
A Tunable Proof of Ownership Scheme for Deduplication Using

Bloom Filters

Jorge Blasco
Carlos III University of Madrid, Spain

jbalis@inf.uc3m.es

Agustin Orfila
Carlos III University of Madrid, Spain

adiaz@inf.uc3m.es

Roberto DI Pietro
Università di Roma Tre, Italy

dipietro@mat.uniroma3.it

Alessandro Sorniotti
IBM Research – Zurich, Switzerland

aso@zurich.ibm.com

June 18, 2014

Abstract

Deduplication is a widely used technique in storage services, since it affords a very
efficient usage of resources—being especially effective for consumer-grade storage services
(e.g. Dropbox). Deduplication has been shown to suffer from several security weaknesses,
the most severe ones enabling a malicious user to obtain possession of a file it is not entitled
to. Standard solutions to this problem require users to prove possession of data prior to
its upload. Unfortunately, the schemes proposed in the literature are very taxing on either
the server or the client side. In this paper, we introduce a novel solution based on Bloom
filters that provides a flexible, scalable, and provably secure solution to the weaknesses of
deduplication, and that overcomes the deficiencies of existing approaches. We provide a
formal description of the scheme, a thorough security analysis, and compare our solution
against multiple existing ones, both analytically and by means of extensive benchmarking.
Our results confirm the quality and viability of our approach.

1 Introduction

Cloud storage offers highly-available, virtually infinite and quick-to-scale storage; with its flex-
ible pay-as-you go model, in recent years it has attracted new customers by the score. Coupled
with dropping prices, the cloud paradigm has turned storage into a commodity [16]. The de-
creasing cost of storage media, the use of multi-tenancy, competition between cloud providers
and the efficient use of the storage backend through compression and deduplication can be listed
amongst the reasons for low-price high-quality cloud services, such as cloud storage services.

One of the techniques used to reduce the cost of cloud storage services is deduplication,
which is currently implemented by providers such as Bitcasa [5] and Ciphertite [7]. In essence,
deduplication avoids storing multiple copies of the same data. As an example, multiple copies
of popular content (e.g. a song, a movie, a game) need to be stored only once upon the first
upload; subsequent upload requests can be discarded and only require establishing a link from
the uploading user to the original copy of the content. Deduplication can be performed very
effectively at both file or block level: deduplication ratios vary from 2:1 to 50:1 for the same
application by the same vendor depending on the setup and the input dataset [12].

1

Deduplication can take place at the client side (i.e. before the upload) or at the server side
(i.e. after the upload). If deduplication is triggered at the client side it is more efficient, as it
saves upload bandwidth. This is specially beneficial for service providers, due to the fact that
network activity is the most energy-consuming task for cloud storage providers [3]. To avoid
the transmission of the entire file content, but still allowing to check for its existence at the
server side, clients are usually asked to generate a much shorter version of the file (a digest)
and to use that digest to uniquely identify the file. The standard approach is to interpret the
upload of a digest by a client as a proof that the client actually owns that file.

In their seminal work, Harnik et al. [13] first spotted the security weaknesses hidden behind
this strategy. First, the privacy and confidentiality of users of a storage system can be compro-
mised by an attacker that checks if another user has already uploaded a file by trying to upload
it as well. If the upload does not take place, it means the server already stores it. This can be
extremely dangerous if the file is very rare or private (e.g. a payslip). Second, deduplication
can be abused to turn the service provider into a covert channel. Two colluding users with no
direct connectivity can establish a protocol to exchange information stealthily. For instance,
to exchange one bit of information, one of the users checks if a previously-agreed file has been
uploaded or not during a certain time window. If the file was uploaded, the user can consider
that a 1 has been transmitted (and 0 otherwise). Finally, a cloud storage service can be used
as a content-distribution network (CDN). In such a case, a user can share large files with other
users just by exchanging the corresponding digests. A real-world example of this attack was
Dropship [8].

The root-cause of these threats lies in the fact that proof of ownership solely relies on the
knowledge of a static, short piece of information (the digest). In order to mitigate this problem,
the concept of “Proof of Ownership” was introduced by Halevi et al. [11]. A PoW scheme
is a security protocol used by a server to verify that a client owns a file. A PoW scheme is
considered secure if the probability of being able to fraudulently prove the ownership of a file is
negligible in the security parameter, even if the attacker possesses a relevant part of the file [9].
Additionally, other important features of PoW schemes are their computational efficiency, in
terms of bandwidth and I/O, for both legitimate clients and the server. Also, PoW schemes
should not require the server to load the file (or large portions of it) from its back-end storage
at each execution of PoW.

Contributions. In this paper we present a novel PoW scheme based on Bloom filters that
competes with the state of the art proposals in terms of security guarantees and performance.
A Bloom filter is a space-efficient randomized data structure used to check the membership of
elements in a set. Bloom filters offer a trade-off between the size of the data-structure used to
represent the set and the number of false positives that can occur when testing membership.
Bloom filters have been successfully used in other domains of computer security [10]. However,
to the best of our knowledge, they have never been applied to proof of ownership schemes. Our
approach is more efficient at the client side than the solution proposed by Halevi et al. [11] and
more efficient at the server side than the proposal by Di Pietro et al. [9]. The proposed solution
is detailed and a thorough analysis of its security and efficiency is provided. Finally, extensive
benchmarking supports the quality and viability of our proposal.

