

RZ 3852 (# ZUR1308-022) 09/05/2013
Computer Science 26 pages

Research Report

A Secure Data Deduplication Scheme for Cloud Storage

Jan Stanek‡, Alessandro Sorniotti*, Elli Androulaki*, Lukas Kencl‡

‡Czech Technical University in Prague

*IBM Research – Zurich
8803 Rüschlikon
Switzerland

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has
been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside pub-
lisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies (e.g., payment of royalties). Some re-
ports are available at http://domino.watson.ibm.com/library/Cyberdig.nsf/home.

 Research

 Africa • Almaden • Austin • Australia • Brazil • China • Haifa • India • Ireland • Tokyo • Watson • Zurich

A Secure Data Deduplication Scheme for Cloud Storage

Jan Stanek∗ Alessandro Sorniotti† Elli Androulaki† Lukas Kencl∗

August 12, 2013

Abstract

Nowadays, more and more corporate and private users outsource their data to cloud
storage providers. At the same time, recent data breach incidents make end-to-end encryp-
tion an increasingly prominent requirement. Unfortunately, semantically secure encryption
schemes render various cost-effective storage optimization techniques, such as data dedu-
plication, completely ineffective. In this paper, we present a novel encryption scheme that
guarantees semantic security for unpopular data and provides weaker security and better
storage and bandwidth benefits for popular data. This way, data deduplication can be ef-
fective for popular data, whilst semantically secure encryption protects unpopular content,
preventing its deduplication. Transitions from one mode to the other take place seamlessly
at the storage server side if and only if a file becomes popular. We show that our scheme is
secure under the Symmetric External Decisional Diffie-Hellman Assumption in the random
oracle model, and evaluate its performance with benchmarks and simulations.

1 Introduction

With the rapidly increasing amounts of data produced worldwide, networked and multi-user
storage systems are becoming very popular, thanks to their accessibility and moderate cost.
However, one obstacle still prevents many users from migrating data to remote storage – data
security. The conventional means to address concerns over the loss of governance for out-
sourced data is to encrypt it before it leaves the premises of its owner. While sound from
a security perspective, this approach prevents the storage provider from applying any space-
or bandwidth-saving functions. The effectiveness of storage efficiency functions, such as com-
pression and deduplication, is an objective for both storage provider and customer: indeed,
high compression and deduplication ratios allow optimal usage of the resources of the stor-
age provider, and consequently, lower cost for its users. In particular, we focus our attention
on deduplication: data deduplication ensures that multiple uploads for the same content only
consume the network bandwidth and the storage space for a single upload. Deduplication is
actively used by a number of cloud backup providers (e.g. Bitcasa) as well as various cloud
services (e.g. Dropbox). It is arguably one of the main reasons why prices for cloud storage
have dropped so sharply. Unfortunately, encrypted data is pseudorandom and thus cannot be
deduplicated: as a consequence, current schemes have to entirely sacrifice either security or
storage efficiency.

In this paper, we present a scheme that permits a more fine-grained trade-off. The intu-
ition behind the solution is that outsourced data may require different degrees of protection,

∗Czech Technical University in Prague. (jan.stanek|lukas.kencl)@fel.cvut.cz.
†IBM Research - Zurich, Rüschlikon, Switzerland. (aso|lli)@zurich.ibm.com.

1

depending on how popular it is: content that is shared by many users, such as a popular song,
movie or install package, arguably requires less protection than a personal document, the copy
of a payslip or the draft of an unsubmitted scientific paper.

Around this intuition we build the following contributions:

• we present Eµ, a novel threshold cryptosystem (which can be of independent interest),
together with a security model and formal security proofs;

• we introduce a scheme that uses Eµ as a building block and enables to leverage popularity
as a means to achieve both security and storage efficiency and discuss its overall security;

• we present performance evaluation, both of its computational overhead using a real im-
plementation, and of its ability to reduce storage-space using a simulation, demonstrating
the practicality of the scheme;

The rest of the paper is structured as follows: in Section 2 we state the problem and
review the state-of-the-art. Section 3 contains a high-level overview of our scheme, as well
as system and security model. Preliminary building blocks are described in Section 4, while
Section 5 contains a detailed description of the scheme. Section 6 discusses the security of the
cryptosystem and of the scheme as a whole; in Section 7 the scheme performance is evaluated.
Possible extensions and system limitations are discussed in Section 8, while Section 9 contains
our concluding remarks.

2 Problem Statement & Related Works

2.1 Data Security or Storage Efficiency?

Storage efficiency functions such as compression and deduplication afford storage providers a
better utilization of their storage backends and the ability to serve more customers with the
same infrastructure. Data deduplication is the process by which a storage provider only stores a
single copy of a file that is owned by several of its users. There are four different deduplication
strategies, depending on whether deduplication happens at the client side (i.e. before the
upload) or at the server side, and whether deduplication happens at a block level or at a file
level. Deduplication is most rewarding when it is triggered at the client side, as it also saves
upload bandwidth. For these reasons, deduplication is a critical enabler for a number of popular
and successful storage services (e.g. Dropbox, Memopal) that offer cheap, remote storage to the
broad public by performing client-side deduplication, thus saving both the network bandwidth
and the storage costs associated with processing the same content multiple times. Indeed, data
deduplication is arguably one of the main reasons why the prices for cloud storage and cloud
backup services are dropping so sharply compared to a few years ago.

Unfortunately, deduplication loses its effectiveness in conjunction with end-to-end encryp-
tion. End-to-end encryption in a storage system is the process by which data is encrypted at its
source prior to ingress into the storage system, and is always only present as ciphertext within.
End-to-end encryption is becoming an increasingly prominent requirement because of both the
increasing number of security incidents linked to leakage of unencrypted data [3] and the tight-
ening of sector-specific laws and regulations. Also, companies like VMware and Microsoft1 will

1Microsoft is a trademark of Microsoft Corporation in the United States, other countries, or both. Intel and
Intel Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries. IBM is a trademark of International Business Machines Corporation, registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies.

2

be providing VM disk encryption in their hypervisors, making end-to-end encryption a strong
reality in cloud systems. Clearly, if semantically secure encryption is used, file deduplication
cannot take place, as no one—apart from the owner of the decryption key—can decide whether
two ciphertexts correspond to the same plaintext file. Trivial solutions, such as forcing users to
share encryption keys and/or using deterministic encryption, fall short of providing acceptable
levels of security, since users can formulate guess-ciphertexts and use deduplication as an oracle
that reveals whether some other user has uploaded the corresponding plaintext.

As a consequence, storage systems are expected to undergo major restructuring to maintain
the current disk/customer ratio in the presence of end-to-end encryption. The design of storage
efficiency functions in general and of deduplication functions in particular that do not lose their
effectiveness in presence of end-to-end security is therefore still an open problem.

2.2 State-of-the-art

Several deduplication schemes have been proposed by the research community [25, 24, 7] show-
ing how deduplication allows very appealing reductions in the usage of storage resources [16, 20].
Deduplication is widely adopted in practice for instance by services such as Bitcasa [1], Cipher-
tite [2] and Flud [4].

Most works do not consider security as a concern for deduplicating systems; recently how-
ever, Harnik et al. [21] have presented a number of attacks that can lead to data leakage in
storage systems in which client-side deduplication is in place. To thwart such attacks, the
concept of proof of ownership has been introduced [19, 13]. None of these works, however,
can provide real end-user confidentiality in presence of a malicious or honest-but-curious cloud
provider.

Convergent encryption is a cryptographic primitive introduced by Douceuret al. [15, 28], at-
tempting to combine data confidentiality with the possibility of data deduplication. Convergent
encryption of a message consists of encrypting the plaintext using a deterministic (symmetric)
encryption scheme with a key which is deterministically derived solely from the plaintext.
Clearly, when two users independently attempt to encrypt the same file, they will generate the
same ciphertext which can be easily deduplicated. Unfortunately, convergent encryption does
not provide semantic security as it is vulnerable to content-guessing attacks. Later, Bellare et
al. [10] formalized convergent encryption under the name message-locked encryption. As ex-
pected, the security analysis presented in [10] highlights that message-locked encryption offers
confidentiality for unpredictable messages only, clearly failing to achieve semantic security.

