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ABSTRACT
Deduplication is a technique used to reduce the amount of
storage needed by service providers. It is based on the in-
tuition that several users may want (for different reasons)
to store the same content. Hence, storing a single copy of
these files is sufficient. Albeit simple in theory, the imple-
mentation of this concept introduces many security risks.
In this paper we address the most severe one: an adver-
sary (who possesses only a fraction of the original file, or
even just partially colluding with a rightful owner) claim-
ing to possess such a file. The paper’s contributions are
manifold: first, we introduce a novel Proof of Ownership
(POW) scheme that has all features of the state-of-the-art
solution while incurring only a fraction of the overhead expe-
rienced by the competitor; second, the security of the pro-
posed mechanisms relies on information theoretical (com-
binatoric) rather than computational assumptions; we also
propose viable optimization techniques that further improve
the scheme’s performance. Finally, the quality of our pro-
posal is supported by extensive benchmarking.

Categories and Subject Descriptors
H.3.5 [Information Systems]: Information storage and re-
trieval—Online information services

General Terms
Security

Keywords
Cloud Security, Deduplication, Proof of Ownership

1. INTRODUCTION
The rapid surge in cloud service offerings has resulted in

a sharp drop in prices of storage services, and in an increase
in the number of customers. Through popular providers,
like Amazon s3 and Microsoft Azure, and backup services,
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like Dropbox and Memopal, storage has indeed become a
commodity. Among the reasons for the low prices, we find a
strong use of multitenancy, the reliance on distributed algo-
rithms run on top of simple hardware, and an efficient use
of the storage backend thanks to compression and dedupli-
cation.

Deduplication is the process of avoiding having to store
the same data multiple times. It leverages the fact that
large data sets often exhibit high redundancy. Examples
include, for instance, common email attachments, financial
records, with common headers and semi-identical fields, and
popular media content—such as music, video—likely to be
owned (and stored) by many users.

There are four different deduplication strategies, depend-
ing on whether deduplication happens at the client side (i.e.
before the upload) or at the server side, and whether dedu-
plication happens at a block level or at a file level. Dedu-
plication is most rewarding when it is triggered at the client
side, as it also saves the bandwidth of the upload. For these
reasons, deduplication is a critical enabler for a number of
popular and successful storage services (e.g. Dropbox, Mem-
opal) that offer cheap remote storage to the broad public by
performing client-side deduplication, thus saving both the
network bandwidth and the storage costs associated to pro-
cessing the same content multiple times.

Security Threats to Deduplication.
Harnik et al. [10] have identified a number of threats that

can affect a storage system performing client-side dedupli-
cation. These threats, briefly reviewed in the following, can
be turned into practical attacks by any user of the system.

A first set of attacks targets the privacy and confidentiality
of users of the storage system. For instance, a user can check
whether another user has already uploaded a file by trying
to upload it as well and by checking whether the upload
actually takes place. This attack is particularly relevant
for rare files that may reveal the identity of the user who
performed the upload.

A different type of attack attempts to subvert the intended
use of a given storage system. Two users who have no direct
connectivity may, for instance, try to use the storage system
as a covert channel. For instance, to exchange a bit of in-
formation, the two users would pre-agree on two files; then
the transmitting user would upload one of the two files, and
the receiving user would detect which one gets deduplicated
and would output either 0 (for the first file) or 1 (for the
second).

Finally, users may abuse a storage system by turning it



into a content distribution network: users who wish to ex-
change large files leveraging the large bandwidth available
to the servers of the storage systems may upload only a
single copy of such a file and share the short token that trig-
gers deduplication (in most cases, the hash digest of the file)
among all users who wish to download the content. Real-
world examples of such an approach include Dropship [6].

Proof of Ownership (POW).
To remedy the security threats mentioned above, the con-

cept of Proof of Ownership (POW) has been introduced [9].
POW schemes essentially address the root-cause of the afore-
mentioned attacks to deduplication, namely, that the proof
that the client owns a given file (or block of data) is solely
based on a static, short value (in most cases the hash digest
of the file), whose knowledge automatically grants access to
the file.

POW schemes are security protocols designed to allow a
server to verify (with a given degree of assurance) whether
a client owns a file. The probability that a malicious client
engages in a successful POW run must be negligible in the
security parameter, even if the malicious client knows a (rel-
evant) portion of the target file. A POW scheme should
be efficient in terms of CPU, bandwidth and I/O for the
server and all legitimate clients: in particular, POW schemes
should not require the server to load the file (or large por-
tions of it) from its back-end storage at each execution of
POW.

Halevi et al. [9] have introduced the first practical crypto-
graphic protocol that implements POW. This seminal work,
however, suffers from a number of shortcomings that might
hinder its adoption. The first is that the scheme has ex-
tremely high I/O requirements at the client-side: it either
requires clients to load the entire file in memory or to per-
form random block accesses with an aggregate total I/O
higher than the size of the file itself. Secondly, the scheme
takes a heavy computational toll on the client. Thirdly, its
security is admittedly based on assumptions that are hard
to verify.

Contributions.
In this paper, we present a novel scheme for secure Proof of

Ownership. Our scheme attains several ambitious goals: i)
its I/O and computational costs do not depend on the input
file size; ii) it is very efficient for a wide range of systems
parameters; iii) it is information-theoretically secure; and,
iv) it requires the server to keep a per-file state that is a
negligible fraction of the input file size.