Roadmap. The rest of this document is structured as follows. Section 2 examines the
related work. Section 3 introduces the requirements and model of an efficient scheme for proof
of ownership, details our solution and formally analyses its security. Section 4 presents the
results of our comprehensive benchmarks, where the performance of each different phase of
our scheme is compared to that of the two competing solutions in the state of the art; finally,
section 5 contains our concluding remarks.

2

2 Related Work

The seminal work of Harnik et al. [13] showed the shortcomings of client-side deduplication,
and presented basic solutions to address privacy and confidentiality threats, such as triggering
deduplication only when the same file has been uploaded a small, but random, number of
times. Not knowing the exact threshold, the attacker cannot be certain whether the file had
been previously uploaded. Later, Halevi et al. introduced the concept of Proof of Ownership
[11] as a security control to effectively counter the shortcomings of deduplication. The authors
presented three distinct PoW schemes based on Merkle trees [17] built on the content of the
original file. All three schemes are based on the server challenging the client to provide valid
sibling paths for a given random subset of tree leaves. Both server and client build the Merkle
tree but the server only keeps the root node. Any time a client wants to prove the ownership
of a file, the server asks for a super logarithmic random number of leaves of the Merkle tree.
The server uses the received leaves and sibling paths to compute the root of the tree, and if
it matches with the stored one, the proof of ownership is considered successful. Halevi et al.
proposed three different ways to build the Merkle tree. The first one builds it from an erasure
coding of the original file in order to “spread” unknown blocks of the file over a high number
of blocks of the corresponding erasure coded version. Unfortunately, erasure coding is not I/O
efficient and the input to the Merkle tree construction phase is a buffer whose size is greater
than the file itself. The second scheme uses a hash function instead of an erasure coding, to the
same end. They use a reduction buffer of 64 MiB to discourage sharing it among colluding users.
Although this scheme is more efficient than the previous one it also incurs a high computational
cost associated with hashing. In the third scheme, the server generates a sparse linear file when
it receives a file for the first time by performing a set of reduction and mixing phases over the
file contents. It is also assumed that the requirement of sharing 64MB among colluders would
discourage them. For this third PoW they measured the client and server execution times, the
network times and the time savings introduced by deduplication.

Di Pietro et al. [9] proposed a PoW scheme based on a challenge/response mechanism.
Every time a file is uploaded to the server, the latter computes a set of challenges for that file
and stores them. Each challenge is a PRF seed; the challenge seed is expanded to a number
of bit positions in the file, and the response is the concatenation string of the bit values at
the requested positions. Clients prove knowledge of a file by returning the correct string. This
solution improves the one presented by Halevi et al. in terms of efficiency and bandwidth
consumption at the client side, while requiring more computation at the server side (challenges
have to be recomputed when they are exhausted). A similar proposal, but considering full file
blocks, is proposed in a US patent [14]. Every time a user wants to prove ownership of a file, the
server requests the content of a specific block of the file. In order to prove the ownership of the
file, the client must send the whole block to the server. If they match, the server considers that
the client owns the file. After each request by a client, the server refreshes the indexes to ask
for. Other works present slight variations of the three schemes described so far [18, 22, 20, 21].

A related line of work takes into account the usage of end-to-end encryption to protect
users’ data. To allow deduplication under these restrictions, convergent encryption can be
used [19]. The rationale behind this idea is to use information that can only be extracted from
the plaintext file (available to all file owners) to encrypt the file prior to uploading it to the
server. Thus, all file owners can derive the key to decrypt the file and the server only needs to
store one encrypted version of the file. Although convergent encryption can be extremely useful
to perform deduplication on popular files, it does not provide semantic security as it is vulnerable
to content guessing attacks [4]. In this paper we focus on PoW and we do not consider the usage

3

of any kind of encryption that eliminates the possibility of performing deduplication. Related
interesting problems in cloud storage are Provable Data Possession (PDP) [1, 2] and Proof of
Retrievability (PoR) [15] that deal with the dual problem of ensuring –at the client-side– that
the server still stores the files.

3 Bloom filter Proof of Ownership Design

In this section we describe in detail our proposal. We start by describing the main building
block, Bloom filters. We then formally introduce our scheme and constitutive algorithms.

3.1 Preliminaries

Bloom filters (BF) [6] are probabilistic data-structures used to represent sets of elements and to
perform membership queries over them. The main advantage of Bloom filters is their memory
and time efficiency, since they require less space than other data structures to store elements
in the set, and less time to perform membership queries. The additional efficiency is traded for
accuracy, since an element that is not in the set may be recognized as being part of it (false
positives). False negatives, on the other hand, cannot occur by construction.