Xu et al. [29] present a PoW scheme that allows client-side deduplication in a bounded
leakage setting. They provide a security proof in a random oracle model for their solution, but
their work does not address the problem of low min-entropy files.

3 Overview, System and Security Models

The main intuition behind our scheme is that, in a deduplicated storage system, data may
require different degrees of protection that depend on how popular a datum is. Let us start
with an example: imagine that a storage system is used by multiple users to perform full backups
of their hard drives. The files that undergo backup can be divided into those uploaded by many
users and those uploaded by one or very few users only. Files falling in the former category
(e.g. system binaries) will benefit strongly from deduplication because of their popularity and
may not be particularly sensitive from a confidentiality standpoint. Files falling in the latter
category, on the other hand, may contain user-generated content which requires confidentiality,

3

Figure 1: The multi-layered cryptosystem used in our scheme. Unpopular files are protected
using two layers, whereas for popular files, the outer layer can be removed. The inner layer is
obtained through convergent encryption that generates identical ciphertext at each invocation.
The outer layer (for unpopular files) is obtained through a semantically secure cryptosystem.

and would by definition not allow a lot of space to be reclaimed through deduplication. The
same reasoning can be applied to the common blocks of a VM image used by multiple VMs
that adopt a copy-on-write sharing approach, to mail attachments sent to a large number of
recipient, to reused code snippets, etc.

This intuition can be implemented cryptographically using a multi-layered cryptosystem.
All files are initially declared unpopular and are encrypted with two layers, as illustrated in
Figure 1: the inner layer is applied using a convergent cryptosystem, whereas the outer layer
is applied using a semantically secure threshold cryptosystem. Uploaders of an unpopular file
attach a decryption share to the ciphertext. In this way, when sufficient distinct copies of an
unpopular file have been uploaded, the threshold layer can be removed. This step has two
consequences: (i) the security notion for the now popular file is downgraded from semantic to
standard convergent (see [10]), and (ii) the properties of the remaining convergent encryption
layer allow deduplication to happen naturally. It is easy to see that security is traded for storage
efficiency as for every file that transits from unpopular to popular status, storage space can be
reclaimed.

There are two further challenges in the secure design of the scheme. First of all, if no proper
identity management is in place, sybil attacks [14] could be mounted by spawning sufficient
sybil accounts to force a file to become popular: in this way, the semantically secure encryption
layer could be forced off and more information could be inferred on the content of the file,
whose only remaining protection is the weaker convergent layer. While this is acceptable for
popular files (provided of course that storage efficiency is an objective), it is not for unpopular
files whose content – we postulate – has to enjoy stronger protection. The second issue relates
to the need of every deduplicating system to group together uploads of the same content.
In client-side deduplicating systems, this is usually accomplished through an index computed
deterministically from the content of the file so that all uploading users can compute the same.
However, by its very nature, this index leaks information about the content of the file and
violates semantic security for unpopular files.

For the reasons listed above, we extend the conventional user-storage provider setting with
two additional trusted entities: (i) an identity provider, that deploys a strict user identity control
and prevents users from mounting sybil attacks, and (ii) an indexing service that provides a
secure indirection for unpopular files.

4

Figure 2: Illustration of our system model. The schematic shows the main four entities and
their interaction for registration and file upload process.

3.1 System Model

Our system consists of users, a storage provider and two trusted entities, the identity provider,
and the indexing service, as shown in Figure 2.

The storage provider (S) offers basic storage services and can be instantiated by any storage
provider (e.g. Bitcasa [1], Flud [4] etc.). Users (Ui) own files and wish to make use of the storage
provider to ensure persistent storage of their content. Users are identified via credentials issued
by an identity provider IdP when a user first joins the system.

A file is identified within S via a unique file identifier (I), which is issued by the indexing
service IS when the file is uploaded to S. The indexing service also maintains a record of how
many distinct users have uploaded a file.

3.2 Security Model

The objective of our scheme is confidentiality of user content. Specifically, we achieve two
different security notions, depending on the nature of each datum, as follows:

- Semantic security [17] for unpopular data;

- Conventional convergent security [10] for popular data.

Note that integrity and data origin authentication exceed the scope of this work.
In our model, the storage provider is trusted to reliably store data on behalf of users and

make it available to any user upon request. Nevertheless, S is interested in compromising the
confidentiality of user content. We assume that the storage provider controls nA users: this

5

captures the two scenarios of a set of malicious users colluding with the storage provider and
the storage provider attempting to spawn system users. We also assume that the goal of a
malicious user is only limited to breaking the confidentiality of content uploaded by honest
users.

Let us now formally define popularity. We introduce a system-wide popularity limit, plim,
which represents the smallest number of distinct, legitimate users that need to upload a given
file F for that file to be declared popular. Note that plim does not account for for malicious
uploads. Based on plim and nA, we can then introduce the threshold t for our system, which
is set to be t ≥ plim + nA. Setting the global system threshold to t ensures that the adversary
cannot use its control over nA users to subvert the popularity mechanism and force a non
popular file of its choice to become popular. A file shall therefore be declared popular once
more than t uploads for it have taken place. Note that this accounts for nA possibly malicious
uploads.

The indexing service and the identity provider are assumed to be completely trusted and
to abide by the protocol specifications. In particular, it is assumed that these entities will not
collude with the adversary, and that the adversary can not compromise them. We also assume
that communication between these entities and the user is properly secured using any known
secure communication protocol (e.g. TLS/SSL).

4 Preliminaries

This section describes the building blocks for our scheme.

4.1 Modelling Deduplication

In this Section we shall describe the interactions between a storage provider (S) that uses
deduplication and a set of users (U) who store content on the server. We consider client-side
deduplication, i.e., the form of deduplication that “happens” at the client side, thus avoiding
the need to upload the file and saving network bandwidth. For simplicity, we assume that
deduplication happens at the file level. To identify files and detect duplicates, the scheme uses
an indexing function I: {0, 1}∗ → {0, 1}∗; we will refer to IF as the index for a given file F .
The storage provider’s backend can be modeled as an associative array DB mapping indexes
produced by I to records of arbitrary length: for example DB [IF] is the record mapped to
the index of file F . In a simple deduplication scheme, records contain two fields, DB [IF] .data
and DB [IF] .users. The first contains the content of file F , whereas the second is a list that
tracks the users that have so far uploaded F . The storage provider and users interact using the
following algorithms:

Put: user u sends IF to S. The latter checks whether DB [IF] exists. If it does, the server
appends u to DB [IF] .users. Otherwise, it requests u to upload the content of F , which
will be assigned to DB [IF] .data. DB [IF] .users is initialized with u.

Get: user u sends IF to the server. The server checks whether DB [IF] exists and whether
DB [IF] .users contains u. If it does, the server responds with DB [IF] .data. Otherwise, it
answers with an error message.

6

4.2 Symmetric Cryptosystems and Convergent Encryption

A symmetric cryptosystem E is defined as a tuple (K, E, D) of probabilistic polynomial-time
algorithms (assuming a security parameter κ). K takes κ as input and is used to generate a
random secret key k, which is then used by E to encrypt a message m and generate a ciphertext
c, and by D to decrypt the ciphertext and produce the original message.

A convergent encryption scheme Ec, also known as message-locked encryption scheme, is
defined as a tuple of three polynomial-time algorithms (assuming a security parameter κ) (K,
E, D). The two main differences with respect to E is that i) these algorithms are not probabilistic
and ii) that keys generated by K are a deterministic function of the cleartext message m; we
then refer to keys generated by Ec.K as km. As a consequence of the deterministic nature of
these algorithms, multiple invocations of K and E (on input of a given message m) produce
identical keys and ciphertexts, respectively, as output.

