(log2

D).
Analyze(C, Qrange, Qid, e):

For range queries, DA decrypts each IBE encryption of IDt with each IBE
decryption key received from DO upon his query. If any combination decrypts
to IDt, the match was successful.

For identity queries, DA owns (a set of) IDy for some queried value y. He
can check for equality of any tuple t, disposing of IDt = 〈gs, H(t)stDO 〉 and
IDy =< H(y)rtDO , gr > by checking whether

ê
(

gr, H(t)stDO

)

= ê
(

gs, H(y)rtDO

)

holds. If it does, DA concludes that the match was successful.

6 Security

6.1 Symmetric External Diffie Hellman Assumption

Definition 3 We say that the SXDH assumption holds if, given values y, y1, y2,
y3 ∈ G1, it is not computationally feasible to decide if there is an integer a ∈
Z∗

p such that y1 = ya and y3 = ya
2 , i.e., G1 is a DDH-hard group. The same

requirement must hold for G2, i.e., it is also a DDH-hard group.



6.2 Bilinear Decisional Diffie Hellman Assumption

Definition 4 We say that the BDDH assumption holds if, given values g, ga,∈
G1, h, hb, hc ∈ G2, ê(g, h)x ∈ GT it is not computationally feasible to decide if
x = abc.

6.3 Protocol Security

We define security of the protocols for PrepareRangeQuery and PrepareIdentity-
Query as semi-honest security for secure two-party computation protocols [14],
i.e. we assume that all parties follow the protocol as described, but try to break
its confidentiality (and therefore the confidentiality of the encryption scheme).
The view of a party (data owner or data analyst) during a protocol is his input,
his coin tosses and the messages he receives. The output is implicit in the view.

Definition 5 The view of a party X ∈ {A, B} during an execution of a protocol
Ψ between A and B on inputs (ωA, ωB) is denoted

V IEWΨ
X = {ωX , r, m1, . . . , mφ}

where r represents the outcome of X’s internal coin tosses, and mi represents
the i-th message it has received.

We define the security of a protocol Ψ

Definition 6 Let fΨ (ωA, ωB) : ({0, 1}∗)2 7→ ({0, 1}∗)2 be the (ideal) function-
ality implemented by protocol Ψ . The protocol Ψ is secure in the semi-honest
model, if there exists a polynomial-time simulator, denoted S, such that for any
probabilistic polynomial-time algorithm A, S(ωX , fΨ (ωA, ωB)) is computation-
ally indistinguishable from V IEWΨ

X :

S(ωX , fΨ (ωA, ωB))
c
=V IEWΨ

X

We propose the following theorems for the security of the PrepareRange-
Query and PrepareIdentityQuery protocols.

Theorem 1 In our SEODA scheme, the PrepareRangeQuery protocol is secure
in the semi-honest model.

Theorem 2 In our SEODA scheme, the PrepareIdentityQuery protocol is secure
in the semi-honest model.

Proof. We prove Theorems 1 and 2 by the simulators SPrepareRangeQuery and
SPrepareIdentityQuery .

For the data owner’s view simulator SPrepareRangeQuery outputs 2 uniform
random elements from G2. Simulator SPrepareIdentityQuery outputs 1 uniform
random elements from G2 for its data owner’s view.



Furthermore we need to show that the views are indeed computationally
indistinguishable. First, note that the view of the data owner in the Prepare-
RangeQuery protocol is clearly a superset of its view in the PrepareIdentityQuery
protocol. We therefore conclude that if an algorithm is unable to distinguish the
view in the PrepareRangeQuery protocol, it is unable to do so in the Prepare-
IdentityQuery protocol.

We define a game GameDO for an adversary acting as the data owner. In this
game the data owner is given one range query and then asked to tell whether it
corresponds to a valid range or it is chosen randomly as by the simulator. The
security defined by Game GameDO even holds for a binary domain, i.e. there
are only two possible values for the range.

We modify the setup of the encryption scheme in the setup of GameDO, such
that the challenger, i.e. the data analyst, gets to pick the groups the operations
are performed in. Note that this does not break the security of the encryption
scheme, since the data owner DO can still choose its secret key tDO and the
secret parameter of the IBE scheme, as long as the SXDH assumption holds. A
query phase in GameDO has been omitted, since the input in a real attack is
entirely under control of the data analyst.

GameDO is defined as follows:

– Setup: The simulator chooses the initial public parameter P ′ of Setup(k,
Γ ) and passes it to the data owner. The data owner completes Setup(k, Γ )
by choosing the secret keys and passes the dependent public parameter P ′′

to the simulator (P = P ′ ∪ P ′′).
– Challenge: The simulator sends the data owner one range query request.

Note that our reduction would still work, if the simulator also passes the cor-
responding plaintext range x, which underpins our security against known
plaintext-like attacks. The simulator challenges the data owner to tell whether
the request is valid or randomly chosen numbers.

– Guess: The data owner outputs a guess b (b = 0 for a valid request, b = 1
for randomly chosen numbers).