When a BF of size s is initialized, a vector of s bits is allocated, with its elements set
to 0 (InitBF (s) : BF ← {b0, b1, . . . , bs−1}). The BF requires k independent hash functions
{h0, h1, . . . , hk−1} that are able to generate uniform random distributions of values between
0 and s − 1. To insert an element e into the BF, the element is hashed with all k hash
functions, and the bits at the positions corresponding to the output of the hash functions are
set (AddToBF (e,BF) : BF [hi(e)] ← 1, i ∈ [0, k − 1]). Checking if the bloom filter contains a
particular element requires it to be hashed with all k hash functions: if any of the bit positions
corresponding to the output of the hash function is equal to 0 in the filter, the element is
definitely not in the set. Conversely, either the element belongs to the set or a false positive
occurred. That is, InBF (e,BF) : ⊥ ⇔ ∃i ∈ [0, k − 1] : BF [hi(e)] = 0.

The parameters of a Bloom filter are the total number N of elements to be inserted in the
filter and the desired probability pf that a false positive occurs; that is, the probability that
InBF (e,BF) returns > but no prior call to AddToBF (e) was issued for the given element e.
Once these parameters are set, the size s of the filter can be determined as

s =

⌈
−
N ln pf

(ln 2)2

⌉
(1)

The optimal number of hash functions can then be determined as k =
⌈
s
N ln 2

⌉
.

3.2 System and Objectives

Our scheme describes the interactions between clients and a server S. Each client C has a
unique identifier id(C). Each client C uses S as a storage provider, uploading an arbitrary
number of files. For any given file f , the scheme behaves differently for the first and for
subsequent uploads. The server is able to distinguish first and subsequent uploads by means of
a file digest hf uploaded by the user: in particular, if the server receives a digest for the first
time, the upload is treated as initial; if the server has already received the digest over a previous
iteration from the same or a different client, the upload is treated as subsequent. For the first
upload of file f , the server: 1. requires the client to upload its content; and, 2. initializes a
set of data structures, including a Bloom filter, to be used during subsequent uploads of the

4

same file. When a file is uploaded again, the server challenges the client to prove knowledge of
the file, and verifies the responses provided by the client against the pre-computed information.
We say that a client’s PoW is successful if the client initiates a subsequent upload for a file f
and responds correctly to the challenges sent by the server. After a successful PoW, the client
legitimately owns the file, and can, later on, request its download.

The objective of a malicious client is to engage in a successful PoW run for a file he does not
own. A malicious client may collude with the legitimate owner of the file, but we assume that
the exchange of information does not take place interactively during the PoW challenge: that
is, we do not protect against an adversary who uses the rightful owner of a file as an interactive
oracle to obtain the correct responses to a PoW challenge. The objectives of the scheme can
be summarized as follows:

• security: a malicious client C̃ that does not own a file f in its entirety engages in a
successful PoW with negligible probability, given a security parameter κ;

• collusion resistance: a malicious client C̃ who does not posses file f must exchange a
minimum amount Smin of information with a legitimate owner of f in order to be able to
engage in a successful PoW for f ;

• bandwidth efficiency: the number of bytes exchanged between client and server upon a
PoW run should be minimized;

• space efficiency: upon a PoW run, the server should only be required to load a small piece
of information, whose size is independent of the input file size;

The first two objectives address the security requirements of the scheme: a malicious entity
succeeds in a PoW for file f with negligible probability or by exchanging ahead of time at least
Smin bytes with a colluding owner of f . The latter constraint is inspired by the work of Halevi
et al. [11] and acts as a negative incentive for a legitimate owner C to collude with a malicious
client C̃, forcing the former to issue a large enough network transfer to the latter. The last
two objectives set performance requirements for the scheme, attempting to minimize network
bandwidth and memory consumption.

3.3 Our Scheme: bf-PoW

Every time a client C issues a request to S to store file f , the hash (hf ← H1(f)) of that file is
computed and sent to the server, where H1 : {0, 1}∗ → {0, 1}n1 is a cryptographic hash function
and n1 is a positive integer. The server keeps an associative array A that maps strings of finite
size to 3-tuples; we use the dot notation to refer to components of tuples. The hash of a file hf
is the lookup key for A: A[hf].f contains the content of the file, A[hf].BF contains the bits of
a Bloom filter and A[hf].AL contains a list of identifiers of clients that own f .

Informally, our scheme has two separate phases: in the initialization phase, the server
receives a file for the first time, initializes a Bloom filter, splits the input file into chunks of
equal size, creates tokens for each chunk and inserts a function of each token in the Bloom filter
for that file. In the challenge phase, the server requests the client to upload a number of tokens
to prove its knowledge of the file.

Let H2 : {0, 1}B → {0, 1}l be a cryptographic hash function: the two system parameters
B and l represent the chunk size and the token size, respectively, and play an important part
in the security and performance of the scheme as we shall see later. The i-th chunk of file f
is identified with f [i]. Let PRF : {0, 1}l × {0, 1}∗ → {0, 1}n2 be a pseudorandom function,

5

Algorithm 1: Initialization phase.

Input: File f uploaded by client C
Output: The entry A[hf]
BF ← InitBF (s);
for i← 0 to N − 1 do

t← H2(f [i]);
e← PRF (t, i);
AddToBF (e,BF);

end
A[hf].f ← f ;
A[hf].BF ← BF ;
A[hf].AL← {id(C)};
return A[hf];

for a positive integer n2. Let us recall that the Bloom filter has two independent parameters:
the probability pf of false positives occurring and the number N of elements to be inserted:
given the size F of a file f and the chunk size B, the number of elements in the filter can be
determined as N =

⌈
F
B

⌉
. Finally, let κ be the security parameter and J be the number of

tokens the client is required to produce in the challenge phase.