4.3 Threshold Cryptosystems

Threshold cryptosystems offer the ability to share the power of performing certain cryptographic
operations (e.g. generating a signature, decrypting a message, computing a shared secret)
among n authorized users, such that any t of them can do it efficiently. Moreover, according to
the security properties of threshold cryptosystems it is computationally infeasible to perform
these operations with fewer than t (authorized) users. In our scheme we use threshold public-key
cryptosystem. A threshold public-key cryptosystems Et is defined as a tuple (Setup, Encrypt,
DShare, Decrypt), consisting of four probabilistic polynomial-time algorithms (in terms of a
security parameter κ) with the following properties:

Setup(κ, n, t) → (pk, sk1, . . . , skn): generates the public key of the system pk and n shares ski
of the private key, which are secretly provided to the authorized users.

Encrypt(pk,m)→ (c): takes as input a message m and produces its encrypted version c under
the public key pk.

DShare(ski,m) → (dsi): takes as input a message m and a key share ski and produces a
decryption share dsi.

Decrypt(c, ds1, . . . , dst) → (m): takes as input a ciphertext c and a set of t decryption shares
and outputs the cleartext message m.

5 Our scheme

In this Section we shall formally introduce our scheme. First, we will present a novel cryptosys-
tem whose threshold and convergent nature make it a suitable building block for our scheme. We
will then describe the role of our trusted third parties and finally we will detail the algorithms
that compose the scheme.

5.1 Eµ: a Convergent Threshold Cryptosystem

This Section contains a formal description of the first contribution of this paper, namely, Eµ,
a novel threshold cryptosystem, that will constitute a fundamental building block in the im-
plementation of our scheme. Nonetheless, this also constitutes a contribution of independent
interest which can be applied in other scenarios.

7

In the remainder of this paper we will make use of pairing groups G1, g,G2, ḡ,GT , ê, where
G1 = 〈g〉, G2 = 〈ḡ〉 are of prime order q, where the bitsize of q is determined by the security
parameter κ, and ê : G1 × G2 → GT is a computable, non-degenerate bilinear pairing. We
further assume that there is no efficient distortion map ψ : G1 → G2, or ψ : G2 → G1. These
groups are commonly referred to as SXDH groups, i.e., groups where it is known that the
Symmetric Extensible Diffie Hellman Assumption [8] holds. Security of Eµ is based on this
assumption (see Section 6).
Eµ is defined as a tuple (Setup, Encrypt, DShare, Decrypt), consisting of four probabilistic

polynomial-time algorithms (in terms of a security parameter κ) implemented as follows:

Setup(κ, n, t)→ (pk, sk1, . . . , skn): at first, q, G1, g, G2, ḡ, GT and ê are generated as described
above. Also, let x be a random element of Z∗q and {xi}ni=0 be shares of x such that any
set of t shares can be used to reconstruct x through polynomial interpolation (see [27] for
more details). Also, let ḡpub ← ḡx. Finally, let H1 : {0, 1}∗ → G1 and H2 : GT → {0, 1}l
for some l, be two cryptographic hash functions. Then, the public key pk is set to be
{q,G1,G2,GT , ê, H1, H2, g, ḡ, ḡpub} and the i-th decryption share ski to be xi.

Encrypt(pk,m)→ (c): let r be chosen randomly from Z∗q and let E ← ê (H1(m), ḡpub)
r. Next,

set c1 ← H2(E)⊕m and c2 ← ḡr. Finally, output the ciphertext c as c← (c1, c2).

DShare(ski,m)→ (dsi): let dsi ← H1(m)ski .

Decrypt(c, ds1, . . . , dst)→ (m): first parse c as (c1, c2); then compute

∏
dsi∈S

dsi
λS0,i = H1(m)

∑
i∈S

xiλ
S
0,i

= H1(m)x,

where S is the set of decryption shares {ds1, . . . , dst} and λS0,i are Lagrangian coefficients

for the given set S. Then compute Ê as ê (H1(m)x, c2) and output c1 ⊕H2(Ê).

Note that decryption is possible because, by the properties of bilinear pairings

ê (H1(m)x, ḡr) = ê (H1(m), ḡpub)
r = ê (H1(m), ḡx)r

The above equality satisfies considerations on the correctness of Eµ. In Section 6 we also prove
that Eµ is a semantically secure cryptosystem.
Eµ has a few interesting properties that are instrumental to achieving a secure and efficient

implementation of our scheme:

• The decryption algorithm is non-interactive, meaning that it does not require the live
participation of the entities that executed the Eµ.DShare algorithm.

• It mimics convergent encryption in that the decryption shares are deterministically de-
pendent on the plaintext message; however, in contrast to plain convergent encryption,
the cryptosystem provides semantic security as long as fewer than t decryption shares are
collected.

• The cryptosystem can be reused for an arbitrary number of messages, i.e., the Eµ.Setup
algorithm should only be executed once.

8

5.2 The Role of Trusted Third Parties

Our scheme uses two trusted components, namely, an identity provider (IdP) and an indexing
service (IS). The main role of the IdP is to thwart sybil attacks by ensuring that users can
sign in only once: we treat this as an orthogonal problem for which many effective solutions
have been outlined [14]. The identity provider is also responsible for the execution of Eµ.Setup
and for the distribution of the public key and a share of the private key to each user of the
system. Execution of Eµ.Setup grants the identity provider knowledge of the private key of
the system: we assume the IdP to be trusted not to leak it and not to use this knowledge to
violate confidentiality of unpopular data. The assumption is a legitimate one as today’s identity
providers are entrusted by their users to comply with similar rules.

The main role of the second trusted third party, i.e., the indexing service, is to avoid leaking
information about unpopular files to the storage provider through the index used to coalesce
multiple uploads of the same file coming from different users (see Section 4.1), without which
reclaiming space and saving network bandwidth through deduplication would be infeasible.
The leakage is related to the requirement of finding a common indexing function that can be
evaluated independently by different users whose only shared piece of information is the content
of the file itself. As a result, the indexing function is usually a deterministic (albeit, often one-
way) function of the file’s content, which is leaked to the cloud provider. We introduce the
indexing service to tackle this problem before deduplication takes place, i.e., when the file is
still unpopular.

Recall from Section 4.1 that the indexing function I produces indexes IF for every file F .
This function can be implemented using cryptographic hash functions, but we avoid the usual
notation with H to prevent it from being confused with the other hash functions used in Eµ.
Informally, the indexing service receives requests from users about IF and keeps count of the
number of requests received for it from different users. As long as this number is below the
popularity threshold, IS answers with a bitstring of the same length as the output of I; this
bitstring is obtained by invoking a PRF (with a random seed σ) on a concatenation of IF
and the identity of the requesting user. The domain of I and of the PRF is large enough to
ensure that collisions happen with negligible probability. IS also keeps track of all such indexes.
Whenever the popularity threshold is reached for a given file F , the indexing service reveals the
set of indexes that were generated for it. More formally, the IS maintains an associative array
DBIS [IF] with two fields, DBIS [IF] .ctr and DBIS [IF] .idxes. The first is a counter initialized
to zero, the second is an initially empty list. IS implements the GetIdx algorithm in Figure 3.

An important consequence of the choice of how Irnd is computed is that repeated queries
by the same user on the same target file will neither shift a given file’s popularity nor reveal
anything but a single index.

5.3 The Scheme

We are now ready to formally introduce our scheme, detailing the interactions between a set of
users {Ui}ni=0, a storage provider S and the two trusted entities, the identity provider IdP and
the indexing service IS. S is modelled as described in Section 4.1; the database record contains
an extra boolean field, DB [IF] .popular, initialized to false for every new record.