Roadmap.
The remainder of this paper is organised as follows: Sec-

tion 2 reviews the state of the art; Section 3 defines system
and security models; Section 4 presents our basic scheme and
its two improvements; Section 5 describes the implementa-
tion and benchmarks; Section 6 contains a discussion on the
performance and an optimization that captures all the pre-
ceding ones, while Section 7 presents our conclusions.

2. RELATED WORK
Douceur et al. [5] study the problem of deduplication in

a multitenant system in which deduplication has to be rec-
onciled with confidentiality. The authors propose the use of

convergent encryption, i.e., deriving keys from the hash of
the plaintext, so that two users will produce the same ci-
phertext from the same plaintext block, and the ciphertext
can then be deduped. Storer et al. [16] point out some secu-
rity problems of convergent encryption, proposing a security
model and two protocols for secure data deduplication.

The seminal work of Harnik et al. [10] first discusses the
shortcomings of client-side deduplication, and later presents
some basic solutions to the problem. In particular, attacks
to privacy and confidentiality can be addressed without a
full-fledged POW scheme by triggering deduplication only
after a small, but random, number of uploads.

Whereas POW deals with the assurance that a client in-
deed possesses a given file, Provable Data Possession (PDP)
and Proof of Retrievability (PoR) deal with the dual prob-
lem of ensuring—at the client-side—that a server still stores
the files it ought to. PDP is formally introduced by Ate-
niese and colleagues [3, 2]. A number of earlier works al-
ready address remote integrity checking, see the Related
Work Section of [2] for more details. Ateniese et al. [4]
present a dynamic PDP scheme based on symmetric cryp-
tography, and show how relaxing the requirement of public
verifiability allows a much more lightweight scheme. The
scheme is dynamic in that it allows data blocks to be ap-
pended, modified and deleted. Erway et al. [7] present for-
mal definitions of Dynamic PDP together with two protocols
allowing also block insertion. PoR schemes, introduced by
Juels and Kaliski [11] combine message authentication code-
based data verification with error-correcting codes to allow
a client to download pre-determined subsets of blocks and
check whether their MAC matches the pre-computed one:
the use of ECC ensures that small changes in the data are
be detected with high probability.

2.1 The State-of-the-Art Solution
Next we shall describe in detail the POW scheme pre-

sented by Halevi et al. [9], as it represents the state-of-the-
art solution our solution will be compared against.

The authors present three schemes that differ in terms
of security and performance. All three involve the server
challenging the client to present valid sibling paths for a
subset of leaves of a Merkle trees [14]. Both the client and
the server build the Merkle tree; the server only keeps the
root and challenges clients that claim to possess the file. The
Merkle tree is built on a buffer, whose content is derived
from the file, and pre-processed in three different ways for
the three different schemes.

The first scheme applies erasure coding on the content of
the original file; the erasure-coded version of the file is the
input for construction of the Merkle tree.

The second scheme pre-processes the file with a universal
hash function instead of erasure coding, to the same end: the
file is hashed to an intermediate reduction buffer whose size
is sufficiently large to discourage its sharing among colluding
users, but not too big to be impractical. The authors settle
for a size of 64 MiB. This buffer is then used as an input for
the construction of the Merkle tree.

The third scheme, which is the one we will compare our
solution with, follows the same approach, but substitutes
universal hashing with a mixing and a reduction phase that
“hash” the original file into the reduction buffer mentioned
above. In the reminder of this paper, we shall refer to this
scheme as b-POW.



This scheme has two phases (see Figure 1 of [9]): the first
phase populates the reduction buffer by xoring each block
of the original file in four random positions in the buffer
(after performing a bit shift). The mixing phase amplifies
the confusion and diffusion in the reduction buffer by xoring
together random positions of the reduction buffer.

3. SYSTEM MODEL
The system is composed of two main principals, the client
C and the server S. Both C and S are computing nodes with
network connectivity. S has a large back-end storage facility
and offers its storage capacity to C; C uploads its files and
can later download them. During the upload process, S at-
tempts to minimize the bandwidth and to optimize the use of
its storage facility by determining whether the file the client
is about to upload has already been uploaded by another
user. If so, the file does not need to be uploaded and we
say it undergoes deduplication.1 Note that a trivial solution
would be to transfer the file from the client to the server, and
later have the checks performed on the server-side. However,
this solution is highly bandwidth demanding, and also sac-
rifices another benefit of deduplication: the reduction of the
completion time on both the client and server-side.

A further requirement on the server-side is to minimize
accesses to its back-end storage system: for example, a pro-
tocol that requires to access the file content at each interac-
tion with a client to evaluate the potential for deduplication
would not meet this requirement. We assume, however, that
S has a front-end storage facility, whose capacity is a small
fraction of the capacity of the back-end one, and that can
be used to store per-file information. We finally assume that
server-side computational power is abundant and cheap, es-
pecially if the required computation does not need to be
executed immediately but can be deferred to moments of
low system load.
C is assumed to have limited resources in terms of compu-

tational power and I/O capability, and therefore one of the
design guidelines of the scheme is to minimize the scheme’s
client-side computational and I/O footprint. C and S engage
in an interactive protocol. As previously mentioned, mini-
mization of the latency of this protocol is another important
objective.