Algorithm 2: Challenge phase – client side.

Input: A file f and an array pos of J indexes
Output: An array res of J tokens
for i← 0 to J − 1 do

res[i]← H2(f [pos[i]]);
end
return res;

The scheme operates as follows: the client computes and uploads the hash hf for file f . If
an entry for hf is not found in A, the server requests the client to upload the file and begins
the bf-PoW initialization phase (Algorithm 1). Firstly, a Bloom filter is created and the file is
split into chunks of equal size. Each chunk is used to generate the token t, which is in turn used
to seed a PRF; the PRF is evaluated on the chunk index and the output is inserted into the
Bloom filter. The Bloom filter, the file and the access list are inserted in the associative array.

If an entry for hf is found in A, the server generates an array pos of J randomly chosen
chunk indexes and sends it to the client. The client then performs his side of the challenge phase
(Algorithm 2): in particular, the client computes the token for each of the J chunk indexes
and sends all tokens to the server. The server can then execute its side of the challenge phase
(Algorithm 3): in particular, the server uses each token to seed the PRF, invokes the PRF on
the corresponding chunk index and checks whether each output string belongs to the Bloom
filter A[hf].BF for f : if all do, the server considers the PoW run successful and assigns f to C.
If not, the client has failed the PoW. Note that a malicious client may exploit the occurrence
of false positives in InBF to engage in a successful PoW run without the exact knowledge of
the content of the file; Section 3.5 will explain how the scheme handles such cases.

Finally, a client C may request the download of a particular file f by sending hf to the
server; if the file exists in the server, the latter will check whether id(C) ∈ A[hf].AL and send

6

Algorithm 3: Challenge phase – server side.

Input: The digest hf of a file f ; two arrays pos and res of chunk indexes and client
response tokens, respectively
Output: The outcome of the challenge
for i← 0 to J − 1 do

e← PRF (res[i], pos[i]);
if ¬InBF (e,A[hf].BF) then

return ⊥;
end

end
A[hf].AL← A[hf].AL

⋃
{id(C)};

return >;

b-PoW s-PoW bf-PoW

Client computation O(F) · hash O(F) · hash O(F) · hash
Client I/O O(F) O(F) O(F)

Server init computation O(F) · hash O(F) · hash O(F) · hash
Server regular computation O(1) O(n · κ) · PRF O

(
l·κ·(log1/pf)

pf

)
· hash

Server init I/O O(F) O(F) O(F)

Server regular I/O O(0) O(n · κ) O(0)

Server memory usage O(1) O(n · κ) O
(
log(1/pf)

l

)
Bandwidth O(κ · log κ) O(κ) O

(
l·κ
pf

)
Table 1: Complexity analysis of the bf-PoW against other proposals. F is the file size, κ is the
security parameter, n is the number of precomputed challenges in s-PoW. l is the PRF output
size, pf is the false positive rate of the BF.

A[hf].f to C if the check is successful.

3.4 Complexity

In this section, we analyse bandwidth and space complexity of our scheme, along with its
computational and I/O requirements. We compare our solution against the third and more
optimized scheme presented by Halevi et al. [11] and the approach proposed by Di Pietro et
al. [9]. We refer to b-PoW and s-PoW to refer to the two schemes, respectively. In all cases, we
analyse the upper bounds only and consider all hash functions to have the same computational
cost (hash). Results are summarized in Table 1. All PoW proposals require hashing the entire
file f for identification purposes. Although Di Pietro et al. [9] reduce this complexity by using
a function with similar properties but a smaller computational footprint, we choose to factor
out this optimization as it can be applied to all three schemes alike.

In the case of bf-PoW, the client is required to execute J times H2 over chunks of size
B (O(B · J) · H2). However, given that each time a client C issues a request to S, he must
calculate H1 over the entire file f , we conclude that overall computational cost is O(F). At
the server side, the computational cost of the initialization phase is dominated by the cost of
hashing elements to be inserted in the Bloom filter. Overall, this requires k hash operations

7

over the file. Regarding memory consumption, initialization requires loading the entire file into
memory. During regular execution, the server generates J pseudorandom bitstrings from the
tokens (of length l) received by the client res. To check for membership in the Bloom filter,
k hash functions are executed for each received token. The server is only required to load the
Bloom filter into main memory, and not the entire file. In b-PoW, the server is only required
to reconstruct the root of the Merkle-Tree with the received siblings. This requires transferring
the root of the Merkle-tree into memory, which is a negligible cost. In s-PoW, the server is
required to read the list of n precomputed challenges of size κ from disk.

In terms of bandwidth, bf-PoW requires J tokens to be sent to the server. This number
increases roughly linearly as the security parameter κ increases, and decreases proportionally
when the BF’s false positive rate increases pf . In the case of b-PoW, a super-logarithmic
number of sibling paths of the Merkle tree is exchanged between the client and the server.
Finally, s-PoW requires only K bits of the file chosen at random position to be sent to the
server, where K is a superlinear function of the security parameter κ.