Recall that E and Ec are a symmetric cryptosystem and a convergent symmetric cryptosys-
tem, respectively (see Section 4.2); Eµ is our convergent threshold cryptosystem. The scheme
consists of the following distributed algorithms:

Init: IdP executes Eµ.Setup, publishes the public key system pk of the system. IdP keeps key

9

Ui: IF ← I(F)
Ui −→ IS: IF
IS: I← ∅

if (DBIS [IF] .ctr > t)
return IF , I
Irnd ← PRFσ(Ui||IF)
if (Irnd /∈ DBIS [IF] .idxes)

increment DBIS [IF] .ctr
add Irnd to DBIS [IF] .idxes

if (DBIS [IF] .ctr = t)
I← DBIS [IF] .idxes

return Irnd, I

Figure 3: The GetIdx algorithm.

Ui: Kc ← Ec.K(F); Fc ← Ec.E(Kc, F)
IFc ← I(Fc)

Ui −→ IS: IFc
Ui ←− IS: 〈I, Iret〉 ← GetIdx(IFc)
Ui: if(Iret = IFc) execute Upload.Popular

else if(I = ∅) execute Upload.Unpopular
else

execute Upload.Unpopular
execute Upload.Reclaim

Figure 4: The Upload algorithm.

shares {ski}i=ni=1 secret.

Join: whenever a user Ui wants to join the system, she contacts IdP. IdP verifies Ui’s identity;
upon successful verification, it issues the credentials Ui will need to authenticate to S and a
secret key share ski.

Upload (Fig. 4): this algorithm describes the interactions taking place between a user Ui, the
storage server S and the indexing service IS whenever Ui requests upload of a file F . At first,
Ui uses convergent encryption to create ciphertext Fc; Ui then interacts with IS to obtain an
index Iret to use for the interaction with S and a (possibly empty) list of indexes used by other
users when uploading the same file. Based on what IS returns, Ui proceeds with the execution
of different sub-algorithms, detailed below:

– Upload.Unpopular (Fig. 5): this algorithm captures the interaction between Ui and S if
F is not (yet) popular. In this case, Iret is a random index. The user uploads a blob containing
two ciphertexts, obtained with E and Eµ, respectively. The first ciphertext allows Ui to retrieve
and decrypt the file if it never becomes popular. The second gives S the ability to remove the
threshold encryption layer and perform deduplication if the file becomes popular2. Ui deletes

2We have chosen to formalize this approach for the sake of readability. In practice, one would adopt a solution
in which the file is encrypted only once with K; this key – and not the entire file – is in turn encrypted with
a slightly modified version of Eµ that allows H1(Fc) to be used as the H1-hash for computing ciphertext and
decryption shares for K. This approach would require uploading and storing a single encrypted copy of the file
and not two as described above. We adopt this approach in our prototype implementation in Section 7

10

F , replacing it with a stub containing the two indexes, Iret, IFc , and the two keys K and Kc.

– Upload.Reclaim (Fig. 6): this algorithm is executed exactly once for every popular file
whenever Ui’s upload of F reaches the popularity threshold. The user sends to S the list of
indexes I received from IS. S collects the decryption shares from each uploaded blob. It is then
able to decrypt each uploaded instance of cµ and can trigger the execution of Put, to store the
outcome of the decryption as DB [IFc] .data. Note that, because of the nature of convergent
encryption, all decrypted instances are identical, hence deduplication happens automatically3.
Finally, S can remove all previously uploaded record entries, thus effectively reclaiming the
space that was previously used.

– Upload.Popular (Fig. 7): this algorithm captures the interaction between Ui and S if F
is already popular; note that in this case, Iret = IFc . In this case, the user is not expected to
upload the content of the file as it has already been declared popular. Ui deletes F , replacing
it with a stub containing the index IFc and of the key Kc.

Dowload: whenever user Ui wants to retrieve a previously uploaded file, it reads the tuple used
to replace the content of F during the execution of the Upload algorithm. It first attempts
to issue a Get request on S, supplying Iret as index. If the operation succeeds, it proceeds to
decrypt the received content with E .D, using key K, and returns the output of the decryption.
Otherwise, it issues a second Get request, supplying IFc as index; then it invokes Ec.D on the
received content, using Kc as decryption key, and outputs the decrypted plaintext.

6 Security Analysis

In this section we formally analyze the security of the Eµ cryptosystem. Subsequently, we argue,
albeit only informally, that the security requirements outlined in Section 3.1 are met by our
scheme as a whole. A formal analysis based on the UC framework [12] is left for future work.

6.1 Security Analysis of Eµ
In this section we will define and analyze semantic security for Eµ. The security definition we
adopt makes use of a straightforward adaptation of the IND-CPA experiment, henceforth referred
to as INDµ-CPA. Additionally, we introduce the concept of unlinkability of decryption shares and
prove that Eµ provides this property: informally, this property assures that an adversary cannot
link together decryption shares as having been generated for the same message, as long as less
than t of them are available. We will refer to the experiment used for the proof of this property

Ui: K ← E .K(); c← E .E(K,F)
cµ ← Eµ.Encrypt(pk, Fc)
dsi ← Eµ.DShare(ski, Fc)
F ′ ← 〈c, cµ, dsi〉

Ui −→ S: Iret, F ′
S: if(¬DB [Iret] .popular) execute Put(IFc ,Ui, F ′)

else signal an error and exit
Ui: F ← 〈K,Kc, Iret, IFc〉

Figure 5: The Upload.Unpopular algorithm.

3S could perform an additional check and raise an error if not all decryptions of cµ are pairwise identical.

11

Ui −→ S: I
S: DS← {ds : 〈c, cµ, ds〉 ← DB [I] .data, I ∈ I}

foreach(Ii ∈ I)
parse DB [IF] .data as 〈c, cµ, dsi〉
Fc ← Eµ.Decrypt(cµ,DS)
IFc ← I(Fc)
Ui ← DB [Ii] .users
execute Put(IFc ,Ui, Fc)

DB [IFc] .popular← true
delete all records indexed by I

Figure 6: The Upload.Reclaim algorithm

as DSµ-IND. Both security experiments require the adversary to declare upfront the set of users
it wishes to corrupt before it can observe any output produced by the scheme and adaptively
choose in what order to invoke the corrupt oracle over those. Hence, our security notion is not
the strongest possible, similarly to “selective security” for attribute-based encryption [26, 18].

6.1.1 Unlinkability of Decryption Shares

Informally, in DSµ-IND, the adversary is given access to two hash function oracles OH1 , and
OH2 ; the adversary can also corrupt an arbitrary number nA < t − 1 of pre-declared users,
and obtains their secret keys through the OCorrupt oracle. Finally, the adversary can access a
decryption share oracle ODShare, submitting a message m of her choice and a non-corrupted user
identity Ui; for each message that appears to ODShare-queries, the challenger chooses at random
(based on a fair coin flip) whether to respond with a properly constucted decryption share that
corresponds to message m and secret key share ski as defined in Eµ, or with a random bitstring
of the same length (e.g., when bm∗ = 0). At the end of the game, the adversary declares a
message m∗, for which up to t−nA−1 decryption share queries for distinct user identities have
been submitted. The adversary outputs a bit b′m∗ and wins the game if b′m∗ = bm∗ . Eµ is said
to satisfy unlinkability of decryption shares, if no polynomial time adversary can win the game
with a non-negligible advantage.

Formally, unlinkability of decryption shares is defined using the following experiment (DSµ-IND)
between an adversary A and a challenger C, given a security parameter κ:

• Setup Phase C executes the Setup algorithm with κ, and generates a set of user identities
U = {Ui}i=n

i=1. Further, C gives pk to A and keeps {ski}i=ni=1 secret. At this point, A declares
the list UA of |UA| = nA < t−1 identities of users that will later on be subject to OCorrupt

calls.

• Access to Oracles Throughout the game, the adversary can invoke oracles for the hash

Ui −→ S: IFc
S: if(DB [IFc] .popular) execute Put(IFc ,Ui)

else signal an error and exit
Ui: F ← 〈Kc, IFc〉

Figure 7: The Upload.Popular algorithm

12

functions H1 and H2. Additionally, the adversary can invoke the corrupt oracle OCorrupt

and receive the secret key share that corresponds to any user Ui ∈ UA. Finally, A can
invoke the decryption share oracle ODShare to request a decryption share that corresponds
to a specific message, say m, and the key share of a non-corrupted user, say Ui /∈ UA. More
specifically, for each message m that appears in ODShare-queries, the challenger chooses at
random (based on a fair coin flip bm) whether to respond to ODShare-queries for m with
decryption shares constructed as defined by the protocol, or with random bitstrings of
the same length. Let dsi,m denote the response of ODShare-query for m and Ui. bm = 1
correspond to the case, where responses in ODShare-queries for m are properly constructed
decryption shares.