A data owner A’s advantage in the above game is defined as

AdvA = |Pr[A[b]−
1

2
|

Lemma 1 Suppose there is a data owner A that has an advantage ǫ in breaking
game GameDO. Then there exists an algorithm B that solves DDH in G2 with
advantage at least:

AdvB ≥
1

2
+ ǫ

Its running is O(time(A)).

A proof of Lemma 1 can be found in an extended version of the paper.
It remains to show that the data analyst’s view in the protocols Prepare-

RangeQuery and PrepareIdentityQuery can be simulated by SPrepareRangeQuery

and SPrepareIdentityQuery , respectively. In fact this is simple, since in both cases



the view is identical to the output. The simulators which have access to the
output can therefore simulate the data analyst’s views by simply copying the
output.

6.4 Ciphertext Indistinguishability

Theorem 3 Suppose the hash function H is a random oracle. Then an attacker
A has a negligible advantage in winning the security game GameDA assuming
the BDDH assumption holds.

We prove Theorem 3 by reducing an attacker in game GameDA to an attacker
of the BDDH challenge.

Lemma 2 Suppose there is a data analyst A that has an advantage ǫ in breaking
game GameDA. Suppose A makes at most qH hash queries to H, at most qE

encryption requests and engages in at most qI PrepareIdentityQuery protocols.
Then there exists an algorithm B that solves BDDH with advantage at least:

AdvB ≥
ǫ

2e(1 + qE + qI)

Its running is O(time(A) + (qH + qE)qI).

The proof of Lemma 2 is in Appendix A of this paper. Its main idea is
adapted from [4].

7 Related Work

A first SEODA scheme has been presented in [16], but it neither enjoyed semantic
security relying on the discrete logarithm assumption which does not result in
bit security nor was it practically efficient with an encryption time of O(D|t|2)
per tuple. The scheme in this paper enjoys stronger security relying only on
Diffie-Hellman assumptions and reduces the time for range queries to O(log2

D)
per tuple.

Other examples of such searchable encryption schemes are [9, 11–13, 21]. All
these schemes allow searching for keywords on a secret-key encrypted database
without revealing the keyword. Note that for efficiency all schemes leak the access
pattern, i.e. the documents (or tuples) matching the query. Stronger security
requires less efficient solutions, such as oblivious RAM [15].

Public-key encrypted, oblivious, keyword search was introduced in [8]. We
use the same notion of obliviousness (i.e. privacy of the query), but extend by
range queries and query-result reusability. Our construction is more efficient and
the generation of the public parameters is significantly simplified, since we do
not need to combine homomorphic encryption and bilinear maps.

Keyword searches are important, but to be useful in practice, range queries
are indispensable. The problem of range queries has been addressed in [6, 18].



Searchable encryption with range queries is presented in [6, 18]. Both schemes
present efficiency improvements for range queries in searchable encryption, but
both reveal at least partially the query to the service provider. Therefore a
different application than DAS is suggested in [18] where the database owner
publishes his data, but only gives decryption keys (for certain ranges) to qualified
users. An example is log data for network traceback.

The first schemes to extend searchable encryption to public key encryption
are [3, 5]. This is useful for an outsourced e-mail service where the user receives
documents (or tuples) from other users, but still has the same security require-
ments as in the DAS model. Keyword searches are described in [3] and private
index queries are described in [5].

Private information retrieval (PIR) [7, 10, 17] allows a querier to ask for an
entry in a remote database without revealing the index of this entry. PIR fully
hides the access pattern, i.e. the service provider (database) is not aware which
document (tuple) was chosen. This can be done with polylogarithmic commu-
nication complexity [7], i.e. without transferring the entire database. Using PIR
on encrypted data is significantly less efficient than our approach. It requires
processing each tuple for each query on the service providers’ side which is less
practical than transferring the entire database [19].

8 Conclusion

We considered the problem of outsourcing data analytics, a special case of out-
sourced auditing. In a such scenario the privacy requirements of data analyst
and data owner must be fulfilled and neither the data nor the queries may be
revealed.

We present an efficient solution with polylogarithmic range query and poly-
nomial encryption time. We allow range and identity queries and results of those
queries can be re-used in subsequent queries as identity query tokens. We proved
our scheme and its associated protocols secure under the Bilinear Decisional
Diffie-Hellman and the Symmetric External Diffie-Hellman assumption.
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A Proof of Lemma 2

Proof. We show how to construct an adversary B that uses A to gain advantage
ǫ

2e(qE+qI+1) against our security game. Algorithm B is given an instance A =

ga, B = hb, C = hc, Z of the BDDH problem. It needs to output a guess whether
Z = habc.

Note, that we chose challenge elements from G1 and G2, but even given an
efficient isomorphism ξ : G1 → G2 our problem remains hard and we even ruled
out the existence of such an isomorphism by the SXDH assumption.