3.5 Security

In this section we will analyse the security of the proposed scheme. Firstly. let us model the
adversary C̃: given a file f , the objective of the adversary is to engage in a successful PoW,
without actually possessing the file’s content in its entirety. As stated above, the scheme does
not protect against an adversary that uses a legitimate file owner as a real-time oracle supplying
the correct responses to the PoW challenges. However, the adversary is free to interact with
colluding clients prior to the PoW challenge. A simple way to model this interaction, taking
into account that C̃ may know parts of the file as well, is to bound the adversary’s knowledge
of the target file to a percentage p. This model also takes into account the knowledge of the
file gained by C̃ when possessing partial knowledge of the file content statistical distribution.
That is, given a byte of the file at a randomly chosen position, the adversary knows it with
probability p. We also assume that if the adversary does not posses a particular byte, it will be
able to guess it with probability g. It is easy to prove that the best strategy for the adversary
is to cluster its knowledge of the file into contiguous and aligned chunks of size B to obtain an
optimal probability of success. We will then refer to p as the probability that the adversary
knows in its entirety the content of a chunk of size B, whose position is chosen at random.

The PoW challenge requires the adversary to produce the tokens for J chunks at randomly
chosen positions. Once received by the server, the token is processed with the PRF and the
resulting bitstring is checked for membership in the Bloom filter. Let us focus on the generic
i-th position out of the J random positions requested by the server and define the event ini that
C̃ provides a token leading to a successful membership test in the Bloom filter. This happens
in either of two cases: i) the adversary produces the token correctly (let us call this event toki);
ii) a false positive occurs when checking membership in the Bloom filter. As discussed above,
the latter happens with probability pf . Then we can write

P (ini) = P (ini ∩ (toki ∪ toki))
= P (ini|toki)P (toki) + P (ini|toki)P (toki)

= P (toki) + pfP (toki) (2)

Let us at first notice that the adversary cannot answer with the content of another chunk (unless
the two are equal); this stems from the fact that the server will process the chunk index with a
PRF, using the chunk’s token as its seed. Let us now analyse the probability of the event toki

8

that the adversary can successfully produce the bits of the i-th token. Let also knowi be the
event that the adversary knows the i-th chunk—recall that the probability of this event is p.
At this point, the adversary either knows the chunk, and can therefore compute the token, or
does not; in the latter case, the adversary can either guess the B unknown bytes that compose
the chunk (the probability of a correct guess being gB under our simplifying assumptions) or
guess the l-bit output of H2 that is used to generate the token (the probability of a correct
guess being 0.5l, where 0.5 stems from the random oracle model and the assumption that each
bit outputted by H2 is truly random). Given that the token is always shorter than the chunk,
we postulate that – in the absence of other information – it is easier for the adversary to guess
the token. That is, we assume that gB << 0.5l;1 then we can write

P (toki) = P (toki ∩ (knowi ∪ knowi))
= P (toki|knowi)P (knowi) + P (toki|knowi)P (knowi)

= p+ (1− p)0.5l (3)

Plugging Equation 3 into Equation 2, we derive

P (ini) = p+ (1− p)0.5l + pf (1− (p+ (1− p)0.5l))
= p+ (1− p)0.5l + pf (1− p)(1− 0.5l)

= p+ (1− p)(0.5l + pf (1− 0.5l)) (4)

The adversary is challenged on J independent chunk positions. Therefore, we can compute the
probability of success (let us call the event succ) of the adversary as

P (succ) = P (ini)
J

=
(
p+ (1− p)(0.5l + pf (1− 0.5l))

)J
(5)

From Equation 5 we can derive a lowerbound for J that ensures P (succ) ≤ 2−κ, where κ is the
security parameter, as

J ≥ κ ln 2

(1− p)(1− (0.5l + pf (1− 0.5l)))
(6)

Equation 6 ensures that the first security requirement highlighted in Section 3.2 is satisfied. In
order to satisfy the second security requirement (collusion resistance) we need to ensure that a
legitimate client C needs to exchange at least Smin bytes with a malicious client C̃, in order for
the latter to run a successful PoW for an unknown file. Given that tokens are shorter than the
entire file chunk, the best strategy for the adversary is to request all tokens from the colluding
client2. Given that there are F

B tokens in a file f of size F , the token length l can be set as

l ≥ Smin
B

F
(7)

Note that Equation 7 holds only in the case of files whose size is bigger than Smin. For smaller
files, the adversary would circumvent the restriction by exchanging the file’s content instead.
Consequently, for smaller files, Smin must be scaled down to the file size itself.

1A more complete security analysis, that we leave as an item of future work, would estimate g from the source
entropy of the input file, for a large enough dataset, and would then be able to capture both strategies without
assuming that one is always more advantageous than the other.

2We do not consider the case of files with an extremely low entropy, whose chunks may be compressed down
to a size smaller than the corresponding chunk.