• Challenge Phase A chooses a target message m∗. The adversary is limited in the choice
of the challenge message as follows: m∗ must not have been the subject of more than
t−nA−1 ODShare queries for distinct user identities. At the challenge time, if the limit of
t− nA − 1 has not been reached, the adversary is allowed to request for more decryption
shares for as long as the aforementioned condition holds. Recall that C responds to
challenge ODShare-queries based on bm∗ .

• Guess A outputs b′m∗ , that represents her guess for bm∗ . The adversary wins the game,
if bm∗ = b′m∗ .

6.1.2 Semantic Security

Informally, in INDµ-CPA, the adversary is given access to the two hash function oracles OH1 ,
and OH2 . Also, the adversary can corrupt an arbitrary number nA < t−1 of pre-declared users,
and obtain their secret keys through the OCorrupt oracle. Finally, the adversary can access a
decryption share oracle ODShare; here the adversary submits a message m of her choice and a
user identity Ui to receive a decryption share dsm,i that corresponds to m and the secret key
share ski of (non-corrupted) user Ui. At the end of the game, the adversary outputs a message
m∗; the challenger flips a fair coin b, and based on its outcome, it returns to A the encryption
of either m∗ or of another random bitstring of the same length. The adversary outputs a bit
b′ and wins the game if b′ = b. Eµ is said to be semantically secure if no polynomial time
adversary can win the game with a non-negligible advantage.

Formally, the security of Eµ is defined using the following experiment (INDµ-CPA) between
an adversary A and a challenger C, given a security parameter κ:

• Setup Phase is the same as in DSµ-IND.

• Access to Oracles Throughout the game, the adversary can invoke oracles for the hash
functions H1 and H2. Additionally, the adversary can invoke the corrupt oracle OCorrupt

and receive the secret key share that corresponds to each user Ui ∈ UA. Finally, A
can invoke the decryption share oracle ODShare and receive a decryption share dsm,i that
corresponds to m and the key share of Ui.

• Challenge Phase A picks the challenge message m∗ and sends it to C; the adversary
is limited in her choice of the challenge message as follows: the sum of distinct user
identities supplied to ODShare together with the challenge message cannot be greater than
t−nA−1. C chooses at random (based on a coin flip b) whether to return the encryption
of m∗ (b = 1), or of another random string of the same length (b = 0); let c∗ be the
resulting ciphertext; this is returned to A.

13

• GuessA outputs b′, that represents her guess for b.The adversary wins the game, if b = b′.

The following lemmas show that unlinkability of decryption shares is guaranteed in Eµ, and that
Eµ is a semantically secure cryptosystem, as long as the Symmetric External Diffie-Hellman
(SXDH) problem is intractable. In short, SXDH assumes two groups of prime order q, G1, and
G2, such that there is not an efficiently computable distortion map between the two; a bilinear
group GT , and an efficient, non-degenerate bilinear map ê : G1 × G2 → GT . In this setting,
the SXDH assumption states that the Decisional Diffie-Hellman (DDH) holds in both G1, and
G2, and that the bilinear decisional Diffie-Hellman (BDDH) holds given the existence of the
bilinear map ê [8].

Lemma 1. Let H1, and H2 be random oracles. If a DSµ-IND adversary A has a non-negligible
advantage

AdvADSµ-IND := Pr[b′m∗ ← A(m∗, ds∗,m∗) : b′m∗ = bm∗]−
1

2

then a probabilistic, polynomial time algorithm C can create an environment where it uses A’s
advantage to solve any given instance of the SXDH problem.

Proof. We define the challenger C as follows. C is given an SXDH context G′1,G′2,G′T , ê′ and
an instance of the DDH problem 〈G′1, g′, A = (g′)a, B = (g′)b,W 〉 in G1’. The algorithm C
simulates an environment in which A operates, using its advantage in the game DSµ-IND to
decide whether W = g′ab. Algorithm C works by interacting with A in the DSµ-IND game as
follows:

• Setup Phase C sets G1 ← G′1, G2 ← G′2, GT ← G′T , ê = ê′, g ← g′; picks a random
generator ḡ of G2 and sets ḡpub = (ḡ)sk, where sk←R Z∗q . C also generates the set of user
identities U = {Ui}i=ni=1 . The public key pk = {q,G1,G2,GT ê,OH1 ,OH2 , ḡ, ḡpub} and U are
then forwarded to the adversary. At this point, A declares the list UA of nA < t− 1 user
identities that will later on be subject to OCorrupt calls. Without loss of generality, let us
assume that UA = {Ui}nAi=1.

To generate key-shares {ski}i=ni=1 , C constructs a t − 1-degree Lagrange polynomial P()
assuming interpolation points

IP = {(i, yi)}i=t−1i=0 ,

where y0 ← sk, yi ←R Z∗q , for i ∈ [1, t− 2], and yt−1 ← a. Notice that a is not known to
C. She then sets the key-shares for corrupted users to be ski ← yi for i ∈ [1, nA].

• Access to Oracles C simulates oracles OH1 , OH2 , OCorrupt and ODShare as follows:

- OH1 : to respond to OH1 queries C maintains a list of tuples {H1, v, hv, rv, cv} as
explained below. We refer to this list as OH1 list, and is initially empty. When
A submits an OH1 query for v, C checks if v already appears in the OH1 list in
a tuple {v, hv, rv, cv}. If so, C responds with H1(v) = hv. Otherwise, C picks a
random rv ∈ Z∗q , and flips a coin cv; cv flips to ′0′ with probability δ for some δ
to be determined later. If cv equals ′0′, C responds H1(v) = hv = grv and stores
{v, hv, rv, cv}; otherwise, she returns H1(v) = hv = Brv and stores {v, hv, rv, cv}.

- OH2 : The challenger C responds to a newly submitted OH2 query for v with a ran-
domly chosen hv ∈ GT . To be consistent in her OH2 responses, C maintains the
history of her responses in her local memory.

14

- OCorrupt: C responds to a OCorrupt query involving user Ui ∈ UA, by returning the
coordinate yi chosen in the Setup phase.

- ODShare: simulation of ODShare is performed as follows. As before, C keeps track of the
submitted ODShare queries in her local memory. Let 〈m,Ui〉 be a decryption query
submitted for message m and user identity Ui. If there is no entry in H1-list for m,
then C runs the OH1 algorithm for m. Let {m,hm, rm, cm} be the OH1 entry in C’s
local memory for message m. Let IP

′ ← IP \ (t− 1, yt−1). C responds with

dsm,i =

g ∑
(j,yj)∈IP′

yjλ
IP
′

i,j

Xλ
IP
′

i,t−1

rm

where X ← A iff cm = 0, and X ←W iff cm = 1. In both cases, C keeps a record of
her response in her local memory.

• Challenge Phase In the challenge phase, A selects the challenge message m∗. Let the
corresponding entry in the OH1 list be {m∗, hm∗ , rm∗ , cm∗}. If cm∗ = 0, then C aborts. As
discussed before, from now on A can perform ODShare-queries for m∗ so as the submitted
ODShare-queries for m∗ from the beginning of the game do not correspond to more than
t− nA − 1 distinct user identities.

• Guess A outputs one bit b′m∗ representing the guess for bm∗ . C responds positively to
the DDH challenger if b′m∗ = 0, and negatively otherwise.