The challenge in constructing B is to be able to answer to the secret Prepare-
IdentityQuery protocol request. We do this by using the information in the ran-
dom oracle and therefore answer H queries as follows. In this proof the random
oracle is under the control of the data owner (albeit also algorithm B). We
adopted this idea from the proof of the Boneh-Franklin identity-based encryp-
tion system [4]:

H queries: At any time algorithm A can query the random oracle H . In
order to respond to these queries the algorithm B maintains a list of tuples
〈x, hash, y, coin〉 as explained below. We refer to this list as the HDO− list. The
list is initially empty. When A queries the oracle H with a bit-sequence x ∈ D

algorithm B responds as follows.

1. If the query sequence x appears on the HDO−list in a tuple 〈x, hash, y, coin〉,
then algorithm B responds with H(x) = hash.

2. Otherwise, B flips a random coin coin′ ∈ {0, 1} so that Pr[coin′ = 0] = δ

for some δ that will be determined later.
3. Algorithm B picks a random y′ in Z∗

p. If coin′ = 0 B computes hash′ = hy′

,
else if coin′ = 1 B sets hash′ = B.

4. Algorithm B adds the tuple 〈x, hash′, y′, coin′〉 to the HDO − list and re-
sponds to A with H(x) = hash′. Note that hash′ is uniform in G2 and
independent of A’s current view.

Setup: Algorithm B creates the IBE scheme and gives A the following pa-
rameters G1, G2, g, gα, h, H . Let H be a random oracle controlled by B as
described above. Furthermore B sets htDO = C.

Query Phase 1: AlgorithmAmay now send plaintexts, range query requests
and identity query requests. We show how B answers those.

Encryption Requests: Algorithm A sends plaintext t. B invokes the random
oracle H . It retrieves the tuple 〈t, hash, y, coin〉 from the HDO − list. If the
coin flip coin is 1, then B aborts. We now know that coin = 0 and therefore

H(t) = hy. B chooses s
R
← Z∗

p and computes

IDt = Csy = H(t)stDO

It sends IDt, gs to algorithm A.
Range Query Requests: Algorithm A chooses a range and its corresponding

identity xr. It also chooses a random number r and sends H(xr)
r and hr to

algorithm B.



B chooses a random number s
R
← Z∗

p. It returns hrαH(xr)
rs, gs.

Identity Query Requests: Algorithm A chooses the value t, chooses r
R
← Z∗

p

and sends H(t)r, hr to B. Note, that A must have invoked H for t.
Algorithm B retrieves all tuples t, hash, y, coin from the HDO − list where

coin = 0. For each tuple it checks whether (hr)y = H(t)r. If it finds such a
tuple, it takes note of y, else if it does not find such a tuple, B aborts. We now

know again that coin = 0 and that H(t) = hy. B picks s
R
← ZZ and returns

Csy = H(t)stDO , gs.
Challenge: Once algorithm A decides that the first phase is over it sends

two plaintexts t⋆0 and t⋆1 to B.
B flips a random coin b and chooses t⋆b . It invokes the random oracle H with

t⋆b and retrieves its tuple t⋆b , hash, y, coin from the HDO − list. If coin = 0, B
reports failure and aborts. We now know that coin = 1 and H(t) = B.
B sets IDt = Z and gs = A. Note that, since htDO = C, IDt is a valid

ciphertext for t if Z = habc.
It then furthermore selects the identities x1, . . . , xl in TB according to t⋆b . It

encrypts IDt under each identity xi. Finally it returns the IBE encryptions and
IDt to A.

Query Phase 2: Algorithm B responds to A’s queries as in query phase 1.
Guess: Algorithm A eventually outputs its guess b′. B outputs b′ as its guess.
Claim: If algorithm B does not abort during the simulation A’s view is

identical to its view in a real attack. The responses to H queries are as in a real
attack, since each is uniformly and independently distributed in G2.

According to the rules, no range or identity query can distinguish the chal-
lenge plaintext. The only information about plaintexts must stem from the ci-
phertexts.

If Z = habc, then A has advantage AdvA ≥ ǫ in breaking game GameDA,
since its receives a valid ciphertext. If Z is a random number, then the message
part H(t)stDO of the identity query token is randomly distributed in G2 and
contains no information to distinguish t⋆0 and t⋆1. Therefore if B does not abort,
|Pr[b = b′]− 1

2 | ≥
1
2ǫ.

To complete the proof of Lemma 2 we need to calculate the probability
that algorithm B aborts during the simulation. Suppose A makes qE encryption
requests and qI identity query token requests. Then the probability that B does
not abort in query phases 1 or 2 is δqE+qI . The probability that it does not abort
during the challenge step is 1− δ which results in an overall probability that B
does not abort is δqE+qI (1− δ). This value is maximized at δopt = 1− 1

qE+qI+1 .

Using δopt the probability that B does not abort is at least 1
e(qE+qI+1) where e

is Euler’s constant (the base of the natural logarithm). Then B’s advantage in
breaking BDDH is at least ǫ

2e(qE+qI+1) .

The running time of algorithm B is the running time of algorithm A plus the
searches in the HDO − list for identity query token requests. Suppose A makes
qI identity query requests, then there are at most qI searches in a HDO − list of
length at most qH +qE . The resulting running time is O(time(A)+qI (qH +qE)).