9

4 Experimental Results

This section presents an experimental comparison of our scheme with other PoW schemes in the
literature. We implement and benchmark our solution against the third and more optimized
scheme presented by Halevi et al. [11] and the approach proposed by Di Pietro et al. [9]. We
will refer to ours as bf-PoW, and will use b-PoW and s-PoW to refer to the other two schemes,
respectively. The three schemes are implemented in C++; the OpenSSL crypto library is used
as a provider for all crypto operations. In particular, H1 is implemented using SHA-1, whereas
the variable-length hash function H2 its implemented by using SHA-1 to produce a key for
RC4, and then encrypting as many zero-bytes as required to obtain l total bytes of ciphertext.
Finally, PRF is implemented using a SHA-1-based HMAC. Network interactions between server
and client are virtualised to eliminate benchmarking noise deriving from variations in network
latency and bandwidth. The benchmarks are run on an Intel Xeon 2.27GHz CPU with 18 GiB
of RAM running RHEL Server release Santiago (6.1). The input files contain random data, and
their size ranges from 1 MiB to 4 GiB, with the size doubled at each step.

We choose the parameters for all schemes as follows: to be consistent with the choices
in [11, 9], the security parameter κ is set to 66 and the threshold Smin is set to 64 MiB; finally,
the probability p that the adversary knows a chunk of the file, is set to {0.5, 0.75, 0.9, 0.95}.
Concerning the specific parameters of bf-PoW, the token size l is set to {16, 64, 256, 1024}
bytes, whereas the false positive rate pf of the Bloom filter is set to 0.1 (and the Bloom filter
is consequently sized). Note that Equation 6 fully characterizes the security of the scheme: the
scheme’s security is not affected by such a high choice of false positive rate, and such a choice
affords very small Bloom filters. Given these values, J is set to {102, 204, 509, 1017} according
to Equation 6; the chunk size B is set to satisfy Equation 7, given the values of l, Smin, and
the input file size.

4.1 Client Side

Here we compare the client-side performance of bf-PoW with that of b-PoW and s-PoW. In
particular, we focus on the challenge phase of the three schemes; that is, we focus on the uploads
of a given file f occurring after the first upload. The three schemes alike require the client to
load the file from disk and compute its hash (SHA-1 in all three cases). Then: for b-PoW,
the reduction phase, the mixing phase, and the calculation of a binary Merkle tree on the
resulting reduction buffer are executed; for s-PoW, the required number of random positions
(given the chosen parameters) is generated out of the received seed, and the bits of the file at
the corresponding positions are collected to form the response; finally, for bf-PoW, J tokens
are generated using Algorithm 2.

Let us at first analyse bf-PoW. Figure 1 focuses on Algorithm 2 of bf-PoW and plots its
running time when l is fixed to 1024 bytes and p varies, and when p is fixed to 0.95 and l
varies. From the first subplot we can see that as p grows, the running time of the algorithm
increases by a constant factor; from the second subplot we can see that as l grows, the running
time increase is more evident: this is due to the fact that, as the input file size grows, a larger
token size implies a larger chunk, whose hashing time increases. In both plots, the flat zone
before 64 MiB and the subsequent tilting is justified by the choice of Smin. Figure 2 shows the
overall client-side performance of the three schemes, including the time required to load the
file and compute the initial hash. We can see that file I/O and hash computation are by far
the dominant factors in this phase and that, asymptotically, all three scheme behave similarly.
b-PoW is the slowest of the three in this phase; the performance of bf-PoW is midway between

10

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000

C
lo

ck
 c

yc
le

s

File size (in MiB)

p = 0.5
p = 0.75

p = 0.9
p = 0.95

 1e+06

 1e+07

 1e+08

 1e+09

 1 10 100 1000

C
lo

ck
 c

yc
le

s

File size (in MiB)

l = 16
l = 64

l = 256
l = 1024

Figure 1: Execution time of Algorithm 2 as the input file size grows. The upper plot uses a
constant l = 1024 bytes and different values of p; the lower plot uses constant p = 0.95 and
different values of l.

11

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1 10 100 1000

C
lo

ck
 c

yc
le

s

File size (in MiB)

b-POW
s-POW, p = 0.95

bf-POW, l = 16, p = 0.95
bf-POW, l = 64, p = 0.95

bf-POW, l = 256, p = 0.95
bf-POW, l = 1024, p = 0.95

Figure 2: Execution time at the client side between different configurations of bf-PoW against
b-PoW and s-PoW, as the input file size grows.

s-PoW and b-PoW, closer to the former for smaller files and to the latter for larger ones. We
can also notice that different values of l (or of p) have little influence on the performance of the
scheme.

4.2 Server Side

According to the benchmarking framework proposed by Di Pietro et al. [9], we split the server
side into initialization and regular execution; the former covers the operations that take place
upon the first upload of a file, whereas the latter includes the steps executed by the server for
(w.l.o.g.) 10,000 subsequent uploads of the file. In all three schemes, the initialization phase
starts with the computation of the digest of the file. Then, for bf-PoW, we add the time required
to initialize the Bloom filter (Algorithm 1); for b-PoW, the same steps as in the client side are
factored in; finally, for s-PoW, 10,000 PoW response strings are pre-computed. For the regular
execution phase, each iteration of bf-PoW includes the time required by the server to verify
J tokens; b-PoW requires verification of the correctness of the sibling path in the computed
Merkle tree for a super-logarithmic number of leaves; and finally, much like the initialization
phase, s-PoW requires the pre-computation of 10,000 PoW responses to as many challenges,
and the equality test for the PoW response string (whose running time is negligible).