It is easy to see, that if A’s answer is ′0′, it means that the ODShare responses for m∗
constitute properly structured decryption shares for m∗. However this can only be if W = gab

and C can give a positive answer to the SXDH challenger.
A detailed analysis shows that if cm∗ = 1 and cm = 0 for all other queries to OH1 such that

m 6= m∗, then the execution environment is indistinguishable from the actual game DSµ-IND.
This happens with probability

Pr[cm∗ = 1 ∧ (∀m 6= m∗ : cm = 0)] = δ(1− δ)QH1
−1

where QH1 is the number of different OH1 queries. By setting δ ≈ 1
QH1

−1 we know that the

above probability is greater than 1
e·(QH1

−1) . In conclusion, we can bound the probability of

success of the adversary AdvADSµ-IND as AdvADSµ-IND ≤ e · (QH1 − 1) · AdvCSXDH.

Lemma 2. Let H1, and H2 be random oracles. If an INDµ-CPA adversary A has a non-negligible
advantage

AdvAINDµ-CPA := Prob[b′ ← A(c∗) : b = b′]− 1

2

then a probabilistic, polynomial time algorithm C can create an environment where it uses A’s
advantage to solve any given instance of the SXDH problem.

Proof. We define the challenger C as follows. C is given an instance 〈q′, G′1,G′2,G′T , ê′, g′, ḡ′, A =
(g′)a, B = (g′)b, C = (g′)c, Ā = (ḡ′)a, B̄ = (ḡ′)b, C̄ = (ḡ′)c,W 〉 of the SXDH problem and wishes
to use A to decide if W = ê (g′, ḡ′)abc. The algorithm C simulates an environment in which A
operates, using its advantage in the game INDµ-CPA to help compute the solution to the BDDH
problem as detailed before. Algorithm C works by interacting with A in an INDµ-CPA game as
follows:

15

• Setup Phase C sets q ← q′, G1 ← G′1, G2 ← G′2, GT ← G′T , ê = ê′, g ← g′, ḡ ← ḡ′,
ḡpub = Ā. Notice that the secret key sk = a is not known to C. C also generates the list of
user identities U. C sends pk = {q,G1,G2,GT ê,OH1 ,OH2 , ḡ, ḡpub} to A. At this point, A
declares the list UA of nA < t−1 identities of users that will later on be subject to OCorrupt

calls. Without loss of generality, let us assume that UA = {Ui}nAi=1. To generate key-shares
{ski}ni=1, C picks a t− 1 degree Lagrange polynomial P() assuming interpolation points

IP =
{

(0, a) ∪ {(i, yi)}i=t−1i=1

}
,

where yi ←R Z∗q . She then sets the key-shares for corrupted users to be ski ← yi for
i ∈ [1, nA].

• Access to Oracles C simulates oracles OH1 , OH2 , OCorrupt and ODShare as follows:

- OH1 , OH2 , OCorrupt: C responds to these queries as described in the DSµ-IND experi-
ment.

- ODShare: simulation of ODShare is performed as follows. C keeps track of the submitted
ODShare queries in her local memory. Let 〈m,Ui〉 be a decryption query submitted
for message m and user identity Ui. If there is no entry in H1-list for m, then C
runs the OH1 algorithm for m. Let {m,hm, rm, cm} be the OH1 entry in C’s local
memory for message m. If cm = 1, and A has already submitted t− nA − 1 queries
for m, C reports failure and terminates. If the limit of t − nA − 1 queries has not
yet been reached, C responds with a random dsm,i ∈ G1 and keeps a record for it.
This step is legitimate as Lemma 1 establishes that the adversary is not able to
distinguish properly formed decryption shares as long as less than t are available.
Let IP

′ ← IP \ (0, a). If cm = 0, C responds with

dsm,i =

g ∑
(j,yj)∈IP′

yjλ
IP
′

i,j

Aλ
IP
′

i,0

rm

• Challenge Phase in the challenge phase, A submits the challenge message m∗ to C.
Recall that A has not submitted ODShare queries for the challenge message with more
than t−nA− 1 distinct user identities. Next, C runs the algorithm for responding to OH1

queries for m∗ to recover the entry from the OH1 list. Let the entry be {m∗, hm∗ , rm∗ , cm∗}.
If cm∗ = 0, C reports failure and aborts. Otherwise, C computes e∗ ← W rm∗ , sets
c∗ ← 〈m∗ ⊕ H2(e∗), C̄〉 and returns c∗ to the A.

• Guess A outputs one bit b′ representing the guess for b. C provides the same answer for
its SXDH challenge.

If A’s answer is b′ = 1, it means that she has recognized the ciphertext c∗ as the encryption
of m∗; C can then give the positive answer to her SXDH challenge. Indeed

W rm∗ = ê (g, ḡ)abcrm∗ = ê ((Brm∗)a, ḡc) = ê
(
H1(m∗)

sk, C̄
)

A detailed analysis shows that if cm∗ = 1 and cm = 0 for all other queries to OH1 such that
m 6= m∗, then the execution environment is indistinguishable from the actual game INDµ-CPA.
This happens with probability

Pr[cm∗ = 1 ∧ (∀m 6= m∗ : cm = 0)] = δ(1− δ)QH1
−1

16

where QH1 is the number of different OH1 queries. By setting δ ≈ 1
QH1

−1 we know that the

above probability is greater than 1
e·(QH1

−1) . In conclusion, we can bound the probability of

success of the adversary AdvAINDµ-CPA as AdvAINDµ-CPA ≤ e · (QH1 − 1) · AdvCSXDH.

6.2 Security Analysis of the Scheme

In this Section we will study the security of the scheme as a whole. A formal analysis under the
UC framework is not presented here and is left for future work. We instead present informal
arguments, supported by the proofs shown in the previous Section and the assumptions on our
trusted third parties, showing how the security requirements highlighted in Section 3 are met.

Let us briefly recall that the adversary in our scheme is represented by a set of users colluding
with the cloud storage provider. The objective of the adversary is to violate the confidentiality
of data uploaded by legitimate users: in particular, the objective for unpopular data is semantic
security, whereas it is conventional convergent security for popular data. We assume that the
adversary controls a set of nA users {Ui}nAi=1. Let us also recall the popularity threshold plim
which represents the smallest number of distinct, legitimate users that are required to upload a
given file F for that file to be declared popular. We finally recall that the threshold t of Eµ– also
used by the indexing service – is set to be t ≥ plim+nA. This implies that the adversary cannot
use its control over nA users to subvert the popularity mechanism and force a non-popular file
of its choice to become popular. This fact stems from the security of Eµ and from the way the
indexing service is implemented. As a consequence, transition of a file between unpopular and
popular is governed by legitimate users.

The adversary can access two conduits to retrieve information on user data: i) the indexing
service (IS) and ii) the records stored by the storage provider in DB.

The indexing service cannot be used by the attacker to retrieve any useful information on
popular files; indeed the adversary already possesses IFc for all popular files and consequently,
queries to IS on input the index IFc do not reveal any additional information other than the
notion that the file is popular. As for unpopular files, the adversary can only retrieve indexes
computed using a PRF with a random secret seed. Nothing can be inferred from those, as
guaranteed by the security of the PRF. Note also that repeated queries of a single user on a
given file always only yield the same index and do not influence popularity.

Let us now consider what the adversary can learn from the content of the storage backend,
modeled by DB. The indexing keys are either random strings (for unpopular files) or the output
of a deterministic, one-way function I on the convergent ciphertext (for popular files). In the
first case, it is trivial to show how nothing can be learned. In the latter case, the adversary
may formulate a guess F ′ for the content of a given file, compute IF ′ and compare it with
the index. However this process does not yield any additional information that can help break
standard convergent security: indeed the same can be done on the convergent ciphertext. As
for the data content of DB, it is always in either of two forms: 〈c, cµ, dsi〉 for unpopular files and
Fc for popular files. It is easy to see that in both cases, the length of the plaintext is leaked
but we argue this does not constitute a security breach. The case of popular file is very simple
to analyze given that security claims stem directly from the security of convergent encryption.
As for unpopular files, c is the ciphertext produced by a semantically secure cryptosystem
and by definition does not leak any information about the corresponding ciphertext. cµ and
dsi represent the ciphertext and the decryption share produced by Eµ, respectively. Assuming
that t is set as described above, the adversary cannot be in possession of t decryption shares.
Consequently, Lemma 2 guarantees that no information on the corresponding plaintext can be

17

learned.