3.1 Adversarial Model
In the context of POW protocols, S is considered to be

a trusted entity that abides by the rules of the protocol as
its correct execution is in S’s best interest. C, in contrast,
is considered to be a malicious principal and consequently
it cannot be assumed that it is bound by the rules of the
protocol.

Given a target file f∗, the objective of a malicious client
C̃ is to convince the server that C̃ owns f∗, despite this not
being the case. It is assumed that C̃ does not know f∗ in
its entirety; however we assume that C̃ knows an arbitrar-
ily large fraction of it. The estimated upper bound on the
fraction of f∗ known to C̃ will be one of the inputs of the
system, playing a role in the scheme’s security analysis. Sev-
eral malicious clients can collude and share information, for
instance, about past protocol rounds. C̃ may even collude

1The privacy issues raised by this solution are out of the
scope of this paper, and some preliminary solutions have
been proposed in [10].

with other clients that indeed possess f∗, and may receive
arbitrary information about the file from them, including
its content—but never in its entirety. However we assume
that C̃ cannot interact with clients that possess f∗ during
the challenge between S and C̃ over f∗, as otherwise such
clients could easily circumvent the security of the protocol
by answering instead of C̃2.

4. OUR SCHEME
In this section, we shall describe our POW solution. Our

scheme consists two separate phases: in the first phase, the
server receives a file for the first time and it pre-computes the
responses for a number of POW challenges related to the file.
Computation of POW challenges for a given file is carried
out both upon receiving an upload request for a file that
is not yet present at the server, and when the stock of the
previously computed challenge/responses has been depleted.
The number of challenges to be precomputed is a tunable
system parameter.

The second phase is triggered by the client when it sends
to the server a unique identifier for a file it wishes to prove
possession of. The server chooses an unused challenge from
the pre-computed ones for that file and sends it to the client;
the client derives the response based on its knowledge of the
file, and sends the response to the server. The server then
checks whether the client’s response matches the precom-
puted one.

In the following sections, we will detail our scheme. We
will do so incrementally, starting with an initial scheme s-
POW, and later presenting two improved variants, s-POW1
and s-POW2. After the outcome of our benchmarking in
Section 5 and the discussion in Section 6 we will show in
Section 6.1 how to build a final scheme, s-POW3, that com-
bines the best features of the other solutions.

4.1 s-POW
The basic idea behind s-POW is that the probability that

a malicious user is able to output the correct value of K bits
of the file, with each bit selected at a random position in the
file, is negligible in the security parameter k – assuming an
upperbound on the subset of bits of the file known to the
attacker. Therefore, a response to a challenge will be a bit
strings of size K, constructed as the concatenation of K bits
of the original file, picked at K random positions.

Let us describe s-POW in more detail. The server keeps a
hash-map data structure F that maps strings of finite size to
4-tuples; these tuples contain a file pointer ptr, an array of
responses res[] and two indexes, idc and idu. The first index
keeps track of the highest challenge computes so far, while
the second counts the number of challenges used. By default,
both indexes are initialized to zero; res[] is initialized with an
array of empty strings, and ptr is associated to an unassigned
pointer. The search key into the hash-map is the hash digest
of the file; given a digest d, F[d] represents the tuple mapped
to d: F[d] =⊥ if d has not yet been associated with any tuple.

Also, let H be a cryptographic hash function and Fs a
pseudo-random number generator taking s as seed. For the
sake of simplicity, we assume that Fs generates integers rang-
ing from zero to the size of the file in bits minus one. get bit
is a macro taking as input a file pointer and a bit position

2Protection from this attack is outside the scope of this pa-
per.



ALGORITHM 1: Server-side algorithm: the server precom-

putes the challenges for a file.

Input: A hash digest d; a number n of responses that need to
be pre-computed and a response bit length K.

Output: An updated response vector.
begin

fd ← F[d];
for i ∈ [0, n− 1] do

ctr ← fd.idc + i;
s← FSMK

(d||ctr);
for j ∈ [0,K − 1] do

pos← Fs(j);
res[i] = res[i]||get bit(fd.ptr, pos);

end

end
fd.idc = ctr + 1;
return ⊥;

end

and producing as output the corresponding bit value. Fi-
nally, let SMK be the server master secret.

Algorithm 1 describes the operations that occur at the
server-side when either a new file has been uploaded, or the
precomputed responses of an old file have been exhausted
and new ones need to be generated. The server computes
n challenges at a time: this allows optimization of the I/O
operations. For each challenge, a fresh new random seed
is computed using index idc, the digest d of the file, and
the server master key SMK . Then, K random positions
are generated using F , and the bits in the corresponding
positions are concatenated to form the response to the idc-
th challenge.

Algorithm 2 describes how a client replies when challenged
by the server; the client essentially uses the challenge seed
s received from the server that is needed to generate the K
random position over the file, and collects the bit-value of
the file at these K random positions to form the response
resp.

ALGORITHM 2: Client-side algorithm: the client computes

the response to a challenge of the server.