The first subplot of Figure 3 analyses the performance of Algorithm 1 for different token
sizes (varying p has no impact on this algorithm): in this case, contrary to what we noticed for
Algorithm 2, larger tokens imply a smaller total number of tokens and consequently, a faster
execution time. The second subplot compares the execution time of all three schemes. s-PoW is
the slowest; bf-PoW is faster than b-PoW for large tokens and slower otherwise, for the reasons
explained above.

12

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1 10 100 1000

C
lo

ck
 c

yc
le

s

File size (in MiB)

l = 16
l = 64

l = 256
l = 1024

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1 10 100 1000

C
lo

ck
 c

yc
le

s

File size (in MiB)

b-POW
s-POW, p = 0.95

bf-POW, l = 16, p = 0.95
bf-POW, l = 64, p = 0.95

bf-POW, l = 256, p = 0.95
bf-POW, l = 1024, p = 0.95

Figure 3: (Upper plot): execution time of Algorithm 1 for different values of l as the input
file size grows. (Lower plot): comparison of the execution time of different configurations of
bf-PoW during the server initialization phase with b-PoW and s-PoW, as the input file size
grows.

13

Let us now turn to the regular execution phase (for 10,000 executions). The first subplot of
Figure 4 analyses the running time required to verify J tokens (Algorithm 3); we can see that
the execution time is constant for a fixed value of l and differences in p only affect the number J
of tokens per challenge. Also, similarly to the client-side, small tokens offer better performance,
as opposed to the initialization phase where the reverse was true. The second subplot compares
the execution time of all three schemes. At first, we can notice that the execution time of both
bf-PoW and b-PoW is constant as the input file size grows, whereas the performance of s-PoW
degrades considerably for larger files. The running time of both bf-PoW and s-PoW depends
on the chosen value of p: for very conservative values of p (e.g. 0.95), the probability of C̃
knowing a random byte of the file, both schemes perform around 10 times slower than b-PoW;
for smaller values of p, bf-PoW performs equally to (or even faster than) b-PoW.

4.3 Memory Requirements

From equations 1 and 7 we can see that the size (in bits) of the Bloom filter does not depend
on the file size and can be determined as

s =

⌈
−
Smin ln pf

l (ln 2)2

⌉
(8)

for given values of the threshold Smin, the token length l and the false positive rate pf . From
Equation 8 we can notice that the file size does not play a role in the length of the bloom filter,
thus satisfying the last requirement listed in section 3.2. Figure 5 plots the size of the Bloom
filter for a few different configurations of the token length l and of the false positive rate pf . We
can see how we can trade smaller filters for higher false positive rates (which our scheme can
withstand as described in section 3.5), and how shorter tokens (which are favourable for clients
since they afford both smaller response lengths and quicker execution times) unfortunately
require larger filters. However, even in the worst case (for pf equals to 0.1) we can see how the
filter is never larger than 2 MiB (for l = 128 bits), and can be as small as 40 bytes for larger
tokens.

The competing schemes behave as follows: b-PoW only requires the root of the Merkle tree
to be stored (which is as large as our filter in the most favourable situation, as we can see
in Figure 5); s-PoW cannot be compared fairly since the size of precomputed responses can
be as short as a single one, but it then requires re-loading of the whole file when the need to
recompute the next set of challenges arises.

4.4 Discussion

The results of our benchmarks show ample space for tradeoffs in the way bf-PoW can be config-
ured. We have seen how the scheme sports better performance with small tokens in the client
and server (regular execution) phases. Small tokens also entail smaller bandwidth requirements
for the challenge phase: practical deployments are therefore expected to choose small tokens,
which results in larger Bloom filters. As previously stated, in the worst configurations this
would require up to 2MiB of additional storage per stored file. Due to storage savings thanks
to deduplication, we consider this requirement acceptable. bf-PoW is the fastest scheme for cer-
tain choices of p at the server side, being always faster than s-PoW. At the client side, bf-PoW
is faster than b-PoW and has performance comparable to that of s-PoW. Both bf-PoW and
s-PoW have the advantage of a simple security analysis, based on standard assumption, whereas
the security of b-PoW is (as admitted by the authors) based on assumptions that are hard to
verify in practice. The latter should constitute an important additional point to consider.

14

 1e+06

 1e+07

 1e+08

 1 10 100 1000

C
lo

ck
 c

yc
le

s

File size (in MiB)

l = 16, p = 0.95
l = 64, p = 0.95

l = 256, p = 0.95
l = 1024, p = 0.95

l = 1024, p = 0.5
l = 1024, p = 0.75

l = 1024, p = 0.9

 1e+09

 1e+10

 1e+11

 1e+12

 1 10 100 1000

C
lo

ck
 c

yc
le

s

File size (in MiB)

b-POW
s-POW, p = 0.95

bf-POW, p = 0.95
s-POW, p = 0.75

bf-POW, p = 0.75
s-POW, p = 0.5

bf-POW, p = 0.5

Figure 4: (Upper plot): execution time of Algorithm 3 for different values of l as the input
file size grows. (Lower plot): comparison of the execution time of different configurations of
bf-PoW during the server regular execution phase with b-PoW and s-PoW, as the input file
size grows.