7 Performance Evaluation

In this Section we evaluate the performance of our scheme with respect to the computation
overhead at file encryption and decryption time, and with respect to storage optimization.
Subsequently we compare the performance of our scheme with the performance of other systems
that preserve data confidentiality.

7.1 Prototype implementation

Our prototype consists of a client program, that performs the file encryption and decryption,
and a server program that sets up the system parameters and performs the appropriate crypro-
graphic operations when a file becomes popular. We implemented both sides in C, and used
the libraries provided by [22, 9, 5, 6] for pairings, and other cryptographic operations. Both
programs were tested on an Intel Xeon X3323 machine with 4 CPU cores 2.5 GHz, and 8GB
of RAM running CentOS 5.4. Furthermore, for our experiments we used SHA-256 for hashing
and AES with a 256-bit key as symmetric cipher, and type F bilinear pairing (for details see
the manual of the PBC Library [22]). In the following we evaluate the computational overhead
imposed by our scheme at system setup, file encryption (encryption) and file access (decryption)
time, as well as in file transition from unpopular to popular.

In Section 5 we have presented a sub-optimal version of the upload protocol in order not
to sacrifice the elegance in the descrion of the Eµ scheme. For our experiments however, we
have implemented a straightforward modification of the scheme that avoids the requirement of
uploading two distinct ciphertexts. In particular, the file F is encrypted a first time with conver-
gent encryption; the resulting ciphertext is encrypted a second time using standard symmetric
encryption with a 256-bit key K. Finally, K is encrypted using a slightly modified version of Eµ
that allows to specify the H1-hash to be used for computing ciphertext and decryption shares
for K.

Setup. We evaluate the time required to setup Eµ, that includes the generation of the system
parameters, and user keys. Note that this operation is performed by the storage provider only
once. In our experiments we fix the number of users (e.g. user shares generated during the
setup phase) to n = 1000. Figure 8 shows the impact of the popularity threshold t to the
system setup time for a varying security parameter κ. As expected, for all values of κ, the time
required for the system setup increases as the popularity threshold increases. This is mainly
because a higher popularity threshold signifies the computation of a higher degree polynomial
used for shares generation and this polynomial is evaluated for each user share using the Horner
scheme. Nevertheless, the setup performance is in the order of tens of seconds, which can be
considered insignificant for an operation which is executed only once.

File Upload. We fix the file size to 10MB and measure the time required for a file to be
encrypted according to our scheme. Figure 9 shows the running time of file encryption using
our scheme compared to the running times of conventional symmetric encryption and convergent
encryption. The Figure shows the running time broken down into components: component 1
represents the running time of convergent key derivation (Ec.K), component 2 represents the
running time of convergent encryption (Ec.E), component 3 represents the running time of
symmetric encryption (E .E) and finally, component 4 represents the running time required for

18

0 200 400 600 800 1000

0
20

40
60

80

Setup Performance of our Scheme

Popularity Threshold

T
im

e
(s

ec
)

●● ●

●

●

●

Security parameter: 512
Security parameter: 1024
Security parameter: 2048

Figure 8: System Setup Performance for various popularity thresholds and values of the security
parameter κ.

encrypting a symmetric key using Eµ (that is, invoking Eµ.Encrypt). The running time for E .K
is not represented as it is negligible.

It is easy to see that file encryption in our scheme takes roughly twice as much time as
convergent encryption or symmetric encryption. We do not plot similar figures where the input
file size varies, given that i) the running times of Ec.K, Ec.E and E .E are strictly linear in the
input file size and ii) the running time of Eµ.Encrypt is independent from the input file size.

The communication overhead imposed at file upload can be broken down to the messages
exchanged in (i) the user-IS communication session, where the former obtains a file index for
her file, and (ii) the actual upload of the file ciphertext to the storage provider. The overall
communication overhead at user-IS interaction accounts for 276B, and can be therefore consid-
ered negligible. At the upload of the file ciphertext, a user uploads the symmetric ciphertext
which has roughly the same size as F , and the Eµ ciphertext of K, which is 64B.

File Access. We measure the time required for a user to access a file that has been encrypted
using our scheme. File access includes the communication overhead to download the file, and
the computation overhead to decrypt it. Decryption of a popular file is just a classic convergent
decryption (i.e., operation Ec.D). As to unpopular files, decryption consists of two symmetric
decryption operations, Ec.D and E .D.

The communication overhead at file decryption is roughly the same as the one of the file

19

Symm. Encryption Conv. Encryption Our Scheme

File Encryption Performance
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
T

im
e

(s
ec

)

Component 4
Component 3
Component 2
Component 1

Figure 9: File Encryption Performance for the cases where: (i) the file is encrypted using a
symmetric encryption scheme, (ii) the file is encrypted using a convergent encryption scheme
(ii), and The file is encrypted using our scheme.

upload operation.
File Transition. We measure the time required for a file that has just reached the popularity
threshold to transit form the unpopular state to the popular one. This operation takes place
at the storage provider side only once per file. More specifically, at this time the storage
provider, who has aggregated sufficient decryption shares, runs Eµ.Decrypt to recover K and
E .D to recover the convergent ciphertext of F . Note that there are t copies of F in storage,
the storage provider will have to repeat this procedure for all t uploaded copies of F . As the
running times for the decryption for both E and Ec are exactly the same as encryption, we only
present the running times of Eµ.Decrypt, when the popularity threshold varies from 15 to 1000
in Table 1. It is easy to see that even when the popularity threshold is set to 1000, Eµ.Decrypt
of K does not take more than fractions of a second.

Overall, we conclude that the overhead introduced by the threshold cryptosystem Eµ is rel-
atively small compared to the resource consumption of symmetric and convergent encryption
operations. However, as our scheme combines both symmetric encryption and convergent en-
cryption, the time needed for the encryption and decryption operations on an unpopular file

20

is approximately the same as the sum of the time required for each of these operations when
performed individually.

7.2 Analysis of Storage Efficiency

In this Section, we analyze, using a simulation, the ability of our scheme to reclaim space
through deduplication. Recall that our scheme introduces a global threshold t. As t increases,
storage efficiency is negatively impacted; indeed, files can be deduplicated only once at least t
copies are uploaded. Before then, up to t− 1 copies of the same file need to be stored.

In the simulation we have chosen values of t in the set {15, 25, 50}. The deduplication ratio
ranges from 1:1 to 64:1, with power-of-two increments. The initial value corresponds to the ratio
below which deduplication does not produce any gain, whereas the final value represents a very
optimistic scenario that has been shown to be practically achievable in a backup setting [25].
The input dataset for our simulation is a set of 105 files of unitary size (since file size plays no role
as far as efficiency is concerned). Estimating the popularity distribution is not a straightforward
task as, in practice, it depends heavily on the input dataset and it can be highly variable. We
have chosen to use the deduplication ratio as the basis for the mean value of file popularity
and use some of the standard distributions – Pareto, Uniform and Exponential– to demonstrate
the influence of this aspect. For example, Figure 10 shows the simulated distribution of file
popularity for deduplication ratio 1:16 and threshold t = 25.

The results are shown in Figure 11. We observe that if the popularity of files fits Pareto
distribution, then our space savings compared with savings of classic deduplication are only
slightly worse, yet still quite good for any practical choice of the t value. If the popularity fits
Uniform or Exponential distribution, the savings highly depend on the chosen value of t. While
this simulation offers answers to the question of what influences the space savings efficiency of
the proposed scheme and how, finding out how to derive a file popularity distribution is still an
open problem and a target for our future work.

8 Discussion

In this section we justify some of our assumptions and discuss the limitations and future per-
spective of our protocols.