Input: A file f and a challenge seed s.
Output: A response bit string.
begin

let res be an empty string;
for j ∈ [0,K − 1] do

pos← Fs(j);
res = res||get bit(f, pos);

end
return res;

end

Algorithm 3 shows the overall protocol executed between
client and server. The protocol starts with the client com-
puting the hash of the file and sending it to the server with
a request to store the associated file. The server checks
whether the file already exists in the hash map. If not, the
file needs to be uploaded and no challenge takes place. If a
challenge is required, the server picks the first unused chal-
lenge for the given file, computes the associated seed and
sends it to the client. The client is then able to invoke Al-
gorithm 2 and compute the response, which is sent back to
the server. The server checks the response for equality with

the precomputed one and outputs success or failure based
on this check. At this stage, the server will assign that file
to the set of files belonging to the client, so that later on
the client can access it. Finally, if all precomputed chal-
lenges have been used up, the server invokes Algorithm 1 to
repopulate the response vector.

ALGORITHM 3: The protocol of s-POW, expressed as a dis-

tributed algorithm run between C and S.

C : upon upload of file f do
d← H(file);
send to SRV a store file request with d;

end
S : upon receipt of a store file request do

if F[d] 6=⊥ then
s← FSMK

(d||F[d].idu);
send to CLI a challenge request with s;

else
initialize F[d];
receive f from CLI;
F[d].ptr ← f ;

end

end
C : upon receipt of a challenge request do

invoke Algorithm 2 on input file and s to get resp;
send to SRV a challenge response with resp;

end
S : upon receipt of a challenge response do

if resp = F[d].res[F[d].idu mod n] then
CLI succeeds;

else
CLI fails;

end
F[d].idu = F[d].idu + 1;
if F[d].idu ≡ 0 mod 0 then

invoke Algorithm 1;
end

end

4.1.1 Security Analysis of s-POW
As introduced in Section 3, the goal of the adversary C̃ is

to pass the check performed by S during the file uploading
phase, while not owing the file in its entirety. In this way,
C̃ could later gain access to the file actually stored on the
server. In the following, we analyse the security of our solu-
tion that is based on challenging the client on the value of
K bits randomly chosen over the file that C̃ claims to pos-
sess. Before exploring the security of s-POW, we remind the
reader that the cryptographic digest d of the file f does not
play any role in the security of the scheme, as we assume
that this short value can be obtained by C̃.

In accordance with the working hypothesis given in Sec-
tion 3, we can assume that C̃ owns (or has access to) a
fraction p = (1 − ε) of the file. When confronted with a
single-bit challenge posed by the server, two cases can oc-
cur: first, the requested bit belongs to the portion of the file
in C̃’s availability – let us indicate this event with w. This
can happen with probability: P (w) = (1 − ε). Otherwise,

we can assume C̃ performs a (possibly educated) guess that

results in a success probability g. Therefore, C̃ can succeed
on a single-bit challenge (P (succ1)), under the assumption
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Figure 1: Comparison of the running time of each
of the three main operations executed in s-POW as
the input file size grows.

that ε > 0, with probability

P (succ1) = P (succ1 ∧ (w ∨ w̄))

= P (succ1|w)P (w) + P (succ1|w̄)P (w̄)

= P (w) + gP (w̄)

= (1− ε) + g(1− (1− ε)))
= 1− ε(1− g)

However, C̃ is confronted with K challenges, each being
i.i.d. from the others. Therefore, the probability that C̃ can
successfully pass the check (P (succ)) is

P (succ) = (1− ε(1− g))K (1)

Equation 1 completely characterizes our security model.
Indeed, once reasonable values are set for ε and g, and given
a security parameter k, an appropriate value of the param-
eter K of s-POW– assuring that P (succ) ≤ 2−k – can be
simply derived as:

K =

⌈
k ln 2

ε(1− g)

⌉
(2)

Note that – in its present formulation (cf. Algorithm 1) –
s-POW trades information-theoretical security for improved
space efficiency, by deriving challenge seeds from a master
secret. A simple way of achieving information-theoretical
security would be in Algorithm 1 to generate a fresh random
seed s for each new challenge, and to save it together with
its pre-computed response.

Finally, note that equations 1 and 2 also highlight that
K is not affected by the length of the file, because the only
parameters involved are ε, the fraction of the file unknown
to C̃ and the value g.

4.2 s-POW1
In this section we propose a first improvement to s-POW.

Given the extreme simplicity of s-POW, it may seem that
there is very little room for optimization. Indeed, as we have
seen in the previous section, the number K of bits the client
is challenged on is a function of the security parameter of
the scheme. Therefore, any reduction in K will inevitably
alter the overall security of the scheme.

Section 5 describes the results of the benchmarking on our
scheme. We will, however, already mention one of the re-

sults here to give the reader an idea of our improved scheme:
Figure 1 shows the evolution of the clock cycles spent by the
client in the execution of the three main components of s-
POW as the size of the file grows. The three components
are the I/O time, i.e., the time spent to access the file on
disk and to load it in main memory, the hash time, i.e., the
time spent in the computation of the hash digest of the file,
and finally the time spent in the execution of Algorithm 2.
Notice that the I/O and the hash time are by far more ex-
pensive than Algorithm 2. It is natural therefore to try to
reduce the cost of these two components.

Let us recall that the computation of the hash is required
because the server needs to be able to uniquely identify the
file among those already stored (if this is the case) to com-
pute the appropriate challenge seed and to compare the
response of the client with the pre-computed one. How-
ever, the cryptographic properties of standard hash func-
tions (one-wayness, preimage resistance and second preim-
age resistance) are not strictly needed in this setting. In-
deed, the properties we are looking for are such that the
hash function may be replaced with another function that:
i) has a small probability of producing the same output given
different files as input; ii) is computationally less expensive
than a hash; and, iii) minimizes the required I/O.