15

 10

 100

 1000

 10000

 10 100 1000

B
lo

om
 fi

lte
r

si
ze

 (
in

 K
iB

)

Token size (in B)

pf = 0.1
pf = 0.01

pf = 0.001

Figure 5: Size of the Bloom filter for different values of the token length l and the probability
of a false positive pf .

5 Conclusions

In this paper we have introduced a novel Proof of Ownership (PoW) scheme that thwarts known
security threats to deduplication. In particular, we have provided a solution that, by leveraging
Bloom filters, is an improvement over state of the art solutions. Our approach is more efficient
at the client side than the solution proposed by Halevi et al. [11] and more efficient at the server
side than the proposal by Di Pietro et al. [9]. Furthermore, our solution allows the systems and
security parameters to be tailored to meet the expected security and efficiency requirements.
Our proposal is an ideal alternative to state of the art solutions for a broad set of application
scenarios. Finally, we have provided a detailed analysis of the security and efficiency of our
proposal, and an extensive set of benchmarks that support the quality and viability of our
findings.

References

[1] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song.
Provable data possession at untrusted stores. In Proceedings of the 14th ACM conference
on Computer and communications security, CCS ’07, pages 598–609, New York, NY, USA,
2007. ACM.

[2] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient provable
data possession. In Proceedings of the 4th International Conference on Security and Privacy
in Communication Netowrks, SecureComm ’08, pages 9:1–9:10, New York, NY, USA, 2008.
ACM.

16

[3] J. Baliga, R. W. Ayre, K. Hinton, and R. S. Tucker. Green cloud computing: Balancing
energy in processing, storage, and transport. Proceedings of the IEEE, 99(1):149–167, 2011.

[4] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-locked encryption and secure dedu-
plication. Cryptology ePrint Archive, Report 2012/631, 2012. http://eprint.iacr.org/.

[5] Bitcasa Infinite Storage. https://www.bitcasa.com/, 2013.

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM, 13(7):422–426, 1970.

[7] Ciphertite High Security Online Backup. https://www.cyphertite.com/, 2013.

[8] W. V. der Laan. Dropship. https://github.com/driverdan/dropship, 2013.

[9] R. Di Pietro and A. Sorniotti. Boosting efficiency and security in proof of ownership for
deduplication. In Proceedings of the 7th ACM Symposium on Information, Computer and
Communications Security, pages 81–82. ACM, 2012.

[10] S. Geravand and M. Ahmadi. Bloom filter applications in network security: A state-of-
the-art survey. Computer Networks, In Press(0):–, 2013.

[11] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg. Proofs of ownership in remote stor-
age systems. In Proceedings of the 18th ACM conference on Computer and communications
security, pages 491–500. ACM, 2011.

[12] D. Harnik, O. Margalit, D. Naor, D. Sotnikov, and G. Vernik. Estimation of deduplication
ratios in large data sets. In IEEE 28th Symposium on Mass Storage Systems and Tech-
nologies, MSST 2012, April 16-20, 2012, Asilomar Conference Grounds, Pacific Grove,
CA, USA, pages 1–11, 2012.

[13] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side channels in cloud services: Deduplication
in cloud storage. Security & Privacy, IEEE, 8(6):40–47, 2010.

[14] A. Juels. Method and system for preventing de-duplication side-channel attacks in cloud
storage systems, Sept. 3 2013. US Patent 8,528,085.

[15] A. Juels and B. S. Kaliski, Jr. PoRs: proofs of retrievability for large files. In Proceedings
of the 14th ACM conference on Computer and communications security, CCS ’07, pages
584–597, New York, NY, USA, 2007. ACM.

[16] X. Li, Y. Li, T. Liu, J. Qiu, and F. Wang. The method and tool of cost analysis for cloud
computing. In Cloud Computing, 2009. CLOUD ’09. IEEE International Conference on,
pages 93–100, 2009.

[17] R. C. Merkle. A certified digital signature. In Advances in Cryptology—CRYPTO’89
Proceedings, pages 218–238. Springer, 1990.

[18] W. K. Ng, Y. Wen, and H. Zhu. Private data deduplication protocols in cloud storage. In
SAC, pages 441–446, 2012.

[19] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller. Secure data deduplication. In
Proceedings of the 4th ACM international workshop on Storage security and survivability,
pages 1–10. ACM, 2008.

17

[20] J. Xu, E.-C. Chang, and J. Zhou. Weak leakage-resilient client-side deduplication of en-
crypted data in cloud storage. In Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security, ASIA CCS ’13, pages 195–206, New
York, NY, USA, 2013. ACM.

[21] C. Yang, J. Ren, and J. Ma. Provable ownership of files in deduplication cloud storage.
Security and Communication Networks, pages n/a–n/a, 2013.

[22] Q. Zheng and S. Xu. Secure and efficient proof of storage with deduplication. In Proceedings
of the second ACM conference on Data and Application Security and Privacy, CODASPY
’12, pages 1–12, New York, NY, USA, 2012. ACM.

18