8.1 Privacy

Individual privacy is often equivalent to each party being able to control the degree to which that
party will interact and share information with other parties and its environment. In the setting
we are considering, user privacy is closely connected to user data confidentiality: it should not
be possible to link a particular file plaintext to a particular individual with better probability
than choosing that individual and file plaintext at random. Clearly, within our protocols,
user privacy is provided completely for users who own only unpopular files, while privacy is

Table 1: Threshold Decryption Time (in milliseconds)

plim 15 25 50 500 1000

Eµ.Decrypt 35.43 37.20 43.43 195.78 364.61

21

slightly degraded for users who own popular files. One solution for the latter case would be
to incorporate anonymous and unlinkable credentials [11, 23] every time user authentication is
required. This way, a user who uploads a file to the storage provider will not have her identity
linked to the file ciphertext. On the contrary, the file owner will be registered as one of the
certified users of the system.

8.2 Flexibility on the Popularity Threshold

We have assumed that files are classified as popular or unpopular based on a single popularity
threshold, which is decided by the identity provider. Naturally, the question arises whether the
threshold could be set dynamically at file encryption time. One way to achieve such flexibility
would be that the identity provider issues many keys for each user, each corresponding to a
different popularity threshold. At file encryption, a user who has picked a popularity threshold
t should upload shares that corresponds to t together with an indicator of which threshold has
been used. This step is required to allow the storage provider to perform the steps required
when reclaiming when the threshold is reached.

8.3 Deletion

Achieving deletion of content in our scheme is challenging, given that the storage provider
may be malicious and refuse to erase the uploaded content. The case of unpopular files is of
particular interest, given that ideally, a deletion operation should remove also the uploaded
decryption share and decrease the popularity for that file by one. A malicious storage provider
would undoubtedly refuse to perform this step. However, the indexing service, which is a trusted
entity, would perform the deletion step honestly by removing the random index generated for
the file and decreasing the popularity. This alone however does not guarantee any security.
Indeed, we may be faced with the scenario in which the popularity threshold has not yet been
reached (that is, the storage provider has not been given the set of indexes), and yet more than
t decryption shares exist at unknown locations. The property of unlinkability of decryption
shares described in Lemma 1 however guarantees that the adversary has no better strategy
than trying all the

(
N
t

)
possible set of t decryption shares among a total of N . While this

does not constitute a formal argument, it is easy to show how, if N grows, this task becomes
infeasible.

9 Conclusion

In this paper, we dealt with the inherent tension between well established storage optimization
methods and end-to-end encryption. As opposed to related work that assumed that all files
are equally security sensitive, we varied the security provisions of a file based on how popular
that file is among the users of the system. We presented a novel encryption scheme that guar-
antees semantic security for unpopular data and provides weaker security and better storage
and bandwidth benefits for popular data, so that data deduplication can be applied for the
(less sensitive) popular data. In our system, encryption takes place at the client side, whereas
decryption is client-independent. File transitions from one mode to the other take place seam-
lessly at the storage server side if and only if a file becomes popular. We showed that our
protocols are secure under the Symmetric External Decisional Diffie Hellman Assumption, and
that they scale well with large numbers of files and users.

22

References

[1] Bitcasa Infinite Storage. https://www.bitcasa.com/.

[2] Ciphertite Secure Backup. https://www.cyphertite.com/.

[3] DataLossDB. e-archive. http://datalossdb.org/.

[4] flud backup. http://flud.org/.

[5] The gnu multiple precision arithmetic library. http://gmplib.org/.

[6] Openssl cryptography and ssl/tls toolkit. http://www.openssl.org/.

[7] Lior Aronovich, Ron Asher, Eitan Bachmat, Haim Bitner, Michael Hirsch, and Shmuel T.
Klein. The design of a similarity based deduplication system. In Proceedings of SYSTOR
2009: The Israeli Experimental Systems Conference, SYSTOR ’09, pages 6:1–6:14, New
York, NY, USA, 2009. ACM.

[8] Giuseppe Ateniese, Marina Blanton, and Jonathan Kirsch. Secret handshakes with dynamic
and fuzzy matching. In Network and Distributed System Security Symposuim. The Internet
Society, 2007.

[9] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Efficient implementation of pairing-
based cryptosystems. Journal of Cryptology, 17(4):321–334, 2004.

[10] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. Message-locked encryption
and secure deduplication. Cryptology ePrint Archive, Report 2012/631, 2012. http:

//eprint.iacr.org/.

[11] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing accountability and
privacy using e-cash. In Security and Cryptography for Networks, pages 141–155. Springer,
2006.

[12] Ran Canetti. Universally composable security: A new paradigm for cryptographic proto-
cols. Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/.

[13] Roberto Di Pietro and Alessandro Sorniotti. Boosting efficiency and security in proof of
ownership for deduplication. In Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, ASIACCS ’12, pages 81–82, New York, NY, USA,
2012. ACM.

[14] John R Douceur. The sybil attack. In Peer-to-peer Systems, pages 251–260. Springer, 2002.

[15] John R. Douceur, Atul Adya, William J. Bolosky, Dan Simon, and Marvin Theimer. Re-
claiming space from duplicate files in a serverless distributed file system. In Proceedings
of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02),
ICDCS ’02, pages 617–, Washington, DC, USA, 2002. IEEE Computer Society.

[16] M. Dutch and L. Freeman. Understanding data de-duplication ratios. SNIA
forum, 2008. http://www.snia.org/sites/default/files/Understanding_Data_

Deduplication_Ratios-20080718.pdf.

[17] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 1984.

23

[18] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In ACM Conference on Computer and
Communications Security, pages 89–98, 2006.

[19] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Proofs of own-
ership in remote storage systems. In Proceedings of the 18th ACM conference on Computer
and communications security, CCS ’11, pages 491–500, New York, NY, USA, 2011. ACM.

[20] D. Harnik, O. Margalit, D. Naor, D. Sotnikov, and G. Vernik. Estimation of deduplication
ratios in large data sets. In Mass Storage Systems and Technologies (MSST), 2012 IEEE
28th Symposium on, pages 1 –11, april 2012.

[21] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in cloud services: Deduplication
in cloud storage. Security Privacy, IEEE, 8(6):40 –47, nov.-dec. 2010.

[22] Ben Lynn. The pairing-based cryptography library. http://crypto.stanford.edu/pbc/.

[23] Anna Lysyanskaya, Ronald L Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems.
In Selected Areas in Cryptography, pages 184–199. Springer, 2000.

[24] Nagapramod Mandagere, Pin Zhou, Mark A Smith, and Sandeep Uttamchandani. De-
mystifying data deduplication. In Proceedings of the ACM/IFIP/USENIX Middleware ’08
Conference Companion, Companion ’08, pages 12–17, New York, NY, USA, 2008. ACM.

[25] Dirk Meister and André Brinkmann. Multi-level comparison of data deduplication in a
backup scenario. In Proceedings of SYSTOR 2009: The Israeli Experimental Systems
Conference, SYSTOR ’09, pages 8:1–8:12, New York, NY, USA, 2009. ACM.

[26] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
Proc. EUROCRYPT, volume 3494, pages 457–473. Springer, 2005.

[27] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, November 1979.

[28] Mark W. Storer, Kevin Greenan, Darrell D.E. Long, and Ethan L. Miller. Secure data
deduplication. In Proceedings of the 4th ACM international workshop on Storage security
and survivability, StorageSS ’08, pages 1–10, New York, NY, USA, 2008. ACM.

[29] Jia Xu, Ee-Chien Chang, and Jianying Zhou. Leakage-resilient client-side deduplication
of encrypted data in cloud storage. Cryptology ePrint Archive, Report 2011/538, 2011.
http://eprint.iacr.org/.

24

(a) Uniform

(b) Exponential

(c) Pareto

Figure 10: Plot of file popularity simulated for deduplication ratio 16:1; the horizontal line
shows the global threshold t = 25, under which, files are not deduplicated.

25

(a) t=15

(b) t=25

(c) t=50

Figure 11: Demonstrating how t influences the space savings introduced by different popularity
distributions.

26