Algorithm 2 is an excellent candidate for such a function,
as it has a very small computational footprint and requires
only a minimum number of I/O operations to retrieve the
bits that constitute the output of a challenge. Consequently,
we modify the overall protocol as shown in Algorithm 4.

ALGORITHM 4: Changes in the protocol of s-POW to achieve

s-POW1.

Input: A file f .
C : upon upload of file f do

invoke Algorithm 2 on input file and spub to get d;
send to SRV a store file request with d;

end

The main difference with respect to the original version of
the protocol for s-POW as shown in Algorithm 3 is that – at
the client-side – Algorithm 2 (on input of a public seed spub,
randomly generated and published as a parameter of the
system) is invoked instead of the hash functionH to generate
the file digest d. As we shall see in Section 5, this change
achieves a significant improvement in the performance of the
scheme, especially at the client-side. Indeed, it is no longer
necessary to scan the entire file to compute its hash, but only
to perform a relatively small number of random accesses to
its content.

To tolerate the scenario in which multiple files have the
same digest d (produced by the invocation of s-POW on
input of the public seed), the server has to keep a one-to-
many map (instead of the previously used one-to-one map)
between the output of the indexing function and the tuple
containing indexes, file pointer, and array of pre-computed
responses. In this scenario, the server would receive a single
resp and compare it with all the pre-computed responses
for all files indexed by the same value of d. If none of them
matches, the client is uploading a new file. If one matches,
the server concludes that the client owns the file associated
with the matching precomputed response. However, this
approach comes at the expense of a slightly higher usage
rate of the precomputed challenges. Indeed, imagine that



there are two files f1 and f2 with the same digest d: a client
owning f1 engages in the POW protocol with the server and
receives a challenge seed FSMK (d||i) for some value i of the
current counter; that seed can no longer be used for a client
owning f2 because if the challenge is leaked, a user colluding
with C̃ could precompute the correct response and send it to
C̃. Not reusing challenges that have been disclosed implies
that the usage rate of challenges for files indexed by the same
key d is equal to the sum of the rates of requests for each
of these files. However this does not constitute a problem,
because the server has abundant computational power and
can regularly schedule the pre-computation of challenges in
periods of low system load.

4.2.1 Security Analysis of s-POW1
The security of the scheme is unchanged: indeed, even

if an attacker were able to produce the correct value d for
a given file (for instance, by receiving it from an accom-
plice), it would still need to generate the correct response to
the challenge of the server. However we have shown in Sec-
tion 4.1.1 that the probability of this happening is negligible
in the security parameter.

The cryptographic hash function H previously used for
indexing was collision resistant by definition. As explained
above, H has been replaced with an s-POW invocation on
input of a public seed. We therefore need to quantify the
collision probability of such an indexing function, i.e. the
probability that the digests d1 and d2 of two different files
f1 and f2 are equal. We can derive this probability by
assuming that two files are similar with a given probability
z (z expressing the percentage of the bits of the two files in
the same position that show the same value). Hence, for M
files we have the probability of collision P (coll):

P (coll) ≤

(
M

2

)
P (d1 = d2)

≤ M2

2
P (d1 = d2) =

M2

2
zK (3)

where K is the parameter of s-POW mentioned in the pre-
vious section. The above probability can still be considered
negligible for practical instantiations of the scheme. For in-
stance, for M = 109, z = .95 and3 K = 1830, P (coll) ≤
2−75.

However, let us assume that collisions do happen. Then,
as explained above, an invocation of the mapping F on d
would return a set of m files. We then need to quantify
the additional advantage that an adversary might have in
passing the proof of ownership given that the server has
to compare the client’s response with m pre-computed ones
instead of a single one. Let ri be the event that resp∗, the
response received by C̃ equals respi, the i-th precomputed
response of one of the m files in the set. Then it follows that
the probability P (succ) of C̃ of succeeding the test over at
least one out of the m files is

P (succ) = P (r1 ∨ . . . ∨ rm) ≤ mP (succri)

= m(1− ε(1− g))K (4)

where the term (1 − ε(1 − g))K comes from Equation 1.
From 4 we conclude that m can therefore become an addi-
tional parameter of the system and can contribute to the

3See Section 5 on the sizing of the parameter K.

determination of the parameter K, even though its effect
over K is only logarithmic: major changes in m will have
very little effect over the value of K.

Another aspect we need to consider for the case in which
an invocation of the mapping F on d returns a set of m files,
is the probability that there are collisions among the m pre-
computed responses for a given value of the index F[d].idu;
that is, the F[d].idu-th pre-computed response for file fi is
equal to the F[d].idu-th pre-computed response of file fj ,
i 6= j, and the digest di of fi is equal to the digest dj of
fj . However, this happens with a negligible probability as
shown in Equation 3, by substituting M with m; moreover,
m << M .

4.3 Distribution of File Sizes and s-POW2
Further improvements may be achieved if another, less

expensive candidate for the indexing function of the file can
be found.

Here we consider using the size f.size of a file f as a candi-
date for the indexing function. This approach clearly meets
the last two requirements outlined in Section 4.2, because it
optimizes both I/O and computation.

ALGORITHM 5: Changes in the protocol of s-POW to obtain

s-POW2.

Input: A file f .
C : upon upload of file f do

d← f.size;
send to SRV a store file request with d;

end

Algorithm 5 shows the changes to the client-side intro-
duced in this version of the protocol. As we can see, no
computation – beside determining the size of the file – is
required of the client.

We have explained in Section 4.2 how to cope with col-
lisions in the indexing. However, we still need to verify
whether the file size constitutes a good indexing function,
i.e. whether in practice, the likelihood that two different
files have the same size is tolerably small.

To this end, we have studied the distribution of file sizes
over two independent datasets, the Evans and Kuenning
dataset [8], containing information on approximately 3 mil-
lion files and the Agrawal et al. dataset [1], for which we only
focused on a subset of approximately 200 million files. The
two datasets capture (among other information) the sizes
of the files observed in the computers of an academic cam-
pus and of a large corporation, respectively. Both datasets
contain snapshots of the entire content of filesystems in an
academic and an industrial environment, respectively. Both
datasets are extremely relevant for our scheme, because they
would correspond to users backing up (possibly in a storage
cloud) their entire hard-disk drives.

The objective of our analysis is to verify the intuition that
– especially for large files, i.e. those for which computing
another indexing function is more expensive – the size of a
file can become a very effective file indexing function. To
this end we have extracted from both datasets a unique file
identifier (e.g. the hash of the filename) and the file sizes.
After purging doubles, we have counted the number of files
with equal size.

Figure 2 shows the results of the analysis. For each dataset
we show two curves: the first one plots the distribution (with
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Figure 2: Plot of the distribution of file sizes for files
in the entire dataset (with power-of-two bins) and
of the average number of files per bin (with power-
of-two bins) with the same size for both datasets.

power-of-two bins) of file sizes for files in the entire dataset;
the second plots the average number of files with the same
size per bin. Notice that we have tried to only count different
files with the same size: when available, the hash of the
file has been used to establish whether two files were the
same; otherwise, we have used a combination of file name
and creation timestamp.

First of all, we can observe that for both datasets, the dis-
tribution of file sizes has a similar shape, albeit that of the
first dataset is shifted higher by two orders of magnitude be-
cause of the larger file population. Both distributions of files
with the same size have similar shape: we can see that in
both cases there is a relatively constant number of files with
the same size up to around 10 KiB, after which both curves
plunge. In both scenarios, the size virtually starts to behave
as a unique identifier for files larger than approximately 1
MiB, even though the number of files in the considered bin
is still relatively high: for example, in the 1 Mib to 2 MiB
range, we have 1,784,136 and 10,819 files in the first and sec-
ond dataset respectively and the average number of files with
the same size is 1.9 and 1.2 respectively. Clearly, the num-
ber of files with the same size decreases also because each
bin is wider and less and less populated: however these dis-
tributions portray very likely the ones a file-storage service
may receive as input from its customers—and it is therefore
of high significance for this paper. Far from claiming to be
exhaustive, our study nonetheless strongly supports the use
of file-size for indexing purposes in our scenario.

4.3.1 Security Analysis of s-POW2
Similar considerations to those made in Section 4.2.1 ap-

ply to s-POW2: the influence of the number of files with the
same size on the choice of the system’s parameters has been
captured in Equation 4. Intuitively, the approach suggested
in s-POW2 is particularly effective for files with large size,
because: i) as shown, the probability of collision is low; and,
ii) avoiding the computation of another indexing function
on a very large file is particularly cost-effective.

In Section 6.1 we leverage this consideration and those
made in the previous sections to obtain a particularly effec-
tive scheme.

5. RUNNING POW
To evaluate the effectiveness of our scheme, we have im-

plemented both b-POW and s-POW and its two variants,
s-POW1 and s-POW2.

The code has been developed in C++ using the OpenSSL
crypto library for all cryptographic operations and using
the Saito-Matsumoto implementation [15] of the Mersenne
twister [13] for the pseudo random number generator. The
code implements both the client-side and the server-side of
all schemes. The interactions between client and server as
well as the data exchange have been virtualised so as to not
consider networking-related delays and to focus only on local
(client and server) I/O and computation.

5.1 Experimental Settings
We have run our implementation of both schemes on a

64-bit RedHat box with an Intel Xeon 2.27GHz CPU, 18
GiB of RAM and an IBM 42D0747 7200 RPM SATA hard
disk drive. All schemes operate on input files that have
been generated at random; the input file size ranges from
1 MiB to 4 GiB, doubling the size at each step. The files
are reasonably well defragmented, with a maximum of 34
different extents on the 4 GiB file.

The parameters for b-POW have been chosen in strict ad-
herence with the choices made in [9]. We have also used the
same security parameter k = 66. Our scheme has two pa-
rameters, ε = (1− p) and g. The values of these parameters
are needed to derive a value for K in Equation 2. We have
chosen p, the upperbound on the fraction of the file known
to the adversary, as p ∈ {0.5, 0.75, 0.9, 0.95}. As for g, this
parameter measures the probability that the adversary suc-
cessfully guesses the value of a bit without knowing it. To
assign a reasonable value to g, we have analysed what the
probability of guessing a bit in an ASCII file with lower-
case letters written in the English language is, arguably a
relatively conservative case with low entropy in the input
distribution. Given the letter frequency analysis in [12], the
probability that a given bit equals one is 0.52731. In addi-
tion, Equation 2 shows that slight changes in the value of g
do not sensibly affect the value K. We have therefore chosen
g = 0.5.

Each configuration has been run for at least 200 times; be-
fore each repetition, cached data, dentries and inodes have
been flushed (at both the client- and at the server-side) to
ensure accurate measurements. To perform the comparison
of the different schemes, the code has been instrumented by
surrounding relevant code blocks and functions with calls to
extract the Intel Time Stamp Counter through the RDTSC
assembly instruction. The figures below have been generated
by reporting the mean value and the standard deviation (us-
ing a box plot) of the extracted clock cycle count.

5.2 Client-Side
Here we compare the client-side performances of b-POW

with those of s-POW, s-POW1 and s-POW2. The imple-
mentation of b-POW first loads the file into main memory,
where the various phases of the scheme are performed: the
reduction phase (which also results in the computation of
the SHA256 hash digest of the file), the mixing phase and
the calculation of a binary Merkle tree on the resulting re-
duction buffer.

On the client-side of s-POW, the input file is loaded into
memory, the hash digest is computed and then Algorithm 2
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Figure 3: Comparison of the running time of b-POW
with that of s-POW for different values of K as the
input file size grows.

is executed. Figure 3 shows the results of the experiments
assessing the performances of the two competing solutions:
s-POW is faster than b-POW– from ten times to twice as
fast. The complexity of both schemes grows at an approx-
imately equal rate as the input file size grows. The reason
for this is that – as previously mentioned – reading the file
and computing the hash are by far the predominant oper-
ations for both schemes. The discontinuity in the curve of
b-POW– noticeable around 64 MiB – is due to the fact that
64 MiB is the maximum size for the reduction buffer. There-
fore the computational cost of the reduction phase reaches
its maximum at 64 MiB and remains constant afterwords.

For s-POW1, the computation of the hash is replaced by
an initial invocation of Algorithm 2. Note that, as access
to the entire content of the file is no longer needed, the
file is no longer loaded into memory. Indeed, only random
disk accesses are needed to fetch the required bits. Figure 4
shows that this second version improves the scheme’s per-
formance with respect to that of b-POW. We can see how
the computational cost of our scheme reaches a plateau for
sufficiently large files, because – regardless of the input file
size – the computation required is essentially constant. The
growth rates of the two schemes are now markedly differ-
ent: b-POW grows linearly with the input file size whereas
s-POW1 is asymptotically constant. In addition, the influ-
ence of the parameter K starts to become visible.

5.3 Server-Side
At the server-side, we have identified two main phases:

the initialization phase and the regular execution phase. The
initialization phase corresponds to the first upload of the file;
in both schemes, this phase starts with the computation of
a hash digest of the file. Then comes the reduction and
mixing phases for b-POW, or Algorithm 1 (with n set to
10000) for our scheme. The implementation of Algorithm 1
has been optimized by pre-computing all bit position indexes
at once (for all n pre-computed challenges) and by sorting
them before performing the file access operations to fetch the
corresponding bits. This optimization allows us to only scan
the file at most once, thus avoiding the performance penalty
associated with random, non-sequential file accesses.

The regular execution phase includes the operations that
have to be executed by the server upon each interaction with
the client. In b-POW, this phase requires verification of the
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correctness of the sibling path in the computed Merkle tree
for a super-logarithmic number of leaves (we have picked
this number to be 20 as in [9]). In contrast, in our scheme,
if we factor out the table lookup required to retrieve (from
the received file index) the correct data structure holding
the state for the given file, our protocol only needs to verify
the equality of two short bit strings. The related overhead
is therefore negligible. However, our scheme also requires
regular re-executions of Algorithm 1 to pre-compute new
challenges: we will therefore include this in the regular exe-
cution phase.

Figure 5 shows the performance of the initialization phase:
the cost of b-POW grows – as explained in the previous sec-
tion – with the same rate as the cost of reading the entire
file. Our scheme exhibits an essentially constant computa-
tional cost up to a certain point, and a cost similar to that
of b-POW (linear with the cost of reading the entire file)
from that point on. The reason for this is that the over-
head of generating the n · K challenges, sorting them and
maintaining the data structure with all bit vectors is con-
stant: for small files, this overhead is higher than the cost
of reading the entire file and thus prevails. After the input
file has reached a critical size however, the cost of reading
the file becomes dominant. The reason for this asymptotic
behaviour is that with high probability, reading n · K bit
positions in the file requires fetching most data blocks of the
file, which is roughly equivalent to reading the entire file.

Figure 6 compares the performance of 10000 repetitions
of the regular execution phase for both schemes. b-POW
exhibits an essentially constant computational cost as the
number of leaves of the Merkle tree is relatively low and
does not grow past 64 MiB. The computational costs for
this phase of our scheme are the same as those shown in
Figure 5 minus the hash computation which is no longer re-
quired. We would like to emphasize however that Figure 6
shows a comparison between the on-line computation re-
quired by the verification phase of b-POW and the off-line
computation required to generate the challenges: the for-
mer requires readily available computation power regardless
of the load of the system (since delaying client requests is not
acceptable); the latter is a computation that can be carried
out when the system load is low.
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6. COMPARISON AND DISCUSSION
In light of the analysis performed in the previous section

we are now ready to compare the state of the art solution
and our proposals. Table 1 compares b-POW, s-POW and
s-POW1 in terms of computational cost, I/O, storage and
bandwidth requirements; we omitted s-POW2 from the com-
parison as it has the same asymptotic costs as s-POW1.

On the client-side s-POW and s-POW1 are far less de-
manding than b-POW from both the computational and the
I/O perspective. This is a highly desirable characteristic, as
the end user will receive a better service. Such lower de-
mands on the client-side are compensated by an increase of
the footprint on the server-side. However the design of the
scheme allows the server to distribute computation and I/O
over time, and to carry them out in moments of low system
load.

From a computational perspective on the client-side, both
b-POW and s-POW are dominated by the cost of calculat-
ing the hash of the file whereas s-POW1 has a constant cost
that only depends on the security parameter K, and is inde-
pendent of the input file size. Similar considerations can be
made when investigating the client-side I/O requirements.

On the server-side we have made separate considerations
for the initialization and for the regular execution phase.
In the initialization phase, b-POW and s-POW are once
more dominated by the computational and I/O cost of the
hash calculation, whereas s-POW1 only requires the pre-
computation of n challenges. The regular execution phase
is particularly cheap for b-POW as no I/O and only con-
stant computation are required. s-POW and s-POW1 re-
quire regularly replenishments of the stock of precomputed
challenges. However, this operation can be performed offline
in moments of low system load. Furthermore, files are often
regularly read at the server-side as part of standard manage-
ment tasks anyway (e.g. periodic integrity checks, backup,
replication); in this case, the I/O cost of the response pre-
computation phase, which is by far the predominant cost,
can be factored out.

As for server-side storage, b-POW requires only the root
of the Merkle tree to be stored, whereas s-POW and s-POW1
require storing the pre-computed challenges. We emphasize
however that the number of responses to be pre-computed is
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a tunable parameter. Furthermore, the size of the responses
is independent of the input file size – usually only a negligible
fraction of the latter. For instance, storing 1000 responses,
each 1830 bits long, would require less than 230 KiB.

Finally, the b-POW scheme requires the exchange of a
super-logarithmic number of sibling paths of the Merkle tree
between client and server, whereas s-POW and s-POW1 only
require the exchange of a k-bit string.

ALGORITHM 6: Changes to s-POW to obtain s-POW3.

C : upon upload of file f do
if h← H(file) available for f then

d← h;
else

if f.size < t1 then
d← H(file);

else if t1 ≤ f.size < t2 then
invoke Algorithm 2 on input file and spub to get d;

else
d← f.size

end

end
send to SRV a store file request with d, including the
indexing mechanism used;

end

6.1 Putting it All Together: s-POW3
Based on the analysis of each version of our scheme, we

now suggest a further variant combining the different opti-
mizations presented to obtain the best performance. The
rationale behind this last optimization is based on the fol-
lowing considerations: i) the cost of computing a standard
cryptographic hash (e.g. SHA-1) for small files is negligible;
ii) based on the file size distribution in common datasets,
and on the distribution of files with the same size, the file
size is a good indexing function for file sizes of 1 MiB and
more; iii) often the hash digest of a file is already available at
the client-side; for instance, several peer-to-peer file sharing
clients compute and/or store the hash of downloaded files.

Algorithm 6 shows the changes required in Algorithm 3 to
obtain s-POW3. In particular, the server always accepts a
digest from the client if available, and uses it as the lookup
key (this requires the server to compute the digest of new



b-POW s-POW s-POW1

Client-side computation O(m) hash O(m) hash O(k) PRNG
Client-side I/O O(m) O(m) O(k)
Server-side computation (initialization phase) O(m) hash O(m) hash O(nk) PRNGa

Server-side computation (regular execution phase) O(1) O(nk) PRNGa O(nk) PRNGa

Server-side I/O (initialization phase) O(m) O(m) O(nk)b

Server-side I/O (regular execution phase) 0 O(nk)b O(nk)b

Server-side storage O(1) O(nk)a O(nk)a

Bandwidth O(k log k) O(k) O(k)
a For the precomputation of n challenges.
b For the generation of n challenges; if n is sufficiently large, it is bounded by O(m).

Table 1: Performance analysis of the schemes; m represents the input file size, k is the security parameter.
As explained in Section 4.1.1, the more precise formulation for O(k) in our scheme is shown in Equation 2.

files, but this is very likely performed for integrity protection
anyway). If not, two thresholds are set: for files smaller than
t1, the client has to compute the hash digest; for files in the
t1 to t2 range, the approach of s-POW1 is used; whereas for
very large files (size greater than t2), the file size (and thus
the approach of s-POW2) is used.

7. CONCLUSIONS
We have presented a suite of novel security protocols to

implement proof of ownership in a deduplication scenario.
Our scheme is provably secure and achieves better perfor-
mance than the state-of-the-art solution in the most sensi-
tive areas of client-side I/O and computation. On the server-
side, I/O and computation can be conveniently deferred to
moments of low system load. Note that the proposed solu-
tions are fully customizable in the system parameters. Fi-
nally, extensive simulation results support our findings.
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